next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

             2 2         2       2   2 2        2   2         2 2       2 2 2
o2 = ideal (l s  - i*p, a h*s - k , e w x - a, h o*v  - g, b*e v  - s, b k l 
     ------------------------------------------------------------------------
           2 2 2 2
     - x, b e u w  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 4 2 3          4      3 3 3 3 3      2 3 4 3   4 3 4 3 4  
o3 = ideal (b i m n  - c*g*h*l o*x, i o t u x  - f*j m p s , g h o t x  -
     ------------------------------------------------------------------------
        3        4 4 4 4 3    4 4 3 3 2
     c*f l*n*v, e i k u x  - a d h r s )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous