next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

             2          2 2    2    2       2   2 2     2     2   2     
o2 = ideal (l p - n*u, n t  - e p, h j*k - x , b s u - w , f*n r*w  - 1,
     ------------------------------------------------------------------------
      2 2 2    2   2 2
     m p v  - n , g k q*t - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             4 2 2 3 3      3 4 3 3   3   2 4 2 3    4 3 4 2   4 4 4   2  
o3 = ideal (b e g k l  - j*n o p u , a c*l s u v  - b h q r , c j k l*u  -
     ------------------------------------------------------------------------
      3 2 2 3 3   4 3 3   3   2    3 3 3
     e f h w x , b c g l*o p*v  - a n x )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.