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I Types

In this section we state the new types declared in ConvexPolyhedron and
give a description.

I.1 Polyhedron

A Polyhedron represents a rational polyhedron. It can be bounded or bounded,
need not be full dimensional or may contain a proper affine subspace. It can
be empty or zero dimensional. It is saved as a mutable hashtable which con-
tains the vertices, generating rays, and the basis of the lineality space of the
Polyhedron as well as the defining affine halfspaces and hyperplanes. The
output of a Polyhedron looks like this:

ol = HashTable{ambient dimension => 3 }
dimension of lineality space => 0
dimension of polyhedron => 2
number of facets => 5
number of rays => 1
number of vertices => 4

ol : Polyhedron

This table displays a short summary of the properties of the Polyhedron.
Note that the number rays and vertices are modulo the lineality space. So
for example a line in Q? has one vertex and no rays. However, one can not
access the above information directly, because this is just a virtual hashtable
generated for the output. The informations of a Polyhedron are extracted
by the functions included in this package:

e ambdim

e halfspaces
e hyperplanes
e linspace

e polydim

® rays

e vertices



A Polyhedron can be constructed as the convex hull of a set of points and
a set of rays or as the intersection of a set of affine halfspaces and affine
hyperplanes. The functions for this in ConvexPolyhedron are:

e convexHull
e intersection

The following functions and methods for polyhedra are implemented in Con-
vexPolyhedron:

e affinelmage

e bipyramid

e contains

e crosspolytope
e cyclicPolytope
e directproduct
e ecquals

e faces

e fVector

e hypercube

e minkowskisum

e minkSummandCone
e newtonPolytope
e polar

e pyramid

e smallestFace

e stdSimplex

e tailCone



1.2 Cone

A Cone represents a rational convex polyhedral cone. It need not be full
dimensional or may contain a proper linear subspace. It can be empty or
zero dimensional. It is saved as a mutable hashtable which contains the gen-
erating rays and the basis of the lineality space of the cone as well as the
defining halfspaces and hyperplanes. The output of a Cone looks like this:

02 = HashTable{ambient dimension => 4 }
dimension of lineality space => 1
dimension of the cone => 3
number of facets => 2
number of rays => 2

02 : Cone

This table displays a short summary of the properties of the Cone. Again the
number of rays is modulo the lineality space, so in the above example the rays
are not the generator of the lineality space and its negative. However, one
can not access the above information directly, because this is just a virtual
hashtable generated for the output. The informations of a Cone are extracted
by the functions included in this package:

e ambdim

e halfspaces

hyperplanes
e linspace

e conedim

® 1ays

A Cone can be constructed as the positive hull of a set of rays or as the
intersection of a set of linear halfspaces and linear hyperplanes. The functions
for this in ConvexPolyhedron are:

e posHull
e intersection

The following functions and methods for cones are implemented in Convex-
Polyhedron:



affineImage
coneToPolyhedron
contains
directproduct
dualCone

equals

faces

fVector
hilbertBasis

smallestFace



IT Functions

Since every function in ConvexPolyhedron is implemented as a method which
can have different inputs and different output types, there are a couple of
functions for which there are multiple synopsis expressions.

II.1 affinelmage

Synopsis
e Usage: affineImage(A,v,P) or affineImage(A,P)
e Inputs:

— P, a Polyhedron

— A, a matrix over ZZ or QQ with the ambient space of P as source
space

— v, a one column matrix giving a vector in the target space of A
e Outputs:

— The Polyhedron which is the image of P under A translated by v.

Description affineImage computes the affine image {(A-p)+v|p € P}
where v is set to 0 if omitted.

II.2 ambdim

Synopsis
e Usage: ambdim P or ambdim C
e Inputs:

— P, a Polyhedron

— C, a Cone
e Outputs:

— The ambient dimension of type ZZ.

Description ambdim returns the dimension of the ambient space either of
the Polyhedron P or the cone C.



I1.3 bipyramid
Synopsis
e Usage: bipyramid P
e Inputs:
— P, a non-empty Polyhedron
e Outputs:

— A Polyhedron which is the bipyramid over P.

Description The bipyramid over a Polyhedron is constructed, by em-
bedding the Polyhedron into n 4 1 space, computing the barycentre of the
vertices, which is a point in the relative interior, and taking the convex hull
of the embedded Polyhedron and the barycentre x{£1}.

II.4 commonFace

Synopsis
e Usage: commonFace(P,Q) or commonFace(C1,C2)
e Inputs:

— P,Q, two Polyhedra
— C1,C2, two Cones

e Outputs:

— a boolean

Description commonFace tests whether the intersection of both arguments
is a face of each argument.

