Section 1 - Motif Functions and Macros

This page describes the format and contents of each reference page in Section 1,
which covers the Motif functions and macros.

Name
Function — a brief description of the function.
Synopsis
This section shows the signature of the function: the names and types of the argu-
ments, and the type of the return value. If header file other than <Xm/Xm.h> is
needed to declare the function, it is shown in this section as well.
Inputs
This subsection describes each of the function arguments that pass information to
the function.
Outputs
This subsection describes any of the function arguments that are used to return
information from the function. These arguments are always of some pointer type,
so you should use the C address-of operator (&) to pass the address of the varia-
ble in which the function will store the return value. The names of these argu-
ments are sometimes suffixed with _return to indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in this
section and in the "Inputs" section above. Finally, note that because the list of
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See the
function signature for the actual calling order.
Returns
This subsection explains the return value of the function, if any.
Availability
This section appears for functions that were added in Motif 2.0 and later, and also
for functions that are now superseded by other, preferred, functions.
Description
This section explains what the function does and describes its arguments and
return value. If you’ve used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.
Usage

This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch out
for, and related functions that you might want to consider.

Motif Reference Manual 1

Motif Functions and Macros

Example
This section appears for some of the most commonly used Motif functions, and
provides an example of their use.

Structures
This section shows the definition of any structures, enumerated types, typedefs,
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the function.

See Also
This section refers you to related functions, widget classes, and clients. The num-
bers in parentheses following each reference refer to the sections of this book in
which they are found.

2 Motif Reference Manual

Motif Functions and Macros XmActivateProtocol

Name
XmActivateProtocol — activate a protocol.

Synopsis
#include <Xm/Protocols.h>

void XmActivateProtocol (Widget shell, Atom property, Atom protocol)

Inputs
shell - Specifies the widget associated with the protocol property.

property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.

Description
XmActivateProtocol() activates the specified protocol. If the shell is real-
ized, XmActivateProtocol() updates its protocol handlers and the specified
property. If the protocol is active, the protocol atom is stored in property; if the
protocol is inactive, the protocol atom is not stored in property.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmActivateProtocol() makes the shell able to respond to ClientMessage
events that contain the specified protocol. Before you can activate a protocol, the
protocol must be added to the shell with XmAddProtocols(). Protocols are
automatically activated when they are added. The inverse routine is XmDeacti -
vateProtocol().

See Also
XmActivateWMProtocol (1), XmAddProtocols(l) XmDeactivate-
Protocol (1), XmInternAtom(1), VendorShel 1(2).

Motif Reference Manual 3

XmActivateWMProtocol Motif Functions and Macros

Name
XmActivateWMProtocol — activate the XA_WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmActivateWMProtocol (Widget shell, Atom protocol)
Inputs

shell - Specifies the widget associated with the protocol property.
protocol - Specifies the protocol atom.

Description
XmActivateWMProtocol () is a convenience routine that calls XmActi-
vateProtocol () with property set to XA_WM_PROTOCOL, the window
manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. Before you can activate the
protocols, they must be added to the shell with XmAddProtocols() or XmAd-
dWMProtocols(). Protocols are automatically activated when they are added.
The inverse routine is XmDeactivateWMProtocol ().

See Also
XmActivateProtocol(1), XmAddProtocols(1),
XmAddWMProtocols(1), XmDeactivateWMProtocol (1),
XmInternAtom(1), VendorShel 1(2).

4 Motif Reference Manual

Motif Functions and Macros XmAddProtocolCallback

Name

Synopsis

XmAddProtocolCallback — add client callbacks to a protocol.

#include <Xm/Protocols.h>

void XmAddProtocolCallback (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs

shell - Specifies the widget associated with the protocol property.

property - Specifies the property that holds the protocol data.

protocol - Specifies the protocol atom.

callback - Specifies the procedure to invoke when the protocol message
is received.

closure - Specifies any client data that is passed to the callback.

Description

Usage

See Also

XmAddProtocolCallback() adds client callbacks to a protocol. The routine veri-
fies that the protocol is registered, and if it is not, it calls XmAddProtocols().
XmAddProtocolCallback() adds the callback to the internal list of callbacks, so
that it is called when the corresponding client message is received.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-
ciated protocol callback routine. XmAddProtocolCallback() allows you to
register these callback routines.

XmAddProtocols(1), XmAddWMProtocolCal Iback(l),
XmInternAtom(l), VendorShel 1(2).

Motif Reference Manual 5

XmAddProtocols Motif Functions and Macros

Name

Synopsis

XmAddProtocols — add protocols to the protocol manager.

#include <Xm/Protocols.h>

void XmAddProtocols (Widget shell, Atom property, Atom *protocols, Cardinal
num_protocols)

Inputs

shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.

num_protocols Specifies the number of atoms in protocols.

Description

Usage

See Also

XmAddProtocols() registers a list of protocols to be stored in the specified
property of the specified shell widget. The routine adds the protocols to the pro-
tocol manager and allocates the internal tables that are needed for the protocol.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmAddProtocols() allows you to add protocols that can be understood by
your application. The inverse routine is XmRemoveProtocols(). To commu-
nicate using a protocol, a client sends a ClientMessage event containing a prop-
erty and protocol, and the receiving client responds by calling the associated
protocol callback routine. Use XmAddProtocolCal lback() to add a call-
back function to be executed when a client message event containing the speci-
fied protocol atom is received.

XmAddProtocolCal lback(1l), XmAddWMProtocols(1),
XmInternAtom(1), XmRemoveProtocols(l), VendorShel 1(2).

Motif Reference Manual

Motif Functions and Macros XmAddTabGroup

Name

Synopsis

XmAddTabGroup — add a widget to a list of tab groups.

void XmAddTabGroup (Widget tab_group)

Inputs

tab_group Specifies the widget to be added.

Availability

In Motif 1.1, XmAddTabGroup() is obsolete. It has been superseded by setting
XmNnavigationType to XmEXCLUSIVE_TAB_GROUP.

Description

Usage

See Also

Motif Reference Manual

XmAddTabGroup() makes the specified widget a separate tab group. This rou-
tine is retained for compatibility with Motif 1.0 and should not be used in newer
applications. If traversal behavior needs to be changed, this should be done
directly by setting the XmNnavigationType resource, which is defined by Man-
ager and Primitive.

A tab group is a group of widgets that can be traversed using the keyboard rather
than the mouse. Users move from widget to widget within a single tab group by
pressing the arrow keys. Users move between different tab groups by pressing
the Tab or Shift-Tab keys. If the tab_group widget is a manager, its children are
all members of the tab group (unless they are made into separate tab groups). If
the widget is a primitive, it is its own tab group. Certain widgets must not be
included with other widgets within a tab group. For example, each List, Scroll-
bar, OptionMenu, or multi-line Text widget must be placed in a tab group by
itself, since these widgets define special behavior for the arrow or Tab keys,
which prevents the use of these keys for widget traversal. The inverse routine is
XmRemoveTabGroup().

XmGetTabGroup(1l), XmRemoveTabGroup(l),
XmManager(2), XmPrimitive(2).

XmAddToPostFromList Motif Functions and Macros

Name

XmAddToPostFromList — make a menu accessible from a widget.
Synopsis

#include <Xm/RowColumn.h>

void XmAddToPostFromList (Widget menu, Widget widget)

Inputs

menu Specifies a menu widget

widget Specifies the widget from which to make menu accessible
Availability

In Motif 2.0 and later, the function prototype is removed from RowColumn.h,
although there is otherwise no indication that the procedure is obsolete.

Description
XmAddToPostFromList() is a convenience function which makes menu
accessible from widget. There is no limit to how many widgets may share the
same menu. The event sequence required to popup the menu is the same in each
widget context.

Usage
Rather than creating a new and identical hierarchy for each context in which a
pulldown or popup menu is required, a single menu can be created and shared. If
the type of the menu is XmMENU_PULLDOWN, the value of the XmNsubMen-
uld resource of widget is set to menu. If the type of the menu is
XmMENU_POPUP, button and key press event handlers are added to widget in
order to post the menu.

There are implicit assumptions that widget is a CascadeButton or CascadeBut-
tonGadget when menu is XmMENU_PULLDOWN, and that widget is not a
Gadget when menu is XmMENU_POPUP. These are not checked by the proce-
dure.

See Also
XmGetPostedFromWidget(l), XmRemoveFromPostFromList(l),
XmCascadeButton(2), XmCascadeButtonGadget(2), XmGadget(2),
XmPopupMenu(2), XmPul IldownMenu(2), XmRowCo lumn(2).

8 Motif Reference Manual

Motif Functions and Macros XmAddWMProtocolCallback

Name
XmAddWMProtocolCallback — add client callbacks to an
XA_WM_PROTOCOLS protocol.
Synopsis
#include <Xm/Protocols.h>
void XmAddwWMProtocolCallback (Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)
Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
callback Specifies the procedure to invoke when the protocol message
is received.
closure Specifies any client data that is passed to the callback.
Description
XmAddWMProtocolCal Iback() is a convenience routine that calls XmAd-
dProtocolCal Iback() with property set to XA WM_PROTOCOL, the win-
dow manager protocol property.
Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a pro-
tocol, a client sends a ClientMessage event containing a property and protocol,
and the receiving client responds by calling the associated protocol callback rou-
tine. XmAddWMProtocolCal Iback() allows you to register these callback
routines with the window manager protocol property. The inverse routine is
XmRemoveWMProtocolCal Iback().
Example

The following code fragment shows the use of XmAddWMProtocolCall-
back() to save the state of an application using the WM_SAVE_YOURSELF
protocol:

Atom wm_save_yourselT;

wm_save_yourself = XInternAtom?! (XtDisplay
(toplevel),

1.From Motif 2.0, XmInternAtom() is marked for deprecation.

Motif Reference Manual 9

XmAddWMProtocolCallback Motif Functions and Macros

""WM_SAVE_YOURSELF""
, False);

XmAddWMProtocols (toplevel, &wm save yourself, 1);

XmAddWwMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocolCal lback(l), XmInternAtom(l),
XmRemoveWMProtocolCal lback(l), VendorShel 1(2).

10 Motif Reference Manual

Motif Functions and Macros XmAddWMProtocols

Name
XmAddWMProtocols — add the XA_WM_PROTOCOLS protocols to the proto-
col manager.

Synopsis
#include <Xm/Protocols.h>

void XmAddWMProtocols (Widget shell, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmAddWMProtocols() is a convenience routine that calls XmAddProtocols()
with property set to XA WM_PROTOCOL, the window manager protocol prop-
erty.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. XmAddWMProtocols()
allows you to add this protocol so that it can be understood by your application.
The inverse routine is XmRemoveWMProtocols(). To communicate using a
protocol, a client sends a ClientMessage event containing a property and proto-
col, and the receiving client responds by calling the associated protocol callback
routine. Use XmAddWMProtocolCal Iback() to add a callback function to
be executed when a client message event containing the specified protocol atom
is received.

Example

The following code fragment shows the use of XmAddWMProtocols() to add the
window manager protocols, so that the state of an application can be saved using the
WM_SAVE_YOURSELF protocol:

Atom wm_save yourself;

wm_save_yourself = XmInternAtom (XtDisplay
(toplevel),
""WM_SAVE_YOURSELF"
, False);

XmAddWMProtocols (toplevel, &wm_save yourself, 1);

Motif Reference Manual 11

XmAddWMProtocols Motif Functions and Macros

XmAddWwMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocols(1), XmAddWMProtocolCal Iback(1l)
XmInternAtom(1), XmRemoveWMProtocols(l), VendorShel 1(2).

12 Motif Reference Manual

Motif Functions and Macros XmCascadeButtonHighlight

Name

Synopsis

XmCascadeButtonHighlight, XmCascadeButtonGadgetHighlight — set the high-
light state of a CascadeButton.

#include <Xm/CascadeB.h>
void XmCascadeButtonHighlight (Widget cascadeButton, Boolean highlight)
#include <Xm/CascadeBG.h>

void XmCascadeButtonGadgetHighlight (Widget cascadeButton, Boolean high-
light)

Inputs

cascadeButton Specifies the CascadeButton or CascadeButtonGadget.
highlight Specifies the highlight state.

