.
i1 : R = ZZ/32003[x_1..x_3];
|
i2 : g = random(R^1, R^{-4})
o2 = | 11967x_1^4-3317x_1^3x_2+1878x_1^2x_2^2+14234x_1x_2^3-9235x_2^4+761x_1^
------------------------------------------------------------------------
3x_3+2925x_1^2x_2x_3-14838x_1x_2^2x_3+13403x_2^3x_3+12649x_1^2x_3^2+
------------------------------------------------------------------------
1957x_1x_2x_3^2-2491x_2^2x_3^2+9472x_1x_3^3+496x_2x_3^3+9591x_3^4 |
1 1
o2 : Matrix R <--- R
|
i3 : f = fromDual g
o3 = | x_2^2x_3-2310x_1x_3^2-4301x_2x_3^2-9158x_3^3
------------------------------------------------------------------------
x_1x_2x_3+13739x_1x_3^2+6813x_2x_3^2-5122x_3^3
------------------------------------------------------------------------
x_1^2x_3+12218x_1x_3^2-5907x_2x_3^2+8839x_3^3
------------------------------------------------------------------------
x_2^3-9553x_1x_3^2+874x_2x_3^2+13065x_3^3
------------------------------------------------------------------------
x_1x_2^2+7452x_1x_3^2-3418x_2x_3^2+14054x_3^3
------------------------------------------------------------------------
x_1^2x_2-9186x_1x_3^2+6333x_2x_3^2+15331x_3^3
------------------------------------------------------------------------
x_1^3-673x_1x_3^2-11596x_2x_3^2+43x_3^3 |
1 7
o3 : Matrix R <--- R
|
i4 : res ideal f
1 7 7 1
o4 = R <-- R <-- R <-- R <-- 0
0 1 2 3 4
o4 : ChainComplex
|
i5 : betti oo
0 1 2 3
o5 = total: 1 7 7 1
0: 1 . . .
1: . . . .
2: . 7 7 .
3: . . . .
4: . . . 1
o5 : BettiTally
|