II.5 conedim
Synopsis
e Usage: conedim C

e Inputs:



— C, a Cone
e Outputs:

— The cone dimension of type ZZ.

Description conedim returns the dimension of the Cone C.

II.6 coneToPolyhedron
Synopsis
e Usage: coneToPolyhedron C
e Inputs:
— C, a Cone
e Outputs:
— The Cone transformed into type Polyhedron.

Description coneToPolyhedron returns exactly the same Cone but of
type Polyhedron.

II.7 contains

Synopsis
e Usage: contains(P,Q) or contains(P,p)
e Inputs:

— P, a Polyhedron or a Cone
— @, a Polyhedron or a Cone

— p, a one column matrix giving a point
e Outputs:

— boolean

Description contains determines if the first argument contains the sec-
ond argument. Both arguments have to lie in the same ambient space. It
tests if the equations of the first argument are satisfied by the generating
points/rays of the second argument.



I1.8 convexHull

Synopsis
e Usage: convexHull M or convexHull(M,N) or convexHull(P,Q)
e Inputs:

— M, a matrix where the columns are considered as points
— N, a matrix where the columns are considered as rays

— P,Q, two Polyhedra
e Outputs:

— A Polyhedron.

Description convexHull computes the convex hull of the input. In the
first two cases it considers the columns of the first matrix as a set of points
and the columns of the second (if given) as a set of rays and computes the
polyhedron which is the convex hull of the points plus the rays. The two
matrices must have the same number rows. If N is not given or equal to 0
then the resulting polyhedron is compact and hence a polytope. The points
need not be a the vertices of the polyhedron. In the last case it computes
the convex hull of the two polyhedra if they lie in the same ambient space.

I1.9 crosspolytope

Synopsis
e Usage: crosspolytope(d,s) or crosspolytope(d)
e Inputs:

— d, a strictly positive integer

— 8, a positive integer or a rational number
e Outputs:

— A Polyhedron, the d dimensional crosspolytope with diameter 2-s.

Description The d dimensional crosspolytope with diameter s is the
convex hull of £ s the standard basis in Q¢.



I1.10 cyclicPolytope

Synopsis
e Usage: crosspolytope(d,n)
e Inputs:

— d, a strictly positive integer

— n, a strictly positive integer

e Outputs:

— A Polyhedron, the d dimensional cyclic polytope with n vertices.

Description The d dimensional cyclicpolytope with n vertices is the
convex hull of n points on the moment curve in Q% The moment curve is
defined by t — (¢,t2,...,t) and the function takes the points {0,...,n — 1}.

I1.11 directproduct

Synopsis
e Usage: directproduct(P,Q)
e Inputs:

— P, a Polyhedron or a Cone

— @, a Polyhedron or a Cone

e Outputs:

— A Polyhedron, which is the direct product of both, but if P and Q
are cones then the direct product is returned as a Cone.

Description The directproduct of P and Q is the polyhedron {(p,q) |p €
P,q € Q} in the direct product of the ambient spaces of P and Q.

9



I1.12 dualCone

Synopsis
e Usage: dualCone C
e Inputs:
— C, a Cone
e Outputs:

— A Cone, which is the dual cone of the input cone Cone.

Description The dual Cone of CC Q" is the cone in the dual ambient
space (Q")* given by {p € (Q")*|p-c > 0Vc € C}.

11.13 equals

Synopsis
e Usage: equals(P,Q) or equals(C1,C2)
e Inputs:

— P,Q, two Polyhedra
— C1,C2, two Cones

e Outputs:

— a boolean, indicating whether both objects inserted are equal or
not.

Description The function equals is necessary, because the hashTables by
which the two objects are given cannot be compared and also the order of the
columns for example in the vertices matrix is not unique. It uses the function
contains in both directions. Both objects must be contained in the same
ambient space, so for example the positive orthant in Q? and the cone in Q?
spanned by e; and ey are not considered to be equal in ConvexPolyhedron.
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I1.14 faces

Synopsis
e Usage: faces(k,P) or faces(k,C)
e Inputs:

— k, an integer
— P, a Polyhedron

— C, a Cone
e Outputs:

— a list, containing the codim. k faces of P or C

Description The function faces computes the faces of codimension k if
the second argument is a Polyhedron then they are saved as Polyhedra and if
the second argument is a Cone then the faces are again cones and thus saved
as cones. The function does not consider the empty face of the input as a
face so that k must be between 0 and the dimension of the Polyhedron/Cone.