Description

Usage

See Also

XmCascadeButtonHighl ight() sets the state of the shadow highlight
around the specified cascadeButton, which can be a CascadeButton or a Cas-
cadeButtonGadget.

XmCascadeButtonGadgetHighl ight() sets the highlight state of the
specified cascadeButton, which must be a CascadeButtonGadget.

Both routines draw the shadow if highlight is True and erase the shadow if high-
light is False.

CascadeButtons do not normally display a shadow like other buttons, so the high-
light shadow is often used to show that the button is armed. XmCascadeBut-
tonHighlight() and XmCascadeButtonGadgetHighlight() provide a
way for you to cause the shadow to be displayed.

XmCascadeButton(2), XmCascadeButtonGadget(2).

Motif Reference Manual 13

XmChangeColor Motif Functions and Macros

Name
XmChangeColor — update the colors for a widget.

Synopsis

void XmChangeColor (Widget widget, Pixel background)

Inputs
widget Specifies the widget whose colors are to be changed.

background Specifies the background color.

Description
XmChangeColor () changes all of the colors for the specified widget based on
the new background color. The routine recalculates the foreground color, the
select color, the arm color, the trough color, and the top and bottom shadow
colors and updates the corresponding resources for the widget.

Usage
XmChangeColor() is a convenience routine for changing all of the colors for a
widget, based on the background color. Without the routine, an application
would have to call XmGetColors() to get the new colors and then set the XmN-
foreground, XmNtopShadowColor, XmNbottomShadowColor, XmNtrough-
Color, XmNarmColor, XmNselectColor resources for the widget with
XtSetValues(). The XmNhighlightColor is set to the value of the XmNfore-
ground.

XmChangeColor() calls XmGetColors() internally to allocate the required
pixels. In Motif 1.2 and earlier, this uses the default color calculation procedure
unless a customized color calculation procedure has been set with XmSet-
ColorCalculation(). In Motif 2.0 and later, color calculation can be speci-
fied on a per-screen basis, and any specified XmNcolorCalculationProc
procedure of the XmScreen object associated with the widget is used in prefer-
ence.

See Also
XmGetColorCalculation(l), XmGetColors(l),
XmSetColorCalculation(l), XmScreen(2).

14 Motif Reference Manual

Motif Functions and Macros XmClipboardBeginCopy

Name
XmClipboardBeginCopy — set up storage for a clipboard copy operation.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardBeginCopy (Display *display,
Window window,
XmsString clip_label,
Widget widget,
VoidProc callback,
long *item_id)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
clip_label Specifies a label that is associated with the data item.
widget Specifies the widget that receives messages requesting data that
has been passed by name.
callback Specifies the callback function that is called when the clipboard
needs data that has been passed by name.
Outputs
item_id Returns the ID assigned to the data item.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardBeginCopy() is a convenience routine that calls XmClip-
boardStartCopy() with identical arguments and with a timestamp of Cur-

rentTime.

Usage
XmClipboardBeginCopy() can be used to start a normal copy operation or a
copy-by-name operation. In order to pass data by name, the widget and callback
arguments to XmCl ipboardBeginCopy() must be specified.

Procedures

The VoidProc has the following format:

typedef void (*\VoidProc) (Widget widget, int *data_id, int *private_id, int
*reason)

Motif Reference Manual 15

XmClipboardBeginCopy Motif Functions and Macros

See Also

16

The VoidProc takes four arguments. The first argument, widget, is the widget
passed to the callback routine, which is the same widget as passed to XmClip-
boardBeginCopy(). The data_id argument is the ID of the data item that is
returned by XmCl ipboardCopy() and private_id is the private data passed to
XmClipboardCopy().

The reason argument takes the value XmCR_CLIPBOARD_DATA_REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA_DELETE, which indicates that the client can
delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

XmClipboardCancelCopy(1), XmClipboardCopy(1),
XmClipboardCopyByName(1), XmCl ipboardEndCopy(1),
XmClipboardStartCopy(1).

Motif Reference Manual

Motif Functions and Macros XmClipboardCancelCopy

Name
XmClipboardCancelCopy — cancel a copy operation to the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardCancelCopy (Display *display, Window window, long item_id)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.
Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardCancelCopy() cancels the copy operation that is in progress
and frees temporary storage that has been allocated for the operation. The func-
tion returns ClipboardFail if XmCl ipboardStartCopy() has not been called
or if the data item has too many formats.

Usage
A call to XmClipboardCancelCopy() is valid only between calls to
XmClipboardStartCopy() and XmCl ipboardEndCopy(). XmClip-
boardCancelCopy/() can be called instead of XmCl ipboardEndCopy/()
when you need to terminate a copying operation before it completes. If you have
previously locked the clipboard, XmCl ipboardCancelCopy/() unlocks it, so
you should not call XmClipboardUnlock().

See Also
XmClipboardBeginCopy(1), XmClipboardCopy(1),
XmClipboardEndCopy(1), XmClipboardStartCopy(1).

Motif Reference Manual 17

XmClipboardCopy Motif Functions and Macros

Name
XmClipboardCopy — copy a data item to temporary storage for later copying to
the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardCopy (Display *display,
Window window,
long item_id,
char *format_name,
XtPointer buffer,
unsigned long length,
long private_id,
long *data_id)
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
item_id Specifies the ID of the data item.
format_name Specifies the name of the format of the data item.
buffer Specifies the buffer from which data is copied to the clip-
board.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.
Outputs
data_id Returns an ID for a data item that is passed by name.
Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.
Description

18

XmClipboardCopy() copies the data item specified by buffer to temporary
storage. The data item is moved to the clipboard data structure when XmClip-
boardEndCopy() is called. The item_id is the ID of the data item returned by
XmClipboardStartCopy() and format_name is a string that describes the
type of the data.

Motif Reference Manual

Motif Functions and Macros XmClipboardCopy

Usage

Example

Since the data item is not actually stored in the clipboard until XmClip-
boardEndCopy/() is called, multiple calls to XmClipboardCopy() add data item
formats to the same data item or will append data to an existing format. The func-
tion returns ClipboardFail if XmCl ipboardStartCopy/() has not been called
or if the data item has too many formats.

XmClipboardCopy() is called between calls to XmCl ipboardStart-
Copy() and XmCl i pboardEndCopy(). If you need to make multiple calls to
XmClipboardCopy() to copy a large amount of data, you should call
XmClipboardLock() to lock the clipboard for the duration of the copy opera-
tion.

When there is a large amount of clipboard data and the data is unlikely to be
retrieved, it can be copied to the clipboard by name. Since the data itself is not
copied to the clipboard until it is requested with a retrieval operation, copying by
name can improve performance. To pass data by name, call XmClipboard-
Copy() with buffer specified as NULL. A unique number is returned in data_id
that identifies the data item for later use. When another application requests data
that has been passed by name, a callback requesting the actual data will be sent to
the application that owns the data and the owner must then call XmCl i pboard-
CopyByName() to transfer the data to the clipboard. Once data that is passed by
name has been deleted from the clipboard, a callback notifies the owner that the
data is no longer needed.

The following callback shows the sequence of calls needed to copy data to the
clipboard:

void to_clipbd (Widget widget,
XtPointer client _data,

XtPointer call_data)

long item_id = 0;

int status;

XmString clip_label;

char buffer[32];

Display *dpy XtDisplayOfObject (widget);

Window window = XtWindowOfObject (widget);

Motif Reference Manual 19

XmClipboardCopy Motif Functions and Macros

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);
clip_label = XmStringCreateLocalized ('Data'™);
/* start a copy; retry until unlocked */

do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do {

status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,

(unsigned long) strlen
(buffer) + 1,

(fong) 0, (long *) 0);
} while (status == ClipboardLocked);
/* end the copy; retry until unlocked */
do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

}

See Also
XmClipboardBeginCopy(1), XmClipboardCancelCopy(1)
XmClipboardCopyByName(1), XmClipboardEndCopy(1)
XmClipboardStartCopy(1)

20 Motif Reference Manual

Motif Functions and Macros XmClipboardCopyByName

Name

Synopsis

XmClipboardCopyByName — copy a data item passed by name.

#include <Xm/CutPaste.h>

int XmClipboardCopyByName (Display *display,
Window window,
long data_id,
XtPointer buffer,
unsigned long length,
long private_id)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID number assigned to the data item by XmClip-
boardCopy().

buffer Specifies the buffer from which data is copied to the clipboard.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.

Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description

Usage

XmClipboardCopyByName() copies the actual data to the clipboard for a data
item that has been previously passed by name. The data that is copied is specified
by buffer. The data_id is the ID assigned to the data item by XmCl ipboard-

Copy().

XmCl ipboardCopyByName() is typically used for incremental copying; new
data is appended to existing data with each call to XmClipboardCopyBy-
Name(). If you need to make multiple calls to XmCl i pboardCopyByName()
to copy a large amount of data, you should call XmCl ipboardLock() to lock
the clipboard for the duration of the copy operation.

Copying by name improves performance when there is a large amount of clip-
board data and when this data is likely never to be retrieved, since the data itself
is not copied to the clipboard until it is requested with a retrieval operation. Data
is passed by name when XmCl i pboardCopy() is called with a buffer value of
NULL. When a client requests the data passed by name, the callback registered

Motif Reference Manual 21

XmClipboardCopyByName Motif Functions and Macros

by XmClipboardStartCopy() is invoked. See XmCl ipboardStart-
Copy() for more information about the format of the callback. This callback calls
XmCl ipboardCopyByName() to copy the actual data to the clipboard.

Example
The following XmCutPasteProc callback shows the use of XmCl ipboard-
CopyByName() to copy data passed by name

void copy_by name (Widget widget,
long *data_id,
long *private_id;

int *reason)
{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;
char buffer[32];
iT (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff);
do
status = XmClipboardCopyByName (dpy, win-
dow, *data_id,
(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);
while (status !'= ClipboardSuccess);
}

See Also
XmClipboardBeginCopy(1), XmClipboardCopy(1)
XmClipboardEndCopy(1), XmClipboardStartCopy(1)

22 Motif Reference Manual

Motif Functions and Macros XmClipboardEndCopy

Name

XmClipboardEndCopy — end a copy operation to the clipboard.

Synopsis

#include <Xm/CutPaste.h>
int XmClipboardEndCopy (Display *display, Window window, long item_id)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.

Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description

Usage

Example

XmClipboardEndCopy() locks the clipboard, places data that has been accu-
mulated by calling XmC 1 i pboardCopy() into the clipboard data structure, and
then unlocks the clipboard. The item_id is the ID of the data item returned by
XmClipboardStartCopy(). The function returns ClipboardFail if XmClip-
boardStartCopy() has not been called previously.

XmClipboardEndCopy() frees temporary storage that was allocated by
XmClipboardStartCopy(). XmClipboardStartCopy() must be called
before XmClipboardEndCopy/(), which does not need to be called if
XmClipboardCancelCopy() has already been called.

The following callback shows the sequence of calls needed to copy data to the
clipboard:

static void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
long item_id = O;
int status;
XmString clip_label;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);

Window window = XtWindowOfObject (widget);

Motif Reference Manual 23

XmClipboardEndCopy Motif Functions and Macros

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);
clip_label = XmStringCreateLocalized (*'Data™);

/* start a copy; retry until unlocked */
do
status = XmClipboardStartCopy (dpy, window,
clip_label,
CurrentTime,
NULL, NULL,
&item_id);
while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do
status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,
(unsigned
long)strilen(buffer)+1,
0, NULL);
while (status == ClipboardLocked);

/* end the copy; retry until unlocked */
do
status = XmClipboardEndCopy (dpy, window,
item_id);
while (status == ClipboardLocked);
¥

See Also
XmClipboardBeginCopy(1), XmClipboardCancelCopy(1)
XmClipboardCopy(1), XmClipboardCopyByName(1),
XmClipboardStartCopy(1)

24 Motif Reference Manual

Motif Functions and Macros XmClipboardEndRetrieve

Name
XmClipboardEndRetrieve — end a copy operation from the clipboard
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardEndRetrieve (Display *display, Window window)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.
Description
XmClipboardEndRetrieve() ends the incremental copying of data from the clip-
board.
Usage
A call to XmClipboardEndRetrieve() is preceded by a call to XmClip-
boardStartRetrieve(), which begins the incremental copy, and calls to
XmClipboardRetrieve(), which incrementally retrieve the data items from
clipboard storage. XmCl i pboardStartRetrieve() locks the clipboard and
it remains locked until XmCl ipboardEndRetrieve() is called.
Example

The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;

unsigned long received;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
do

status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);
while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,

Motif Reference Manual 25

XmClipboardEndRetrieve Motif Functions and Macros

"STRING",
(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardRetrieve(l), XmClipboardStartRetrieve(l)

26 Motif Reference Manual

Motif Functions and Macros XmClipboardInquireCount

Name
XmClipboardinquireCount — get the number of data item formats available on
the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardInquireCount (Display *display,
Window window,
int *count,
unsigned long *max_length)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Outputs
count Returns the number of data item formats available for the data on
the clipboard.
max_length Returns the maximum length of data item format names.
Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardInquireCount() returns the number of data formats available
for the current clipboard data item and the length of its longest format name. The
count includes the formats that were passed by name. If there are no formats
available, count is O (zero).

