next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
NormalToricVarieties :: ideal(NormalToricVariety)

ideal(NormalToricVariety) -- make the irrelevant ideal

Synopsis

Description

The irrelevant ideal is a reduced monomial ideal in the total coordinate ring which encodes the combinatorics of the fan. For each maximal cone in the fan, it has a minimal generator, namely the product of the variables not indexed by elements of the list corresponding to the maximal cone.

For projective space, the irrelevant ideal is generated by the variables.

i1 : PP4 = projectiveSpace 4;
i2 : B = ideal PP4

o2 = ideal (x , x , x , x , x )
             4   3   2   1   0

o2 : Ideal of QQ[x , x , x , x , x ]
                  0   1   2   3   4
i3 : isMonomialIdeal B

o3 = true
For an affine toric variety, the irrelevant ideal is the unit ideal.
i4 : C = normalToricVariety({{1,0,0},{0,1,0},{0,0,1},{1,1,-1}},{{0,1,2,3}});
i5 : ideal C

o5 = ideal 1

o5 : Ideal of QQ[x , x , x , x ]
                  0   1   2   3
The irrelevant ideal for a product of toric varieties is intersection of the irrelevant ideal of the factors.
i6 : X = projectiveSpace(3) ** projectiveSpace(4);
i7 : S = ring X;
i8 : B = ideal X

o8 = ideal (x x , x x , x x , x x , x x , x x , x x , x x , x x , x x , x x ,
             3 8   3 7   3 6   3 5   3 4   2 8   2 7   2 6   2 5   2 4   1 8 
     ------------------------------------------------------------------------
     x x , x x , x x , x x , x x , x x , x x , x x , x x )
      1 7   1 6   1 5   1 4   0 8   0 7   0 6   0 5   0 4

o8 : Ideal of S
i9 : primaryDecomposition B

o9 = {ideal (x , x , x , x ), ideal (x , x , x , x , x )}
              0   1   2   3           4   5   6   7   8

o9 : List
i10 : dual monomialIdeal B

o10 = monomialIdeal (x x x x , x x x x x )
                      0 1 2 3   4 5 6 7 8

o10 : MonomialIdeal of S
For a complete simplicial toric variety, the irrelevant ideal is the Alexander dual of the Stanley-Reisner ideal of the fan.
i11 : Y = smoothFanoToricVariety(2,3);
i12 : max Y

o12 = {{0, 1}, {0, 4}, {1, 2}, {2, 3}, {3, 4}}

o12 : List
i13 : dual monomialIdeal Y

o13 = monomialIdeal (x x , x x , x x , x x , x x )
                      0 2   0 3   1 3   1 4   2 4

o13 : MonomialIdeal of QQ[x , x , x , x , x ]
                           0   1   2   3   4
Since the irrelevent ideal is a monomial ideal, the command monomialIdeal also produces the irrelevant ideal.
i14 : code(monomialIdeal, NormalToricVariety)

o14 = -- code for method: monomialIdeal(NormalToricVariety)
      /home/charles/local/src/Macaulay2/release-branches/1.5/M2/
      monomialIdeal NormalToricVariety := MonomialIdeal => X -> 
      -----------------------------------------------------------------------
      Macaulay2/packages/NormalToricVarieties.m2:757:56-757:79: --source
      monomialIdeal ideal X
      -----------------------------------------------------------------------
      code:

See also