I1.15 fVector

Synopsis
e Usage: fVector(P) or fVector(C)
e Inputs:

— P, a Polyhedron

— C, a Cone
e Outputs:

— a list, containing the number of faces for each dimension

Description The i-th entry of the fVector of P is the number of codimen-
sion i — 1 faces of P, so it starts with a 1 for P itself, has dimension(P)+1
entries, and the last one is the number of vertices. It is the same for a Cone
C.
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I1.16 halfspaces

Synopsis
e Usage: halfspaces(P) or halfspaces(C)
e Inputs:

— P, a Polyhedron
— C, a Cone
e Outputs:
— two matrices over Qif the input is a Polyhedron and one matrix

over Q if the input is a Cone

Description This function returns the defining halfspaces. For a polyhe-
dron P the output is (M, v) where the source of M has the dimension of the
ambient space of P and v is a one column matrix in the target space of M
such that P = {p € H| M -p < v} where H is the intersection of the defining
affine hyperplanes. For a cone C' the output is M which is the same matrix
as before but v is ommited since it is 0, so C ={c€ H|M -¢ > 0} and H
is the intersection of the defining hyperplanes.

I1.17 hilbertBasis
Synopsis
e Usage: hilbertBasis(C)
e Inputs:
— C, a Cone
e Outputs:

— a list, containing the elements of the Hilbert basis of C

Description The Hilbert basis of the cone C' is computed by the Project-
and-Lift-algorithm by Raymond Hemmecke | |. It computes a Hilbert
basis of the cone modulo the lineality space, so it returns a list of one column
matrices which give the Hilbert basis of the Cone if one adds the basis of the
lineality space and its negative.
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I1.18 hypercube

Synopsis
e Usage: hypercube(d,s) or hypercube d
e Inputs:

— d, a strictly positive integer

— s, a positive integer or rational number
e Outputs:

— a Polyhedron, the d dimensional hypercube with edge length 2-s

Description The d dimensional hypercube with edge length 2 - s is the
convex hull of all points in {+s}? in Q%.

I1.19 hyperplanes

Synopsis
e Usage: hyperplanes(P) or hyperplanes(C)
e Inputs:

— P, a Polyhedron

— C, a Cone
e Outputs:

— two matrices over Qif the input is a Polyhedron and one matrix
over Q if the input is a Cone

Description This function returns the defining hyperplanes. For a poly-
hedron P the output is (M, v) where the source of M has the dimension of
the ambient space of P and v is a one column matrix in the target space of
M such that P = {p € H|M - p = v} where H is the intersection of the
defining affine halfspaces. For a cone C' the output is M, which is the same
matrix as before, but v is ommited since it is 0, so C' ={c € H|M - ¢ = 0}
and H is the intersection of the defining halfspaces.
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I1.20 intersection
Synopsis

e Usage: intersection(M,v,N,w) or intersection(M,v) or intersection(M,N)
or intersection M or intersection(P,Q)

e Inputs:

— M,N, two matrices over Z or Q where the rows are considered as
linear equations

— v,w, two one column matrices over Z or Q

— P,Q, each a Polyhedron or a Cone
e Outputs:

— A Polyhedron or a Cone.

Description In the first four cases intersection considers the the given
matrices as defining inequalities and equalities. Thus it computes the poly-
hedron P = {p|M -p <wvand N - p = w}. Therefore M and N must have
the same number of columns, which will be the dimension of the ambient
space, and M and v as well as N and w must have the same number of rows
respectively. If N and w are omitted then the polyhedron is just given by
the inequality. If v and w are omitted then they are considered to be 0 so
that the intersection is a cone and thus the output is also a cone.

In the last case the intersection of both arguments is computed if both
arguments lie in the same ambient space. If both arguments are cones then
the output is again a cone. Otherwise intersection returns a polyhedron.

I1.21 isCompact
Synopsis
e Usage: isCompact P
e Inputs:
— P, a Polyhedron
e Outputs:

— a boolean

14



Description Tests whether P is compact, i.e. a polytope.

11.22 isFace

Synopsis
e Usage: isFace(P,Q) or isFace(C1,C2)
e Inputs:

— P,Q, two Polyhedra

— C1,C2, two Cones
e Outputs:

— a boolean

Description isFace tests whether the first argument is a face of the second
argument.

I1.23 linspace

Synopsis
e Usage: linspace P or linspace C
e Inputs:

— P, a Polyhedron

— C, a Cone
e Outputs:

— a matrix over Q

Description 1linspace returns a basis of the lineality space of the input
as the columns of a matrix.
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I1.24 minkowskisum
Synopsis
e Usage: minkowskisum(P,Q)
e Inputs:
— P,Q, each a Polyhedron or a Cone
e Outputs:

— a Polyhedron or a Cone

Description The minkowskisum of P and @) is the polyhdedron P 4+ () =
{p+q|lp€ P qe Q}. If Pand Q are both cones then their Minkowskisum
is their positive hull which is a cone, so the output is a cone. Otherwise the
output is a polyhedron. P and () have to lie in the same ambient space.

