i1 : PP3 = projectiveSpace 3; |
i2 : K = toricDivisor PP3 o2 = - D - D - D - D 0 1 2 3 o2 : ToricDivisor on PP3 |
i3 : omega = OO K 1 o3 = OO (-4) PP3 o3 : coherent sheaf on PP3 |
i4 : HH^3(PP3, OO_PP3(-7) ** omega) 120 o4 = QQ o4 : QQ-module, free |
i5 : HH^0(PP3, OO_PP3(7)) 120 o5 = QQ o5 : QQ-module, free |
i6 : Rho = {{-1,-1,1},{3,-1,1},{0,0,1},{1,0,1},{0,1,1},{-1,3,1},{0,0,-1}}; |
i7 : Sigma = {{0,1,3},{0,1,6},{0,2,3},{0,2,5},{0,5,6},{1,3,4},{1,4,5},{1,5,6},{2,3,4},{2,4,5}}; |
i8 : X = normalToricVariety(Rho,Sigma); |
i9 : isSmooth X o9 = false |
i10 : isComplete X o10 = true |
i11 : isProjective X o11 = true |
i12 : K = toricDivisor X o12 = - D - D - D - D - D - D - D 0 1 2 3 4 5 6 o12 : ToricDivisor on X |
i13 : isCartier K o13 = true |
i14 : omega = OO K 1 o14 = OO (2,-2,-8,-8) X o14 : coherent sheaf on X |
i15 : HH^0(X, OO_X(-1,2,4,5)) 5 o15 = QQ o15 : QQ-module, free |
i16 : HH^3(X, OO_X(1,-2,-4,-5) ** omega) 5 o16 = QQ o16 : QQ-module, free |