Usage
To inquire about the formats of the data on the clipboard, you use XmCl ip-
boardlInquireCount() and XmCl ipboardInquireFormat() in con-
junction. XmCl ipboardInquireCount() returns the number of formats for
the data item and XmCl ipboardInquireFormat() allows you to iterate
through all of the formats.

See Also
XmClipboardInquireFormat(l).

Motif Reference Manual 27

XmClipboardInquireFormat Motif Functions and Macros

Name
XmClipboardinquireFormat — get the specified clipboard data format name.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardinquireFormat (Display *display,
Window window,
int index,
XtPointer format_name_buf,
unsigned long buffer_len,
unsigned long *copied_len)
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
index Specifies the index of the format name to retrieve.
buffer_len Specifies the length of format_name_buf in bytes.

Outputs
format_name_buf Returns the format name.

copied_len Returns the length (in bytes) of the string copied to
format_name_buf.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if format_name_buf is not long enough
to hold the returned data, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardInquireFormat() returns a format name for the current data
item in the clipboard. The format name returned is specified by index, where 1
refers to the first format. If index exceeds the number of formats for the data
item, then XmCl ipboardInqui reFormat() returns a value of 0 (zero) in the
copied_len argument. XmCl ipboardlnquireFormat() returns the format
name in the format_name_buf argument. This argument is a buffer of a fixed
length that is allocated by the programmer. If the buffer is not large enough to
hold the format name, the routine copies as much of the format name as will fit in
the buffer and returns ClipboardTruncate.

28 Motif Reference Manual

Motif Functions and Macros XmClipboardInquireFormat

Usage
To inquire about the formats of the data on the clipboard, you use XmCl ip-
boardlInquireCount() and XmCl ipboardInquireFormat() in con-
junction. XmCl ipboardInquireCount() returns the number of formats for
the data item and XmCl ipboardInquireFormat() allows you to iterate
through all of the formats.

See Also

XmClipboardInquireCount(l).

Motif Reference Manual 29

XmClipboardinquireLength Motif Functions and Macros

Name

Synopsis

XmClipboardinquireLength — get the length of the data item on the clipboard.

#include <Xm/CutPaste.h>

int XmClipboardinquireLength (Display *display,
Window window,
char *format_name,
unsigned long *length)

Inputs

display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().

window Specifies a window ID that identifies the client to the clip-
board.

format_name Specifies the format name for the data.

Outputs

length Returns the length of the data item for the specified format.

Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard for
the requested format.

Description

Usage

Example

30

XmClipboardInquireLength() returns the length of the data stored under
the specified format_name for the current clipboard data item. If no data is found
corresponding to format_name or if there is no item on the clipboard, XmCl ip-
boardInquireLength() returns a length of 0 (zero). When a data item is
passed by name, the length of the data is assumed to be passed in a call to
XmClipboardCopy(), even though the data has not yet been transferred to the
clipboard.

XmClipboardInquireLength() provides a way for an application to find
out how much data is on the clipboard, so that it can allocate a buffer that is large
enough to retrieve the data with one call to XmCl i pboardRetrieve().

The following code fragment demonstrates how to use XmClipboardIn-
quireLength() to retrieve all of the data on the clipboard:

int status;
unsigned long recvd, length;

Motif Reference Manual

Motif Functions and Macros XmClipboardInquireLength

char *data;
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
do
status = XmClipboardInquireLength (dpy, window,
"STRING",
&length);

while (status == ClipboardLocked);

if (length 1= 0) {
data = XtMalloc ((unsigned) (length+l) * sizeof

(char));
do
status = XmClipboardRetrieve (dpy, window,
"STRING",
(XtPointer)
data,
(unsigned long)
length+1,
&recvd, (long *)
0);
while (status == ClipboardLocked);
if (status !'= ClipboardSuccess || recvd !=
length) {
XtWarning (“Failed to receive all clipboard
data'™);
¥

}

See Also
XmClipboardRetrieve(l)

Motif Reference Manual 31

XmClipboardInquirePendingltems Motif Functions and Macros

Name

Synopsis

XmClipboardinquirePendingltems — get a list of pending data ID/private 1D
pairs.

#include <Xm/CutPaste.h>

int XmClipboardinquirePendingltems (Display *display,
Window window,
char

*format_name,
XmClipboardPendingList *item_list,
unsigned long *count)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.
format_name Specifies the format name for the data.

Outputs

item_list Returns an array of data_id/private_id pairs for the specified for-
mat.
count Returns the number of items in the item_list array.

Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description

Usage

32

XmClipboardInquirePendingltems() returns for the specified
format_name a list of pending data items, represented by data_id/private_id
pairs. The data_id and private_id arguments are specified in the clipboard func-
tions for copying and retrieving. A data item is considered pending under these
conditions: the application that owns the data item originally passed it by name,
the application has not yet copied the data, and the data item has not been deleted
from the clipboard. If there are no pending items for the specified format_name,
the routine returns a count of 0 (zero). The application is responsible for freeing
the memory that is allocated by XmClipboardInquirePendingltems() to
store the list. Use XtFree() to free the memory.

An application should call XmClipboardinquirePendingltems() before exiting, to
determine whether data that has been passed by name should be copied to the
clipboard.

Motif Reference Manual

Motif Functions and Macros XmClipboardinquirePendingltems

Structures
The XmClipboardPendingList is defined as follows:

typedef struct {
long Datald;
long Privateld;
} XmClipboardPendingRec, *XmClipboardPendingList;

See Also
XmClipboardStartCopy(1).

Motif Reference Manual

33

XmClipboardLock Motif Functions and Macros

Name
XmClipboardLock — lock the clipboard.
Synopsis
#include <Xm/CutPaste.h>

int XmClipboardLock (Display *display, Window window)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by

another application.

Description
XmClipboardLock() locks the clipboard on behalf of an application, which
prevents access to the clipboard by other applications. If the clipboard has
already been locked by another application, the routine returns ClipboardLocked.
If the same application has already locked the clipboard, the lock level is
increased.

Usage
An application uses XmCl i pboardLock() to ensure that clipboard data is not
changed by calls to clipboard functions by other applications. An application
does not need to lock the clipboard between calls to XmCl ipboardStar-
tRetrieve() and XmClipboardEndRetrieve(), because the clipboard is
locked automatically between these calls. XmCl ipboardUnlock() allows
other applications to access the clipboard again.

See Also
XmClipboardEndCopy(1), XmClipboardEndRetrieve(l),
XmClipboardStartCopy(1), XmClipboardStartRetrieve(l),
XmClipboarduUnlock(1).

34 Motif Reference Manual

Motif Functions and Macros XmClipboardRegisterFormat

Name

Synopsis

XmClipboardRegisterFormat — register a new format for clipboard data items.

#include <Xm/CutPaste.h>

int XmClipboardRegisterFormat (Display *display, char *format_name, int
format_length)

Inputs

display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().

format_name Specifies the string name for the format.

format_length Specifies the length of the format in bits (0, 8, 16, or 32).

Returns

ClipboardSuccess on success, ClipboardBadFormat if the format is not properly
specified, ClipboardLocked if the clipboard is locked by another application, or
ClipboardFail on failure.

Description

Usage

See Also

XmClipboardRegisterFormat() registers a new format having the speci-
fied format_name and format_length. XmCl ipboardRegisterFormat()
returns ClipboardFail if the format is already registered with the specified length
or ClipboardBadFormat if format_name is NULL or format_length is not 0, 8,
16, or 32 bits.

XmClipboardRegisterFormat() is used by applications that support cut-
ting and pasting of arbitrary data types. Every format that is stored on the clip-
board needs to have a length associated with it, so that clipboard operations
between applications that run on platforms with different byte-swapping orders
function properly. Format types that are defined by the ICCCM are preregistered.
If format_length is 0, XmCl ipboardRegisterFormat() searches through
the preregistered format types, and returns ClipboardSuccess if format_name is
found, ClipboardFail otherwise.

If you are registering your own data structure as a format, you should choose an
appropriate name, and use 32 as the format size.

XmClipboardStartCopy(1).

Motif Reference Manual 35

XmClipboardRetrieve Motif Functions and Macros

Name

Synopsis

XmClipboardRetrieve — retrieve a data item from the clipboard.

#include <Xm/CutPaste.h>

int XmClipboardRetrieve (Display *display,
Window window,
char *format_name,
XtPointer buffer,
unsigned long length,
unsigned long *num_bytes,
long *private_id)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.
format_name Specifies the format name for the data.

buffer Specifies the buffer to which the clipboard data is copied.

length Specifies the length of buffer.

Outputs

num_bytes Returns the number of bytes of data copied into buffer.
private_id Returns the private data that was stored with the data item.

Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if buffer is not long enough to hold the
returned data, or ClipboardNoData if there is no data on the clipboard for the
requested format.

Description

Usage

36

XmClipboardRetrieve() fetches the current data item from the clipboard
and copies it to the specified buffer. The format_name specifies the type of data
being retrieved. The num_bytes parameter returns the amount of data that is cop-
ied into buffer. The routine returns ClipboardTruncate when all of the data does
not fit in the buffer, to indicate that more data remains to be copied.

XmClipboardRetrieve() can be used to retrieve data in one large piece or in
multiple smaller pieces. To retrieve data in one chunk, call XmClipboardin-
quireLength() to determine the size of the data on the clipboard. Multiple

calls to XmCl i pboardRetrieve() with the same format_name, between calls
to XmClipboardStartRetrieve() and XmCl ipboardEndRetrieve(),

Motif Reference Manual

Motif Functions and Macros XmClipboardRetrieve

Example

See Also

copy data incrementally. Since the clipboard is locked by a call to XmClip-

boardStartRetrieve(), it is suggested that your application call any clip-

board inquiry routines between this call and the first call to
XmClipboardRetrieve()l.

The following code fragment shows the sequence of calls needed to perform an

incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;

unsigned long received;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
do

status = XmClipboardStartRetrieve (dpy, window,

CurrentTime);
while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
"STRING",

(XtPointer) buffer,

(unsigned long)
sizeof (buffer),
&received,

(long *) 0);
} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

XmClipboardEndRetrieve(l), XmClipboardinquireLength(l)

XmClipboardLock(l), XmClipboardStartRetrieve(l),
XmClipboarduUnlock(l)

1.Erroneously given as ClipboardRetrieve() in 1st and 2nd editions.

Motif Reference Manual

37

XmClipboardStartCopy Motif Functions and Macros

Name
XmClipboardStartCopy — set up storage for a clipboard copy operation.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardStartCopy (Display *display,
Window window,
XmString clip_label,
Time timestamp,
Widget widget,
XmCutPasteProc callback,
long *item_id)
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
clip_label Specifies a label that is associated with the data item.
timestamp Specifies the time of the event that triggered the copy opera-
tion.
widget Specifies the widget that receives messages requesting data
that has been passed by name.
callback Specifies the callback function that is called when the clip-
board needs data that has been passed by name.
Outputs
item_id Returns the ID assigned to the data item.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardStartCopy() creates the storage and data structures that
receive clipboard data. During a cut or copy operation, an application calls this
function to initiate the operation. The data that is copied to the structures
becomes the next clipboard data item.

