We compute the Hilbert series both without and with the optional argument. In the second case notice the terms of power series expansion up to, but not including, degree 5 are displayed rather than expressing the series as a rational function. The polynomial expression is an element of a Laurent polynomial ring which is the
degrees ring of the ambient ring.
i1 : R = ZZ/101[x,y];
|
i2 : hilbertSeries(R/x^3)
3
1 - T
o2 = --------
2
(1 - T)
o2 : Expression of class Divide
|
i3 : hilbertSeries(R/x^3, Order =>5)
2 3 4
o3 = 1 + 2T + 3T + 3T + 3T
o3 : ZZ[T]
|
If the ambient ring is multigraded, then the
degrees ring has multiple variables.
i4 : R = ZZ/101[x,y, Degrees=>{{1,2},{2,3}}];
|
i5 : hilbertSeries(R/x^3, Order =>5)
2 3 2 4 6 3 5 2 4 6 9 5 8 4 7 8 12
o5 = 1 + T T + T T + T T + T T + T T + T T + T T + T T + T T +
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
------------------------------------------------------------------------
7 11 6 10
T T + T T
0 1 0 1
o5 : ZZ[T , T ]
0 1
|
The heft vector provides a suitable monomial ordering and degrees in the ring of the Hilbert series.
i6 : R = QQ[a..d,Degrees=>{{-2,-1},{-1,0},{0,1},{1,2}}]
o6 = R
o6 : PolynomialRing
|
i7 : hilbertSeries(R, Order =>3)
2 -1 -2 -1 2 4 3 2 -1 -2
o7 = 1 + T T + T + T + T T + T T + T T + 2T + 2T T + 2T +
0 1 1 0 0 1 0 1 0 1 1 0 1 0
------------------------------------------------------------------------
-3 -1 -4 -2
T T + T T
0 1 0 1
o7 : ZZ[T , T ]
0 1
|
i8 : degrees ring oo
o8 = {{-1}, {1}}
o8 : List
|
i9 : heft R
o9 = {-1, 1}
o9 : List
|