If a polynomial ring is made as the total coordinate ring of normal toric variety, then this method returns the associated variety.
i1 : PP3 = projectiveSpace 3;
|
i2 : S = ring PP3
o2 = S
o2 : PolynomialRing
|
i3 : gens S
o3 = {x , x , x , x }
0 1 2 3
o3 : List
|
i4 : degrees S
o4 = {{1}, {1}, {1}, {1}}
o4 : List
|
i5 : normalToricVariety S
o5 = PP3
o5 : NormalToricVariety
|
i6 : variety S
o6 = PP3
o6 : NormalToricVariety
|
If the polynomial ring is not constructed from a variety, then this method returns
null.
i7 : S = QQ[x_0..x_2];
|
i8 : gens S
o8 = {x , x , x }
0 1 2
o8 : List
|
i9 : degrees S
o9 = {{1}, {1}, {1}}
o9 : List
|
i10 : variety S
|
i11 : null === variety S
o11 = true
|