Several arguments to XmCl i pboardStartCopy() provide identifying infor-
mation. The window argument specifies the window that identifies the applica-
tion to the clipboard; an application should pass the same window ID to each
clipboard routine that it calls. clip_label assigns a text string to the data item that
could be used as the label for a clipboard viewing window. The timestamp passed

38 Motif Reference Manual

Motif Functions and Macros XmClipboardStartCopy

to the routine must be a valid timestamp. The item_id argument returns a number
that identifies the data item. An application uses this number to specify the data
item in other clipboard calls.

Usage
Since copying a large piece of data to the clipboard can take a long time and it is
possible that the data will never be requested by another application, the clip-
board copy routines provide a mechanism to copy data by name. When a clip-
board data item is passed by name, the application does not need to copy the data
to the clipboard until it has been requested by another application. In order to
pass data by name, the widget and callback arguments to XmCl i pboard-
StartCopy() must be specified. widget specifies the ID of the widget that
receives messages requesting that data be passed by name. All of the message
handling is done by the clipboard operations, so any valid widget ID can be used.
callback specifies the procedure that is invoked when the clipboard needs the
data that was passed by name and when the data item is removed from the clip-
board. The callback function copies the actual data to the clipboard using
XmClipboardCopyByName().

Example
The following routines show the sequence of calls needed to copy data by name.
The to_clipbd callback shows the copying of data and copy_by name shows the
callback that actually copies the data:

void copy_by name (Widget widget,
long *data_id,
long *private_id,
int *reason)

Display *dpy XtDisplay (toplevel);

Window window = XtWindow (toplevel);
int status;
char buffer[32];

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff'");

do
status = XmClipboardCopyByName (dpy, win-
dow, *data_id,
(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);

Motif Reference Manual 39

XmClipboardStartCopy Motif Functions and Macros

while (status !'= ClipboardSuccess);

}
}

void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

unsigned long item_id = O;

int status;

XmString clip_label;

Display *dpy = XtDisplayOfObject
(widget);

Window window = XtWindowOfObject
(widget);

unsigned long size = DATA_SIZE;

char *data = (char *) client_data;

clip_label = XmStringCreateLocalized (“'Data™);

/* start a copy; retry until unlocked */
do
status = XmClipboardStartCopy (dpy, window,
clip_label,
CurrentTime,
widget,
copy_by name,
&item_id);
while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do
status = XmClipboardCopy (dpy, window,
item_id,
"STRING'", NULL,
size, 0, NULL);
while (status == ClipboardLocked);

/* end the copy; retry until unlocked */

do
status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

40 Motif Reference Manual

Motif Functions and Macros XmClipboardStartCopy

Procedures

See Also

The XmCutPasteProc has the following format:

typedef void (*XmCutPasteProc) (Widget widget, long *data_id, long
*private_id, int *reason)

An XmCutPasteProc takes four arguments. The first argument, widget, is the
widget passed to the callback routine, which is the same widget as passed to
XmClipboardBeginCopy(). The data_id argument is the ID of the data item
that is returned by XmCl i pboardCopy() and private_id is the private data
passed to XmCl ipboardCopy().

The reason argument takes the value XmCR_CLIPBOARD_DATA_REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD DATA_DELETE, which indicates that the client can
delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

XmClipboardBeginCopy(1), XmClipboardCancelCopy(1),
XmClipboardCopy (1), XmCl ipboardCopyByName(1),
XmClipboardEndCopy(1), XmClipboardLock(1),
XmClipboardRegisterFormat(l), XmClipboardUndoCopy(1),
XmClipboardUnlock(l), XmClipboardWithdrawFormat(1).

Motif Reference Manual 41

XmClipboardStartRetrieve Motif Functions and Macros

Name

Synopsis

XmClipboardStartRetrieve — start a clipboard retrieval operation.

#include <Xm/CutPaste.h>

int XmClipboardStartRetrieve (Display *display, Window window, Time times-
tamp)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.
timestamp Specifies the time of the event that triggered the retrieval opera-
tion.

Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description

Usage

Example

42

XmClipboardStartRetrieve() starts a clipboard retrieval operation by
telling the clipboard that an application is ready to start copying data from the
clipboard. XmCl ipboardStartRetrieve() locks the clipboard until
XmClipboardEndRetrieve() is called. The window argument specifies the
window that identifies the application to the clipboard; an application should pass
the same window ID to each clipboard routine that it calls. The timestamp passed
to the routine must be a valid timestamp.

Multiple calls to XmCl i pboardRetrieve() with the same format_name,
between calls to XmCl ipboardStartRetrieve() and XmClipboardEn-
dRetrieve(), copy data incrementally.

The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;

unsigned long received;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
do

Motif Reference Manual

Motif Functions and Macros XmClipboardStartRetrieve

status = XmClipboardStartRetrieve (dpy, window,

CurrentTime);
while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,

"STRING",
(XtPointer) buffer,

(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardEndRetrieve(l), XmClipboardInquireCount(l)
XmClipboardinquireFormat(l), XmClipboardlnquireLength(l)
XmClipboardinquirePendingltems(1), XmClipboardLock(1)
XmClipboardRetrieve(l), XmClipboardunlock(1)

Motif Reference Manual 43

XmClipboardUndoCopy Motif Functions and Macros

Name
XmClipboardUndoCopy — remove the last item copied to the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardUndoCopy (Display *display, Window window)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardundoCopy() deletes the item most recently placed on the clip-
board, provided that the application that originally placed the item has matching
values for display and window. If the values do not match, no action is taken. The
routine also restores any data item that was deleted from the clipboard by the call
to XmClipboardCopy().

Usage
Motif maintains a two-deep stack of items that have been placed on the clip-
board. Once an item has been copied to the clipboard, the copy can be undone by
calling XmClipboardUndoCopy(). Calling this routine twice undoes the last
undo operation.

See Also

XmClipboardBeginCopy(1), XmClipboardCopy(1),
XmClipboardCopyByName(1), XmCl ipboardEndCopy(1),
XmClipboardStartCopy(1).

44 Motif Reference Manual

Motif Functions and Macros XmClipboardUnlock

Name
XmClipboardUnlock — unlock the clipboard.

Synopsis
#include <Xm/CutPaste.h>
int XmClipboardUnlock (Display *display, Window window, Boolean
remove_all_locks)

Inputs
display Specifies a connection to an X server; returned from
XOpenDisplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
remove_all_locks Specifies whether nested locks should be removed.
Returns

ClipboardSuccess on success or ClipboardFail if the clipboard is not locked or if
it is locked by another application.

Description
XmClipboardunlock() unlocks the clipboard, which allows other applica-
tions to access it. If remove_all_locks is True, all nested locks are removed. If it
is False, only one level of lock is removed.

Usage
Multiple calls to XmCl i pboardLock() can increase the lock level, and nor-
mally, each XmCl ipboardLock() call requires a corresponding call to
XmClipboardUnlock(). However, by setting remove_all_locks to True,
nested locks can be removed with a single call.

See Also

XmClipboardBeginCopy(1), XmClipboardCancelCopy(1),
XmClipboardEndCopy(1), XmClipboardEndRetrieve\(1)
XmClipboardLock(1), XmClipboardStartCopy(1),
XmClipboardStartRetrieve(l).

Motif Reference Manual 45

XmClipboardWithdrawFormat Motif Functions and Macros

Name
XmClipboardWithdrawFormat — indicate that an application does not want to
supply a data item any longer.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardWithdrawFormat (Display *display, Window window, long
data_id)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID for the passed-by-name data item.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardwWithdrawFormat() withdraws a data item that has been
passed by name from the clipboard. The data_id is the ID that was assigned to
the item when it was passed by XmCl i pboardCopy().

Usage
Despite its name, XmCl i pboardWithdrawFormat() does not remove a for-
mat specification from the clipboard. The routine provides an application with a
way to withdraw data of a particular format from the clipboard.

See Also

XmClipboardBeginCopy(1), XmClipboardCopy(1),
XmClipboardCopyByName(1), XmClipboardStartCopy(1).

46 Motif Reference Manual

Motif Functions and Macros XmComboBoxAddltem

Name

Synopsis

XmComboBoxAddltem — add a compound string to the ComboBox list.

#include <Xm/ComboBox.h>

void XmComboBoxAddltem (Widget widget, XmString item, int position,
Boolean unique)

Inputs

widget Specifies the ComboBox widget.

item Specifies the compound string that is added to the ComboBox list.
position Specifies the position at which to add the new item.

unique Specifies whether the item must be unique in the list.

Availability

Motif 2.1 and later.

Description

Usage

See Also

XmComboBoxAdd I'tem() is a convenience routine that adds an item into a
ComboBox list. XmComboBoxAdd I'tem() inserts the specified item into the list
component of the ComboBox widget at the specified position. A position value
of 1 indicates the first location in the list, a position value of 2 indicates the sec-
ond location, and so forth. A value of 0 (zero) specifies the last location in the
list. If the value exceeds the current number of items in the list, the item is
silently appended. If unique is true, the item is only added if it does not already
appear in the list.

In order to use this routine, a compound string must be created for the item. The
routine calls XmListAddItemUnselected() to insert the item into the list
component. The ComboBox list takes a copy of the supplied item. It is the
responsibility of the programmer to reclaim the space by calling XmStringFree()
at an appropriate point.

XmComboBoxSelectltem(l), XmComboBoxSetltem(l),
XmComboBoxDe letePos(1), XmComboBoxUpdate(1), XmComboBox(2).

Motif Reference Manual 47

XmComboBoxDeletePos Motif Functions and Macros

Name

XmComboBoxDeletePos — delete an item at the specified position from a Com-
boBox list.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxDeletePos (Widget widget, int position)
Inputs

widget Specifies the ComboBox widget.

position Specifies the position from which to delete an item.

Availability
Motif 2.1 and later.

Description
XmComboBoxDe l etePos() removes the item at the specified position from
the ComboBox list. The first location within the list is at position 1, the second
list item is at position 2, and so forth. A position value of 0 (zero) specifies the
last location in the list. If the ComboBox list does not have an item at the speci-
fied position, a warning message is displayed.

Usage
XmComboBoxDe letePos() is a convenience routine that allows you to

remove an item from a ComboBox list. The routine calls XmListDeletePos()
on the list component of the ComboBox.

See Also
XmComboBoxAdd I tem(1), XmComboBoxSelectltem(l),
XmComboBoxSetltem(1), XmComboBoxUpdate(1), XmComboBox(2).

48 Motif Reference Manual

Motif Functions and Macros XmComboBoxSelectltem

Name
XmComboBoxSelectltem — select an item from a ComboBox list.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxSelectltem (Widget widget, XmString item)
Inputs

widget Specifies the ComboBox widget.

item Specifies the item that is to be selected.

Availability
Motif 2.1 and later.

Description
XmComboBoxSe lectltem() selects the first occurrence of the specified item
in the ComboBox list. If the item is found within the list, the value is also inserted
into the ComboBox text field. Otherwise, a warning message is displayed.

Usage
XmComboBoxSe lectltem() is a convenience routine that allows you to select
an item in the ComboBox list. In order to use this routine, a compound string
must be created for the item. No ComboBox selection callbacks are invoked as a
result of calling this procedure. The routine internally calls XmListSelect-
Pos() on the list component of the ComboBox, after performing a linear search
through the XmNitems of the list: the item parameter is used only for the search
and is not directly used as the newly selected item. It is the responsibility of the
programmer to reclaim any allocated memory for the compound string item by
calling XmStringFree() at an appropriate time.

See Also
XmComboBoxAdd I tem(1), XmComboBoxDeletePos(1),
XmComboBoxSetltem(1), XmComboBoxUpdate(l), XmComboBox(2).

Motif Reference Manual 49

XmComboBoxSetltem Motif Functions and Macros

Name
XmComboBoxSetltem — select and make visible an item from a ComboBox list.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxSetltem (Widget widget, XmString item)

Inputs
widget Specifies the ComboBox widget.

item Specifies the item that is to be selected.

Availability
Motif 2.1 and later.