I1.25 minkSummandCone
Synopsis
e Usage: minkSummandCone P
e Inputs:
— P, a Polyhedron
e Outputs:

— (C,L,M), the first entry C is a Cone, the second entry L is a list of
Polyhedra and the third entry M is a matrix

Description For the Minkowski summand cone one takes Q% where d is
the number of edges of the input polyhedron P. Every Minkowski summand
of P has only edges that are edges of P, so it can be constructed by rescaling
every edge of P, i.e. is represented by a point in Q¢. But not every point
in Q7 gives a polyhedron via this method. This is the case if on the one
hand the point lies in the positive orthant and on the other hand for every
compact two dimensional face of P the rescaled edges of this faces give a two
dimensional polytope, i.e. the sum of the ordered rescaled edge directions is
zero. Therefore every compact two dimensional face of P gives a set of linear
equalities on a part of the variables in Q?. The MinkowskiSummandCone C
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is the intersection of the positive orthant with these equations. The corre-
sponding polyhedron to every minimal generator of C' is saved in the list L.
Finally all possible minimal decompositions of P are saved as columns in the
matrix M.

I1.26 newtonPolytope

Synopsis
e Usage: newtonPolytope r
e Inputs:
— r, a RingElement
e Outputs:

— a Polyhedron

Description The newtonPolytope of r is the covex hull of its exponent
vectors.

I11.27 polar

Synopsis
e Usage: polar P
e Inputs:
— P, a Polyhedron
e Outputs:

— a Polyhedron, the polar of P

Description The polar polyhedron of P is the polyhedron in the dual space
given by {v € (Q¥)*|v-p < 1Vp € P}.
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I1.28 polydim
Synopsis
e Usage: polydim P
e Inputs:
— P, a Polyhedron
e Outputs:

— an integer, the dimension of the Polyhedron

Description polydim returns the dimension of the Polyhedron P.

11.29 posHull
Synopsis

e Usage: posHull(M,N) or posHull M or posHull(C1,C2) or posHull
P

e Inputs:

— M, a matrix where the columns are considered as rays

— N, a matrix where the columns are considered as generators of the
lineality space

— C1,C2, two Cones

— P, a Polyhedron
e Outputs:
— A Cone

Description posHull computes the positive hull of the input. In the first
two cases it considers the columns of the first matrix as a set of rays and
the columns of the second (if given) as generators of the lineality space and
computes the cone which is the positive hull of the rays plus the lineality
space. The two matrices must have the same number rows. If N is not given
or equal to 0 then the resulting cone is pointed. The rays need not be a
minimal generating set of the cone. If two cones are inserted it computes
their positive hull if they lie in the same ambient space. In the last case it
computes the cone given by all positive multiples of points of the polyhedron.
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I1.30 pyramid
Synopsis
e Usage: pyramid P
e Inputs:
— P, a Polyhedron
e Outputs:
— A Polyhedron

Description The function takes the polyhedron P with ambient dimension
n and embedds it into Q™" on height 0 with respect to the new last variable.
The it computes the convex hull of the embedded P and the point (0, ...,0,1).

I1.31 rays

Synopsis
e Usage: rays P or rays C
e Inputs:

— P, a Polyhedron

— C, a Cone
e QOutputs:

— a matrix over Q

Description Returns the rays of the input as the columns of a matrix.

I1.32 smallestFace
Synopsis
e Usage: smallestFace(p,P) or smallestFace(p,C)
e Inputs:
— p, a one column matrix over Z or Q

— P, a Polyhedron
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— C, a Cone
e Outputs:

— a Polyhedron or a Cone

Description p is considered to be point in the ambient space of the second
argument, so the number of rows of p must equal the dimension of the ambient
space of the second argument. The function computes the smallest face of the
second argument which contains p. If the second argument is a polyhedron
the output is a polyhedron and if it is a cone the output is a cone.

11.33 stdSimplex
Synopsis
e Usage: stdSimplex d
e Inputs:
— d, a positive integer
e Outputs:

— a Polyhedron, the standard d simplex

Description The d dimesional standard simplex is the convex hull of stan-
dard basis in Q%+

I1.34 tailCone
Synopsis
e Usage: tailCone P
e Inputs:
— P, a Polyhedron
e Outputs:

— a Cone, the tail cone of P

20



Description The tail cone of P is the cone generated by the non-compact
part, i.e. the rays and the lineality space of P. If P is a polytope then the
tail cone is the origin in the ambient space of P.

I1.35 vertices
Synopsis
e Usage: vertices P
e Inputs:
— P, a Polyhedron
e Outputs:

— a Matrix

Description Returns the vertices of the polyhedron as the columns of a
matrix.
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