For the first possiblity, the user inputs a polynomial ring, which specifices the vertices of graph, and a list of the edges of the graph. The edges are represented as lists.
i1 : R = QQ[a..f]
o1 = R
o1 : PolynomialRing
|
i2 : E = {{a,b,c},{b,c,d},{c,d,e},{e,d,f}}
o2 = {{a, b, c}, {b, c, d}, {c, d, e}, {e, d, f}}
o2 : List
|
i3 : h = hyperGraph (R,E)
o3 = HyperGraph{edges => {{a, b, c}, {b, c, d}, {c, d, e}, {e, d, f}}}
ring => R
vertices => {a, b, c, d, e, f}
o3 : HyperGraph
|
Altenatively, if the polynomial ring has already been defined, it suffices to simply enter the list of the edges.
i4 : S = QQ[z_1..z_8]
o4 = S
o4 : PolynomialRing
|
i5 : E1 = {{z_1,z_2,z_3},{z_2,z_4,z_5,z_6},{z_4,z_7,z_8},{z_5,z_7,z_8}}
o5 = {{z , z , z }, {z , z , z , z }, {z , z , z }, {z , z , z }}
1 2 3 2 4 5 6 4 7 8 5 7 8
o5 : List
|
i6 : E2 = {{z_2,z_3,z_4},{z_4,z_8},{z_7,z_6,z_8},{z_1,z_2}}
o6 = {{z , z , z }, {z , z }, {z , z , z }, {z , z }}
2 3 4 4 8 7 6 8 1 2
o6 : List
|
i7 : h1 = hyperGraph E1
o7 = HyperGraph{edges => {{z , z , z }, {z , z , z , z }, {z , z , z }, {z , z , z }}}
1 2 3 2 4 5 6 4 7 8 5 7 8
ring => S
vertices => {z , z , z , z , z , z , z , z }
1 2 3 4 5 6 7 8
o7 : HyperGraph
|
i8 : h2 = hyperGraph E2
o8 = HyperGraph{edges => {{z , z }, {z , z , z }, {z , z }, {z , z , z }}}
1 2 2 3 4 4 8 6 7 8
ring => S
vertices => {z , z , z , z , z , z , z , z }
1 2 3 4 5 6 7 8
o8 : HyperGraph
|
The list of edges could also be entered as a list of square-free monomials.
i9 : T = QQ[w,x,y,z]
o9 = T
o9 : PolynomialRing
|
i10 : e = {w*x*y,w*x*z,w*y*z,x*y*z}
o10 = {w*x*y, w*x*z, w*y*z, x*y*z}
o10 : List
|
i11 : h = hyperGraph e
o11 = HyperGraph{edges => {{w, x, y}, {w, x, z}, {w, y, z}, {x, y, z}}}
ring => T
vertices => {w, x, y, z}
o11 : HyperGraph
|
i12 : C = QQ[p_1..p_6]
o12 = C
o12 : PolynomialRing
|
i13 : i = monomialIdeal (p_1*p_2*p_3,p_3*p_4*p_5,p_3*p_6)
o13 = monomialIdeal (p p p , p p p , p p )
1 2 3 3 4 5 3 6
o13 : MonomialIdeal of C
|
i14 : hyperGraph i
o14 = HyperGraph{edges => {{p , p , p }, {p , p , p }, {p , p }}}
1 2 3 3 4 5 3 6
ring => C
vertices => {p , p , p , p , p , p }
1 2 3 4 5 6
o14 : HyperGraph
|
i15 : j = ideal (p_1*p_2,p_3*p_4*p_5,p_6)
o15 = ideal (p p , p p p , p )
1 2 3 4 5 6
o15 : Ideal of C
|
i16 : hyperGraph j
o16 = HyperGraph{edges => {{p , p }, {p , p , p }, {p }}}
1 2 3 4 5 6
ring => C
vertices => {p , p , p , p , p , p }
1 2 3 4 5 6
o16 : HyperGraph
|
Since a graph is specific type of hypergraph, we can change the type of a graph to hypergraph.
i17 : D = QQ[r_1..r_5]
o17 = D
o17 : PolynomialRing
|
i18 : g = graph {r_1*r_2,r_2*r_4,r_3*r_5,r_5*r_4,r_1*r_5}
o18 = Graph{edges => {{r , r }, {r , r }, {r , r }, {r , r }, {r , r }}}
1 2 2 4 1 5 3 5 4 5
ring => D
vertices => {r , r , r , r , r }
1 2 3 4 5
o18 : Graph
|
i19 : h = hyperGraph g
o19 = HyperGraph{edges => {{r , r }, {r , r }, {r , r }, {r , r }, {r , r }}}
1 2 2 4 1 5 3 5 4 5
ring => D
vertices => {r , r , r , r , r }
1 2 3 4 5
o19 : HyperGraph
|
Some special care is needed it construct the empty hypergraph, that is, the hypergraph with no edges. In this case, the input cannot be a list (since the constructor does not know which ring to use). To define the empty graph, use a polynomial ring and (monomial) ideal.
i20 : E = QQ[m,n,o,p]
o20 = E
o20 : PolynomialRing
|
i21 : i = monomialIdeal(0_E) -- the zero element of E (do not use 0)
o21 = 0
o21 : MonomialIdeal of E
|
i22 : hyperGraph i
o22 = HyperGraph{edges => {} }
ring => E
vertices => {m, n, o, p}
o22 : HyperGraph
|
i23 : j = ideal (0_E)
o23 = 0
o23 : Ideal of E
|
i24 : hyperGraph j
o24 = HyperGraph{edges => {} }
ring => E
vertices => {m, n, o, p}
o24 : HyperGraph
|