Description
XmComboBoxSet I tem() selects the first occurrence of the specified item in the
ComboBox list, and makes the selection the first visible item in the list. If the
item is found within the list, the value is also inserted into the ComboBox text
field. Otherwise, a warning message is displayed.

Usage
XmComboBoxSetItem() is a convenience routine that allows you to select an
item in the ComboBox. In order to use this routine, a compound string must be
created for the item. No ComboBox selection callbacks are invoked as a result of
calling this procedure. The routine internally calls XmListSelectPos() on
the list component of the ComboBox, after performing a linear search through
the XmNitems of the list: the item parameter is used only for the search and is not
directly used as the newly selected item. It is the responsibility of the program-
mer to reclaim any allocated memory for the compound string item by calling
XmStringFree() at an appropriate time.

See Also
XmComboBoxAdd I tem(1), XmComboBoxDeletePos(1),
XmComboBoxSelectltem(l), XmComboBoxUpdate(1), XmComboBox(2).

50 Motif Reference Manual

Motif Functions and Macros XmComboBoxUpdate

Name
XmComboBoxUpdate — update the ComboBox list after changes to component
widgets.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxUpdate (Widget widget)

Inputs
widget Specifies the ComboBox widget.

Availability
Motif 2.0 and later.

Description
XmComboBoxUpdate() updates the ComboBox to reflect the state of compo-
nent child widgets. This may be required where the programmer has directly
modified the contents or resources of the ComboBox list component rather than
through resources and functions of the ComboBox itself.

Usage
XmComboBoxUpdate() is a convenience routine that synchronizes the internal
state of the ComboBox with that of the component list and text field. In particu-
lar, the value of XmNselectedPosition is reset to the value taken from the internal
list. In addition, if the text field is unchanged, the XmNitems and XmNitem-
Count resources of the list are queried and used in conjunction with the recalcu-
lated XmNselectedPosition to reset the ComboBox selected item.

This routine should be called, for example, when the component list is directly
manipulated to change the selected item without notifying the ComboBox
directly.

See Also
XmComboBoxAdd I tem(1), XmComboBoxSelectltem(l),
XmComboBoxSetltem(1), XmComboBoxDeletePos(1), XmComboBox(2).

Motif Reference Manual 51

XmCommandAppendValue Motif Functions and Macros

Name
XmCommandAppendValue — append a compound string to the command.

Synopsis
#include <Xm/Command.h>

void XmCommandAppendValue (Widget widget, XmString command)

Inputs
widget Specifies the Command widget.

command Specifies the string that is appended.

Description

XmCommandAppendValue() appends the specified command to the end of the
string that is displayed on the command line of the specified Command widget.

Usage
XmCommandAppendValue() is a convenience routine that changes the value
of the XmNcommand resource of the Command widget. In order to use this rou-
tine, a compound string must be created for the command. The widget internally
copies command, and it is the responsibility of the programmer to reclaim any
allocated memory for the compound string at an appropriate time.

See Also

XmCommandSetValue(l), XmCommand(2).

52 Motif Reference Manual

Motif Functions and Macros XmCommandError

Name
XmCommandError — display an error message in a Command widget.

Synopsis
#include <Xm/Command.h>

void XmCommandError (Widget widget, XmString error)
Inputs

widget Specifies the Command widget.

error Specifies the error message to be displayed.

Description
XmCommandError() displays an error message in the history region of the
specified Command widget. The error string remains displayed until the next
command takes effect.

Usage
XmCommandError() displays the error message as one of the items in the
XmNhistoryltems list. When the next command is entered, the error message is
deleted from the list. In order to use this routine, a compound string must be cre-
ated for the error item. The widget internally copies error, and it is the responsi-
bility of the programmer to reclaim any allocated memory for the compound
string at an appropriate time.

See Also
XmCommand(2).

Motif Reference Manual 53

XmCommandGetChild Motif Functions and Macros

Name
XmCommandGetChild — get the specified child of a Command widget.
Synopsis
#include <Xm/Command.h>
Widget XmCommandGetChild (Widget widget, unsigned char child)
Inputs
widget Specifies the Command widget.
child Specifies a type of child of the Command widget.
Returns
The widget ID of the specified child of the Command widget.
Availability

As of Motif 2.0, the abstract child fetch routines in the toolkit are generally con-
sidered deprecated. Although XmCommandGetChi Id() continues to work, you

should prefer XtNameToWidget() to access children of the XmCommand
component.

Description

XmCommandGetChild() returns the widget ID of the specified child of the Com-
mand widget.

Usage
The child XmDIALOG_COMMAND_TEXT specifies the command text entry
area, XmDIALOG_PROMPT_LABEL specifies the prompt label for the com-
mand line, XmDIALOG_HISTORY _LIST specifies the command history list,
and XmDIALOG_WORK_AREA specifies any work area child that has been
added to the Command widget. For more information on the different children of
the Command widget, see the manual page in Section 2, Motif and Xt Widget
Classes.

Structures
The possible values for child are:

XmDIALOG_COMMAND_TEXT XmDIALOG_HISTORY_LIST
XmDIALOG_PROMPT_LABEL XmDIALOG_WORK_AREA

54 Motif Reference Manual

Motif Functions and Macros XmCommandGetChild

Widget Hierarchy
The following names are associated with the Command children:

“Selection” XmDIALOG_PROMPT_LABEL
“Text” XmDIALOG_COMMAND_TEXT
“ItemsList”t XmDIALOG_HISTORY_LIST
See Also
XmCommand(2).

1.The List is not a direct descendant of the Command widget, but of an intermediary ScrolledList. Therefore if fetching
the widget via XtNameToWidget(), you should use the value “*ItemsList”.

Motif Reference Manual 55

XmCommandSetValue Motif Functions and Macros

Name
XmCommandSetValue — replace the command string.

Synopsis
#include <Xm/Command.h>
void XmCommandSetValue (Widget widget, XmString command)

Inputs

widget Specifies the Command widget.
command Specifies the string that is displayed.

Description
XmCommandSetValue() replaces the currently displayed command-line text
of the specified Command widget with the string specified by command. Specify-
ing a zero-length string clears the command line.

Usage
XmCommandSetValue() is a convenience routine that changes the value of the
XmNcommand resource of the Command widget. In order to use this routine, a
compound string must be created for the command. The widget internally copies
command, and it is the responsibility of the programmer to reclaim any allocated
memory for the compound string at an appropriate time.

See Also

XmCommandAppendValue(1), XmCommand(2).

56 Motif Reference Manual

Motif Functions and Macros XmContainerCopy

Name

Synopsis

XmContainerCopy — copy the Container primary selection onto the clipboard.

#include <Xm/Container.h>

Boolean XmContainerCopy (Widget container, Time timestamp)

Inputs

container Specifies a Container widget.
timestamp Specifies the server time at which to modify the selection.

Returns

True if the Container selection is transferable to the clipboard, False otherwise.

Availability

Motif 2.0 and later.

Description

Usage

See Also

XmContainerCopy() copies the primary selection from a Container widget to
the clipboard. The primary selection of a Container widget consists of a set of
selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

XmContainerCopy() is a convenience routine that copies a Container primary
selection to the clipboard. The procedures identified by the XmNconvertCallback
list of the Container are called to transfer the selection: the selection member of
the XmConvertCallbackStruct passed to callbacks has the value CLIPBOARD,
and the parm member is set to XmCOPY. See XmTransfer (1) for specific
details of the XmConvertCallbackStruct, and of the Uniform Transfer Model
(UTM) in general.

XmContainerCut(l), XmContainerCopyLink(l),
XmContainerGetltemChildren(l), XmContainerPaste(l),
XmContainerPasteLink(l), XmContainerRelayout(l),
XmContainerReorder(1l), XmTransfer(l), XmContainer(2).

Motif Reference Manual 57

XmContainerCopyLink Motif Functions and Macros

Name
XmContainerCopyLink — copy links to the Container primary selection onto the
clipboard.

Synopsis
#include <Xm/Container.h>
Boolean XmContainerCopyLink (Widget container, Time timestamp)

Inputs
container Specifies a Container widget.
timestamp Specifies a time stamp at which to modify the selection.
Returns

True if the Container selection is transferable to the clipboard, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerCopyLink() copies links to the primary selection of a Con-
tainer widget onto the clipboard. The primary selection of a Container widget
consists of a set of selected Container items.
If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

Usage
XmContainerCopyLink() is a convenience routine that copies links to a
Container primary selection to the clipboard. The procedures identified by the
XmNconvertCallback list of the Container are called, possibly many times: the
selection member of the XmConvertCallbackStruct passed to callbacks has the
value CLIPBOARD, and the parm member is set to XmLINK. See XmTrans-
Fer(1) for specific details of the XmConvertCallbackStruct, and of the Uniform
Transfer Model (UTM) in general.

See Also
XmContainerCut(l), XmContainerCopy(1),
XmContainerGetltemChi ldren(l), XmContainerPaste(1),
XmContainerPastelLink(1l), XmContainerRelayout(1),
XmContainerReorder(1l), XmTransfer(l), XmContainer(2).

58 Motif Reference Manual

Motif Functions and Macros XmContainerCut

Name

Synopsis

XmContainerCut — cuts the Container primary selection onto the clipboard.

#include <Xm/Container.h>

Boolean XmContainerCut (Widget container, Time timestamp)

Inputs

container Specifies a Container widget.
timestamp Specifies the time at which to modify the selection.

Returns

True if the Container selection is transferable to the clipboard, False otherwise.

Availability

Motif 2.0 and later.

Description

Usage

See Also

XmContainerCut() cuts the primary selection from a Container widget onto
the clipboard. The primary selection of a Container widget consists of a set of
selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

XmContainerCut() is a convenience routine that moves a Container primary
selection onto the clipboard, then removes the primary selection. The procedures
identified by the XmNconvertCallback list of the Container are invoked to move
the selection to the clipboard: the selection member of the XmConvertCallback-
Struct passed to callbacks has the value CLIPBOARD, and the parm member is
set to XmMOVE. Thereafter, if the data was transferred, the convert callbacks
are invoked again to delete the primary selection: the selection member is set to
CLIPBOARD, and the target member is set to DELETE. See XmTransfer(1)
for specific details of the XmConvertCallbackStruct, and of the Uniform Trans-
fer Model (UTM) in general.

XmContainerCopy(1), XmContainerCopyLink(1),
XmContainerGetltemChi ldren(l), XmContainerPaste(1),
XmContainerPastelLink(1l), XmContainerRelayout(1),
XmContainerReorder(1l), XmTransfer(l), XmContainer(2).

Motif Reference Manual 59

XmContainerGetltemChildren Motif Functions and Macros

Name
XmContainerGetltemChildren — find the children of a Container item.
Synopsis
#include <Xm/Container.h>
int XmContainerGetltemChildren (Widget container, Widget item, WidgetL.ist
*item_children)
Inputs
container Specifies a Container widget.
item A child of the Container which holds the XmQTcontainerltem
trait.
Outputs
item_children The list of logical children associated with the item.
Returns
The number of logical children within the item_children list.
Availability
Motif 2.0 and later.
Description
XmContainerGetltemChildren() constructs a list of Container items
which have item as a logical parent. item must hold the XmQTcontainerltem
trait: an IconGadget child of container, for example. A widget is a logical child of
item if the value of its constraint resource XmNentryParent is equal to item. con-
tainer is the Container widget which has item as a child, and the list of logical
children of item is placed in item_children. The function returns the number of
logical children found.
Usage

XmContainerGetltemChi Idren() is a convenience routine which allo-
cates a WidgetL.ist to contain the set of all Container children whose XmNen-
tryParent resource matches that of a designated item.

If item is NULL, or if item is not a child of container, or if item has no logical
children, the item_children parameter is not set and the function returns 0.

Storage for the returned WidgetList is allocated by the function, and it is the
responsibility of the programmer to free the memory using XtFree() at an
appropriate point.

60 Motif Reference Manual

Motif Functions and Macros XmContainerGetltemChildren

See Also
XmContainerCut(l), XmContainerCopy(1),
XmContainerCopyLink(1), XmContainerPaste(l),
XmContainerPastelLink(l), XmContainerRelayout(l),
XmContainerReorder(1), XmContainer(2).

Motif Reference Manual

61

XmContainerPaste Motif Functions and Macros

Name
XmContainerPaste — pastes the clipboard selection into a Container.
Synopsis
#include <Xm/Container.h>
Boolean XmContainerPaste (Widget container)
Inputs
container Specifies a Container widget.
Returns
True if the clipboard selection is transferable to the Container, False otherwise.
Availability
Motif 2.0 and later.
Description
XmContainerPaste() initiates data transfer of the clipboard primary selec-
tion to the container widget.
If data is transferred from the clipboard, the function returns True, otherwise
False.
Usage
XmContainerPaste() is a convenience routine that initiates copying of the
clipboard primary selection to a Container widget. The procedures identified by
the XmNdestinationCallback list of the Container are called: the selection mem-
ber of the XmDestinationCallbackStruct passed to callbacks has the value CLIP-
BOARD, and the operation member is set to XmCOPY.
XmContainerPaste() does not transfer data itself: it is the responsibility of
the programmer to supply a destination callback which will copy the clipboard
selection into the Container. See XmTransfer (1) for specific details of the
XmDestinationCallbackStruct, and of the Uniform Transfer Model (UTM) in
general.
See Also

XmContainerCut(l), XmContainerCopy(1),
XmContainerCopyLink(1), XmContainerGetltemChildren(l),
XmContainerPastelLink(1l), XmContainerRelayout(l),
XmContainerReorder(1l), XmTransfer(l), XmContainer(2).

62 Motif Reference Manual

Motif Functions and Macros XmContainerPasteLink

Name
XmContainerPasteLink — copies links from the clipboard selection into a Con-
tainer.

Synopsis
#include <Xm/Container.h>
Boolean XmContainerPasteLink (Widget container)

Inputs
container Specifies a Container widget.
Returns

True if the clipboard selection is transferable to the Container, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerPasteLink() initiates data transfer of the clipboard primary
selection to the container widget.
If data is transferred from the clipboard, the function returns True, otherwise
False.

Usage
XmContainerPasteL ink() is a convenience routine that initiates copying
links from the clipboard primary selection into a Container widget. The proce-
dures identified by the XmNdestinationCallback list of the Container are called:
the selection member of the XmDestinationCallbackStruct passed to callbacks
has the value CLIPBOARD, and the operation member is set to XmLINK.
XmContainerPasteL ink() does not transfer data itself: it is the responsibil-
ity of the programmer to supply a destination callback which will link the clip-
board selection into the Container. See XmTransTer(1) for specific details of
the XmConvertCallbackStruct, and of the Uniform Transfer Model (UTM) in
general.

See Also

XmContainerCut(l), XmContainerCopy(1),
XmContainerCopyLink(1), XmContainerGetltemChildren(l),
XmContainerPaste(l), XmContainerRelayout(l),
XmContainerReorder(l), XmTransfer(l), XmContainer(2).

Motif Reference Manual 63

XmContainerRelayout Motif Functions and Macros

Name
XmContainerRelayout — force relayout of a Container widget.

Synopsis
#include <Xm/Container.h>
void XmContainerRelayout (Widget container)

Inputs

container Specifies a Container widget.

Availability
Motif 2.0 and later.

Description
XmContainerRelayout() forces the container widget to recalculate the lay-
out of all Container items.

Usage
XmContainerRelayout() is a convenience routine that recalculates the grid
layout of a Container. The function has no effect if the widget is not realized, if
XmNIlayoutType is not XmSPATIAL, or if XmNspatialStyle is XmNONE.
The function does not cause geometry management effects when performing the
relayout, although the Container window is completely cleared and redrawn if
the widget is realized.
XmContainerRelayout() utilizes the place_item method of the Container
widget class. If this is NULL in any derived class, XmContainerRelayout()
will have no effect upon the layout of Container items.

See Also

XmContainerCut(l), XmContainerCopy(l),
XmContainerCopyLink(1), XmContainerGetltemChildren(l),
XmContainerPaste(l), XmContainerPasteLink(l),
XmContainerReorder(l), XmContainer(2).

64 Motif Reference Manual

Motif Functions and Macros XmContainerReorder

Name
XmContainerReorder — reorder children of a Container.

Synopsis
#include <Xm/Container.h>
void XmContainerReorder (Widget container, WidgetList item_list, int
item_count)

Inputs

container Specifies a Container widget.
item_list Specifies a list of Container child widgets.
item_count Specifies the number of widgets in item_list.

Availability
Motif 2.0 and later.

Description
XmContainerReorder() reorders an item_list set of items of a Container.
item_count is the number of items within the item_list array.

Usage
XmContainerReorder() is a convenience routine that reorders Container
items according to the value of the XmNpositionIndex constraint resource of
each item, using a quicksort algorithm. If the XmNlayoutType is XmOUTLINE
or XmDETAIL, the Container will subsequently relayout all the items within the
widget.
Neither relayout nor reorder is performed if item_count is less than or equal to 1;
there is no error checking performed on item_list to compare it with NULL, or to
ensure that it matches the number of items specified by item_count.

See Also

XmContainerCut(l), XmContainerCopy(l),
XmContainerCopyLink(1), XmContainerGetltemChildren(l),
XmContainerPaste(l), XmContainerPasteLink(l),
XmContainerRelayout(l), XmContainer(l).

Motif Reference Manual 65

XmConvertStringToUnits Motif Functions and Macros

Name
XmConvertStringToUnits — convert a string to an integer, optionally translating
the units.
Synopsis
int XmConvertStringToUnits (Screen *screen,
String spec,
int orientation,
int unit_type,
XtEnum *error_return)
Inputs
screen Specifies a pointer to the screen structure.
spec Specifies a value to be converted.
orientation Specifies whether to use horizontal or vertical screen res-
olution. Pass either XmHORIZONTAL or XmVERTI-
CAL.
unit_type The units required for the result.
Outputs
error_return Returns the error status of the conversion.
Returns
The converted value.
Availability
Motif 2.0 and later.
Description
XmConvertStringToUnits() converts a string spec into an integer. The
conversion of spec is into the units specified by unit_type. Resolution for the con-
version is determined from the screen, and orientation determines whether the
horizontal or vertical screen resolution is used. The converted value is returned
by the function. The error_return parameter is set by the function to indicate any
error in the conversion process.
Usage

XmConvertStringToUnits() converts a string into an integer, translating
the units of the original string into those specified by unit_type. If the screen is
NULL, or if orientation is an invalid value, or if an invalid unit_type is supplied,
or if the string spec is not parsable, the function returns 0 (zero), and
error_return is set True. Otherwise, error_return is set False, and the function
returns the converted value.

The string spec is assumed to be in the following format:

66 Motif Reference Manual

Motif Functions and Macros

<float> <unit>

XmConvertStringToUnits

where <float> is a floating point number. The <unit> specification is optional: if
omitted, the default unit of XmPIXELS is used. Otherwise, <unit> is one of the

following strings:

pixels
inches
centimeters
millimeters
points
font_units

XmMCENTIMETERS

pix pixel
in inch
cm centimeter
mm millimeter
pt point
fu font_unit
Structures
The possible values for unit_type are:
XmPIXELS
TERS

Xm100TH_MILLIMETERS
Xm1000TH_INCHES

XmPOINTS
XMFONT_UNITS

XmINCHES

Xm100TH_POINTS

Xm100TH_FONT_UNITS

Example

The following are valid string specifications:

3.1415926 pix
-3.1pt

6.3

0.3 font_units
1

See Also

XmConvertUnits(l), XmScreen(2).

Motif Reference Manual

XmMILLIME-

67

XmConvertUnits Motif Functions and Macros

Name
XmConvertUnits — convert a value to a specified unit type.

Synopsis

int XmConvertUnits (Widget widget,

int orientation,

int from_unit_type,

int from_value,

int to_unit_type)

Inputs
widget Specifies the widget for which to convert the data.
orientation Specifies the screen orientation that is used in the conver-
sion. Pass either XmHORIZONTAL or XmVERTICAL.

from_unit_type Specifies the unit type of the value that is being converted.
from_value Specifies the value that is being converted.
to_unit_type Specifies the new unit type of the value.

Returns
The converted value or 0 (zero) if the input parameters are not specified cor-

rectly.

Description
XmConvertUnits() converts the value specified in from_value into the equiv-
alent value in a different unit of measurement. This function returns the resulting
value if successful; it returns 0 (zero) if widget is NULL or if incorrect values are
supplied for orientation or conversion unit arguments. orientation matters only
when conversion values are font units, which are measured differently in the hor-
izontal and vertical dimensions.

Usage
XmConvertunits() allows an application to manipulate resolution-independ-
ent values. XmPIXELS specifies a normal pixel value,
Xm100TH_MILLIMETERS specifies a value in terms of 1/100 of a millimeter,
Xm1000TH_INCHES specifies a value in terms of 1/1000 of an inch,
Xm100TH_POINTS specifies a value in terms of 1/100 of a point (1/72 of an
inch), and Xm100TH_FONT_UNITS specifies a value in terms of 1/100 of a
font unit. A font unit has horizontal and vertical components which are specified
by the XmScreen resources XmNhorizontalFontUnit and XmNverticalFontUnit.

Structures
The possible values for from_unit_type and to_unit_type are:

XmPIXELS XMCENTIMETERS
XMMILLIMETERS Xm100TH_MILLIMETERS

68 Motif Reference Manual

Motif Functions and Macros XmConvertUnits

XmMINCHES Xm1000TH_INCHES
XmPOINTS Xm100TH_POINTS
XMFONT_UNITS Xm100TH_FONT_UNITS

The values XmPOINTS, XmINCHES, XmCENTIMETERS, XmFONT_UNITS,
and XmMILLIMETERS are available in Motif 2.0 and later.

See Also
XmSetFontUnits(l), XmScreen(2).

Motif Reference Manual 69

XmCreateObject Motif Functions and Macros

Name

Synopsis

70

XmCreateObject — create an instance of a particular widget class or compound
object.

Simple Widgets

#include <Xm/ArrowB.h>
Widget XmCreateArrowButton (Widget parent, char *name, ArgL.ist argv, Car-
dinal argc)

#include <Xm/ArrowBG.h>
Widget XmCreateArrowButtonGadget (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <Xm/BulletinB.h>
Widget XmCreateBulletinBoard (Widget parent, char *name, ArgL.ist argv, Car-
dinal argc)

#include <Xm/CascadeB.h>
Widget XmCreateCascadeButton (Widget parent, char *name, ArgList argy,
Cardinal argc)

#include <Xm/CascadeBG.h>
Widget XmCreateCascadeButtonGadget (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <Xm/Command.h>
Widget XmCreateCommand (Widget parent, char *name, ArgL.ist argv, Cardi-
nal argc)

#include <Xm/ComboBox.h>

Widget XmCreateComboBox (Widget parent, char *name, ArgL.ist argv, Cardi-
nal argc)

Widget XmCreateDropDownComboBox (Widget parent, char *name, ArgL.ist
argv, Cardinal argc)

Widget XmCreateDropDownList (Widget parent, char *name, ArgList argy,
Cardinal argc)

#include <Xm/Container.h>
Widget XmCreateContainer (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

#include <Xm/DataF.h>
Widget XmCreateDataField (Widget parent, char *name, ArgL.ist argv, Cardinal
argv)

Motif Reference Manual

Motif Functions and Macros XmCreateObject

#include <Xm/DialogS.h>
Widget XmCreateDialogShell (Widget parent, char *name, ArgL.ist argv, Cardi-
nal argc)

#include <Xm/Draglcon.h>
Widget XmCreateDraglcon (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

#include <Xm/DrawingA.h>
Widget XmCreateDrawingArea (Widget parent, char *name, ArgL.ist argv, Car-
dinal argc)

#include <Xm/DrawnB.h>
Widget XmCreateDrawnButton (Widget parent, char *name, ArgL.ist argv, Car-
dinal argc)

#include <Xm/DropDown.h>
Widget XmCreateDropDown (Widget parent, char *name, ArgList argv, Cardi-
nal argv)

#include <Xm/FileSB.h>
Widget XmCreateFileSelectionBox (Widget parent, char *name, ArgL.ist argv,
Cardinal argc)

#include <Xm/Form.h>
Widget XmCreateForm (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

#include <Xm/Frame.h>
Widget XmCreateFrame (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/GrabShell.h>
Widget XmCreateGrabShell (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/lconButton.h>
Widget XmCreatelconButton (Widget parent, char *name, ArgList argv, Cardi-
nal argv)

#include <Xm/lconG.h>
Widget XmCreatelconGadget (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/Label.h>
Widget XmCreateLabel (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

Motif Reference Manual 71

XmCreateObject Motif Functions and Macros

72

#include <Xm/LabelG.h>
Widget XmCreateLabelGadget (Widget parent, char *name, ArgL.ist argv, Car-
dinal argc)

#include <Xm/List.h>
Widget XmCreateL.ist (Widget parent, char *name, ArgL.ist argv, Cardinal argc)

#include <Xm/MainW.h>
Widget XmCreateMainWindow (Widget parent, char *name, ArgL.ist argv, Car-
dinal argc)

#include <Xm/MenuShell.h>
Widget XmCreateMenuShell (Widget parent, char *name, ArgL.ist argv, Cardi-
nal argc)

#include <Xm/MessageB.h>
Widget XmCreateMessageBox (Widget parent, char *name, ArgL.ist argv, Car-
dinal argc)

#include <Xm/MultiList.h>
Widget XmCreateMultiList (Widget parent, char *name, ArgL.ist argv, Cardinal
argv)

#include <Xm/Notebook.h>
Widget XmCreateNotebook (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

#include <QOutline.h>
Widget XmCreateOutline (Widget parent, char *name, ArgL.ist argv, Cardinal
argv)

#include <Xm/PanedW.h>
Widget XmCreatePanedWindow (Widget parent, char *name, ArgL.ist argyv,
Cardinal argc)

#include <Xm/PushB.h>
Widget XmCreatePushButton (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/PushBG.h>
Widget XmCreatePushButtonGadget (Widget parent, char *name, ArgL.ist argy,
Cardinal argc)

#include <Xm/RowColumn.h>
Widget XmCreateRowColumn (Widget parent, char *name, ArgList argv, Car-
dinal argc)

Motif Reference Manual

Motif Functions and Macros XmCreateObject

Widget XmCreateRadioBox (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

Widget XmCreateWorkArea (Widget parent, char *name, ArgL.ist argv, Cardi-
nal argc)

#include <Xm/Scale.h>
Widget XmCreateScale (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

#include <Xm/ScrollBar.h>
Widget XmCreateScrollBar (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

#include <Xm/ScrolledW.h>
Widget XmCreateScrolledWindow (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/SelectioB.h>
Widget XmCreateSelectionBox (Widget parent, char *name, ArgL.ist argv, Car-
dinal argc)

#include <Xm/Separator.h>
Widget XmCreateSeparator (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/SeparatoG.h>
Widget XmCreateSeparatorGadget (Widget parent, char *name, ArgL.ist argy,
Cardinal argc)

#include <Xm/SSpinB.h>
Widget XmCreateSimpleSpinBox (Widget parent, char *name, ArgL.ist argy,
Cardinal argc)

#include <Xm/SpinB.h>

Widget XmCreateSpinBox (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

#include <Xm/Text.h>

Widget XmCreateText (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

#include <Xm/TextF.h>

Widget XmCreateTextField (Widget parent, char *name, ArgL.ist argv, Cardinal
argc)

#include <Xm/ToggleB.h>

Motif Reference Manual 73

XmCreateObject Motif Functions and Macros

74

Widget XmCreateToggleButton (Widget parent, char *name, ArgL.ist argv, Car-
dinal argc)

#include <Xm/ToggleBG.h>
Widget XmCreateToggleButtonGadget (Widget parent, char *name, ArgL.ist
argv, Cardinal argc)

#include <Xm/Tree.h>
Widget XmCreateTree (Widget parent, char *name, ArgL.ist argv, Cardinal
argv)

Dialog Objects

#include <Xm/BulletinB.h>
Widget XmCreateBulletinBoardDialog (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <ButtonBox.h>
Widget XmCreateButtonBox (Widget parent, char *name, ArgList argv, Cardi-
nal argv)

#include <ColorS.h>
Widget XmCreateColorSelector (Widget parent, char *name, ArgL.ist argv, Car-
dinal argv)

#include <Column.h>
Widget XmCreateColumn (Widget parent, char *name, ArgList argv, Cardinal
argv)

#include <Xm/FileSB.h>
Widget XmCreateFileSelectionDialog (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <Xm/FontS.h>
Widget XmCreateFontSelector (Widget parent, char *name, ArgList argv, Car-
dinal argv)

#include <Xm/Form.h>
Widget XmCreateFormDialog (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/lconBox.h>
Widget XmCreatelconBox (Widget parent, char *name, ArgList argv, Cardinal
argv)

#include <Xm/MessageB.h>
Widget XmCreateErrorDialog (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

Motif Reference Manual

Motif Functions and Macros XmCreateObject

Widget XmCreatelnformationDialog (Widget parent, char *name, ArgL.ist argyv,
Cardinal argc)

Widget XmCreateMessageDialog (Widget parent, char *name, ArgL.ist argyv,
Cardinal argc)

Widget XmCreateQuestionDialog (Widget parent, char *name, ArgL.ist argy,
Cardinal argc)

Widget XmCreateTemplateDialog (Widget parent, char *name, ArgL.ist argy,
Cardinal argc)

Widget XmCreateWarningDialog (Widget parent, char *name, ArgList argy,
Cardinal argc)

Widget XmCreateWorkingDialog (Widget parent, char *name, ArgL.ist argyv,
Cardinal argc)

#include <Xm/SelectioB.h>

Widget XmCreatePromptDialog (Widget parent, char *name, ArgL.ist argv, Car-
dinal argc)

Widget XmCreateSelectionDialog (Widget parent, char *name, ArgL.ist argy,
Cardinal argc)

#include <Xm/TabStack.h>
Widget XmCreateDialogShell (Widget parent, char *name, ArgL.ist argv, Cardi-
nal argc)

#include <Xm/Command.h>
Widget XmCreateTabStack (Widget parent, char *name, ArgL.ist argv, Cardinal
argv)

Menu Objects
#include <Xm/RowColumn.h>

Widget XmCreateMenuBar (Widget parent, char *name, ArgList argv, Cardinal
argc)
Widget XmCreateOptionMenu (Widget parent, char *name, ArgList argv, Car-
dinal argc)
Widget XmCreatePopupMenu (Widget parent, char *name, ArgList argv, Cardi-
nal argc)
Widget XmCreatePulldownMenu (Widget parent, char *name, ArgList argv,
Cardinal argc)

Simple Menu Objects
#include <Xm/Xm.h>
Widget XmCreateSimpleCheckBox (Widget parent, char *name, ArgL.ist argy,
Cardinal argc)
Widget XmCreateSimpleMenuBar (Widget parent, char *name, ArgList argv,
Cardinal argc)

Motif Reference Manual 75

XmCreateObject Motif Functions and Macros

Widget XmCreateSimpleOptionMenu (Widget parent, char *name, ArgL.ist
argv, Cardinal argc)
Widget XmCreateSimplePopupMenu (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateSimplePulldownMenu (Widget parent, char *name, ArgL.ist
argv, Cardinal argc)
Widget XmCreateSimpleRadioBox (Widget parent, char *name, ArgL.ist argy,
Cardinal argc)

Scrolled Objects
#include <Xm/List.h>
Widget XmCreateScrolledList (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/Text.h>
Widget XmCreateScrolledText (Widget parent, char *name, ArgList argv, Car-

dinal argc)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup.
argv Specifies the resource name/value pairs used in creating the
widget.
argc Specifies the number of name/value pairs in argv.

Returns

The simple widget creation routines return the widget ID of the widget that is
created. The dialog creation routines return the widget ID of the widget that is
created as a child of the DialogShell. The menu creation routines return the
widget ID of the RowColumn widget that is created. The scrolled object creation
routines return the widget ID of the List or Text widget.

Availability
XmCreateDraglcon() and XmCreateTemplateDialog() are only avail-
able in Motif 1.2 and later.

XmCreateGrabShel l(), XmCreatelconGadget(), XmCreateCom-
boBox(),

XmCreateDropDownComboBox(), XmCreateDropDownList(), XmCre-
ateNotebook(), XmCreateContainer(), and XmCreateSpinBox() are
available from Motif 2.0 onwards.

XmCreateSimpleSpinBox() is available from Motif 2.1 and onwards.

Description
The XmCreate*() routines are convenience routines for creating an instance of
a particular widget class or a particular compound object. Each creation routine

76 Motif Reference Manual

Motif Functions and Macros XmCreateObject

Usage

takes the same four arguments: the parent’s widget ID, the name of the new
widget, a list of resource name/value pairs, and the number of name/value pairs.

The simple creation routines create a single widget with the default resource set-
tings for the widget class, except for XmCreateRadioBox() and XmCreate-
WorkArea(), which create specially configured RowColumn widgets.

The dialog creation routines are convenience routines for creating a particular
unmanaged widget as a child of a DialogShell. The parent argument specifies
the parent of the DialogShell and name specifies the string name of the particular
widget that is created. The name of the DialogShell is the string that results from
appending "_popup” to the name of the widget. The routines return the widget ID
of the widget that is created as the child of the DialogShell.

The menu creation routines are convenience routines for creating particular types
of menu objects. Each routine creates a RowColumn widget with specific
resource settings that configure the widget to operate as the particular type of
menu. XmCreatePopupMenu() and XmCreatePul ldownMenu() create the
RowColumn widget as the child of a MenuShell.

Except for XmCreateSimpleSpinBox(), the simple menu creation routines
are convenience routines for creating particular configurations of RowColumn
widgets and their children. For example, XmCreateSimpleCheckBox() cre-
ates a CheckBox with ToggleButtonGadgets as its children.

XmCreateScrolledList() and XmCreateScrol ledText() are conven-
ience routines that create a List or Text widget as the child of a ScrolledWindow.
The parent argument specifies the parent of the ScrolledWindow and name spec-
ifies the string name of the List or Text widget. The name of the ScrolledWindow
is the string that results from appending "SW" to the name of the widget. The
routines return the widget ID of the List or Text widget.

Each widget or compound object that can be created with an XmCreate*() rou-
tine can also be created using XtCreateWidget(). The simple Motif creation
routines are simply veneers to XtCreateWidget(). The rest of the Motif crea-
tion routines create multiple widgets and/or set specific widget resources. In
order to use XtCreateWidget() to create these objects, you need to have a
complete understanding of the compound object that you are trying to create. For
more information on each widget and compound object that can be created, see
the appropriate manual page in Section 2, Motif and Xt Widget Classes.

Motif Reference Manual 77

XmCreateObject Motif Functions and Macros

See Also
XmArrowButtonGadget(2), XmArrowButton(2),
XmBulletinBoardDialog(2), XmBulletinBoard(2),
XmCascadeButtonGadget(2), XmCascadeButton(2),
XmCheckBox(2), XmComboBox(2), XmCommand(2),
XmCommandDialog(2), XmContainer(2), XmDialogShell(2),
XmDraglcon(2), XmDrawingArea(2), XmDrawnButton(2),
XmErrorDialog(2), XmFileSelectionBox(2),
XmFileSelectionDialog(2), XmFormDialog(2), XmForm(2),
XmFrame(2), XmGrabShell(2), XmlconGadget(2),
XmInformationDialog(2), XmLabelGadget(2), XmLabel(2),
XmList(2), XmMainWindow(2), XmMenuBar(2),
XmMenuShel1(2), XmMessageBox(2), XmMessageDialog(2),
XmNotebook(2), XmOptionMenu(2), XmPanedWindow(2),
XmPopupMenu(2), XmPromptDialog(2),
XmPul ldownMenu(2), XmPushButtonGadget(2)
XmPushButton(2), XmQuestionDialog(2), XmRadioBox(2),
XmRowColumn(2), XmScale(2), XmScrollBar(2),
XmScrolledList(2), XmScrolledText(2),
XmScrolledWindow(2), XmSelectionBox(2),
XmSelectionDialog(2), XmSeparatorGadget(2),
XmSeparator(2), XmSpinBox(2), XmSimpleSpinBox(2),
XmTemplateDialog(2), XmTextField(2), XmText(2),
XmToggleButtonGadget(2), XmToggleButton(2),
XmWarningDialog(2), XmWorkingDialog(2).-

78 Motif Reference Manual

Motif Functions and Macros XmCvtByteStreamToXmString

Name
XmCvtByteStreamToXmString — convert a byte stream to a compound string.
Synopsis
XmsString XmCvtByteStreamToXmString (unsigned char *property)
Inputs
property Specifies a byte stream.
Returns
An allocated compound string.
Availability
Motif 2.0 and later.
Description
XmCvtByteStreamToXmString() converts a stream of bytes to a compound
string. The function is typically used by the destination of a data transfer opera-
tion.
Usage
XmCvtByteStreamToXmString() converts a compound string in byte
stream format into an XmString. The function allocates storage for the returned
compound string, and it is the responsibility of the programmer to free the allo-
cated memory by calling XmStringFree() at an appropriate point.
See Also

XmCvtXmStringToByteStream(l), XmStringFree(l),

Motif Reference Manual 79

XmCvtCTToXmString Motif Functions and Macros

Name
XmCvtCTToXmString — convert compound text to a compound string.

Synopsis

XmsString XmCvtCTToXmString (char *text)

Inputs
text Specifies the compound text that is to be converted.

Returns
The converted compound string.

Description
XmCvtCTToXmString() converts the specified text string from compound text
format, which is an X Consortium Standard defined in Compound Text Encoding,
to a Motif compound string. The routine assumes that the compound text is
NULL-terminated and NULLs within the compound text are handled correctly. If
text contains horizontal tabulation (HT) control characters, the result is unde-
fined. XmCvtCTToXmString() allocates storage for the converted compound
string. The application is responsible for freeing this storage using XmString-
Free().

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication. An application
must call XtAppInitialize() before calling XmCvtCTToXmString(). The
conversion of compound text to compound strings is implementation dependent.
XmCvtCTToXmString() is the complement of XmCvtXmStringToCT().

See Also
XmCvtXmStringToCT(1).

80 Motif Reference Manual

Motif Functions and Macros XmCvtStringToUnitType

Name
XmCuvtStringToUnitType — convert a string to a unit-type value.
Synopsis
void XmCvtStringToUnitType (XrmValuePtr args,
Cardinal *num_args,
XrmValue *from_val,
XrmValue *to_val)
Inputs
args Specifies additional XrmValue arguments that are need to perform
the conversion.
num_args Specifies the number of items in args.
from_val Specifies value to convert.
Outputs
to_val Returns the converted value.
Availability
In Motif 1.2, XmCvtStringToUnitType() is obsolete. It has been super-
seded by a new resource converter that uses the RepType facility.
Description
XmCvtStringToUnitType() converts the string specified in from_val to one
of the unit-type values: XmPIXELS, Xm100TH_MILLIMETERS,
Xm21000TH_INCHES, Xm100TH_POINTS, or Xm100TH_FONT_UNITS.
This value is returned in to_val.
Usage
XmCvtStringToUnitType() should not be called directly; it should be
installed as a resource converter using the R3 routine XtAddConverter(). The
routine only needs to be installed if the XmNunitType resource for a widget is
being set in a resource file. In this case, XmCvtStringToUnitType() must be
installed with XtAddConverter() before the widget is created. Use the fol-
lowing call to XtAddConverter() to install the converter:
XtAddConverter (XmRString, XmRUnitType, XmCvtStringToUnitType,
NULL, 0);
In Motif 1.2, the use of XmCvtStringToUnitType() as a resource converter
is obsolete. A new resource converter that uses the RepType facility has replaced
the routine.
See Also

XmGadget(2), XmManager(2), XmPrimitive(2).

Motif Reference Manual 81

XmCvtTextPropertyToXmStringTable Motif Functions and Macros

Name
XmCvtTextProperty ToXmStringTable — convert an XTextProperty to a Com-
pound String Table.
Synopsis
#include <Xm/TxtPropCv.h>
int XmCvtTextPropertyToXmStringTable (Display *display,
XTextProperty *text_prop,
XmStringTable
*str_table_return,
int *count_return)
Inputs
display Specifies the connection to the X server.
text_prop Specifies a pointer to an XTextProperty structure.
Outputs
str_table_return The XmStringTable array converted from text_prop.
count_return The number of XmStrings in str_table_return.
Returns
Success if the conversion succeeded, XLocaleNotSupported if the current locale
is unsupported, XConverterNotFound if no converter is available in the current
locale.
Availability
Motif 2.0 and later.
Description
XmCvtTextPropertyToXmStringTable() converts the data specified
within text_prop into an array of XmStrings, returned through str_table_return.
The number of XmStrings in the array is returned in count_return.
Usage

The XmCvtTextPropertyToXmStringTable() function converts data
specified within an XTextProperty structure into an XmStringTable. The data to
be converted is the value member of text_prop, where value is an array of bytes,
consisting of a series of concatenated items, each NULL separated. The number
of such items is given by the nitems member of text_prop. The last item is termi-
nated by two NULL bytes. The interpretation of each item depends upon the
encoding member of text_prop.

If the encoding member of text_prop is COMPOUND_TEXT, the data is con-
verted using the function XmCvtCTToXmString(). If encoding is
COMPOUND_STRING, the data is converted using the function XmCvt-

82 Motif Reference Manual

Motif Functions and Macros XmCvtTextPropertyToXmStringTable

ByteStreamToXmString(). Conversion requires that a converter has been
registered for the current locale, otherwise the function returns XConverterNot-
Found. If encoding is XA_STRING, each returned XmString is converted
through XmStringGenerate() with a tag of "1SO8859-1" and a text type of
XmMCHARSET_TEXT. If encoding is that of the current locale, each returned
XmsString is converted through XmStringGenerate() with a tag of
_MOTIF_DEFAULT_LOCALE, and a text type of XmMULTIBYTE_TEXT.
For other values of encoding, the function returns XLocaleNotSupported.

XmCvtTextPropertyToXmStringTable() returns allocated storage, and
it is the responsibility of the programmer to free the utilized memory at an appro-
priate point by freeing each element of the array through XmStringFree(),
and subsequently the array itself through XtFree().

Structures
The XTextProperty structure is defined in <X11/Xutil.h> as follows:

typedef struct {
unsigned char *value; /* same as Property routines */
Atom encoding; /* the property type */
int format; /* property data format: 8, 16, or 32. */
unsigned long nitems; /* number of data items in value ~ */
} XTextProperty;

See Also
XmCvtByteStreamToXmString(l), XmCvtCTToXmString(1),
XmStringFree(l), XmStringGenerate(l).

Motif Reference Manual 83

XmCvtXmStringTableToTextProperty Motif Functions and Macros

Name
XmCvtXmStringTableToTextProperty — convert an XmStringTable to an XTex-
tProperty.
Synopsis
#include <Xm/TxtPropCv.h>
int XmCvtXmStringTableToTextProperty (Display *dis-
play,
XmStringTable
string_table,
int count,
XmICCEncodingStyle style,
XTextProperty
*prop_return)
Inputs
display Specifies the connection to the X server.
string_table Specifies an array of compound strings.
count Specifies the number of compound strings in string_table.
style Specifies the encoding style from which to convert
string_table.
Outputs
prop_return The XTextProperty structure converted from string_table.
Returns
Success if the conversion succeeded, XLocaleNotSupported if the current locale
is unsupported.
Availability
Motif 2.0 and later.
Description
XmCvtXmStringTableToTextProperty() is the inverse function to
XmCvtTextPropertyToXmStringTable(). It converts an array of com-
pound strings, specified by string_table, into the elements of an XTextProperty
structure. The number of compound strings within the string_table is given by
count.
Usage
XmCvtXmStringTableToTextProperty() converts an XmStringTable
into the elements of an XTextProperty structure. The encoding member contains
an Atom representing the requested style. The value member contains a list of the
converted items, each separated by NULL bytes, and terminated by two NULL
bytes, the nitems member is the number of such items converted.
84 Motif Reference Manual

Motif Functions and Macros XmCvtXmStringTableToTextProperty

If style is XmSTYLE_COMPOUND_STRING, encoding is
_MOTIF_COMPOUND_STRING, and value contains a list of XmStrings in
byte stream format.

If style is XmSTYLE_COMPOUND_TEXT, encoding is COMPOUND_TEXT,
and value contains compound text items.

If style is XmSTYLE_LOCALE, encoding is the Atom representing the encoding
for the current locale. value contains items converted into the current locale.

If style is XmSTYLE_STRING, encoding is STRING, and value contains items
converted into 1ISO8859-1 strings.

If style is XmSTYLE_TEXT, and all the XmStrings in string_table are converti-
ble into the encoding for the current locale, the function behaves as though style
is XmSTYLE_LOCALE. Otherwise, the function behaves as though style is
XmSTYLE_COMPOUND_TEXT.

If style is XmSTYLE_STANDARD_ICC_TEXT, and all the XmStrings in
string_table are convertible as though the style is XmSTYLE_STRING, the
function behaves as though style is indeed XmSTYLE_STRING. Otherwise, the
function behaves as though style is XmSTYLE_COMPOUND_TEXT.

XmCvtXmStringTableToTextProperty() returns XLocaleNotSupported
if the conversion cannot be performed within the current locale, or if style is not
valid. Otherwise, the function returns Success.

Structures

See Also

The XTextProperty structure is defined in <X11/Xutil.h> as follows:
typedef struct {
unsigned char *value; /* same as Property routines */
Atom encoding; /* property type */
int format; [* property data format: 8, 16, or 32 */
unsigned long nitems; /* number of data items in value ~ */
} XTextProperty;

The possible values of the XmICCEncodingStyle parameter style are:

XmSTYLE_COMPOUND_STRING
XmSTYLE_COMPOUND_TEXT
XmSTYLE_LOCALE
XmMSTYLE_STANDARD_ICC_TEXT
XMSTYLE_STRING
XmMSTYLE_TEXT

Motif Reference Manual 85

XmCvtXmStringTableToTextProperty Motif Functions and Macros

XmCvtByteStreamToXmString(l), XmCvtCTToXmString(l),
XmCvtTextPropertyToStringTable(l), XmStringFree(l),
XmStringGenerate(l).

86 Motif Reference Manual

Motif Functions and Macros XmCvtXmStringToByteStream

Name
XmCvtXmStringToByteStream — convert a compound string to byte stream for-
mat.

Synopsis

unsigned int XmCvtXmStringToByteStream (XmString string, unsigned char
**prop_return)

Inputs
string Specifies the compound string that is to be converted.

Outputs
prop_return The converted compound string in byte stream format.

Returns
The number of bytes in the byte stream.

Availability
Motif 2.0 and later.

Description
XmCvtXmStringToByteStream() converts a compound string string into a
stream of bytes, returning the number of bytes required for the conversion. The
byte stream is returned in prop_return. The function is the inverse of XmCvt-
ByteStreamToXmString().

Usage
XmCvtXmStringToByteStream() converts an XmsString into byte stream
format. If prop_return is not NULL, the function places into prop_return the
converted string, and returns its length in bytes. If prop_return is NULL, the
number of bytes is calculated and returned, but no conversion is performed.

XmCvtXmStringToByteStream() returns allocated storage in prop_return,
and it is the responsibility of the programmer to free the utilized memory at an
appropriate point by calling XtFree().

See Also
XmCvtByteStreamToXmString(l).

Motif Reference Manual 87

XmCvtXmStringToCT Motif Functions and Macros

Name
XmCvtXmStringToCT — convert a compound string to compound text.

Synopsis

char * XmCvtXmStringToCT (XmString string)

Inputs
string Specifies the compound string that is to be converted.

Returns
The converted compound text string.

Description
XmCvtXmStringToCT() converts the specified Motif compound string to a
string in X11 compound text format, which is described in the X Consortium
Standard Compound Text Encoding.

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication. XmCvtXm-
StringToCT() is the complement of XmCvtCTToXmString().

In Motif 1.2 and later, an application must not call XmCvtXmStringToCT()
until after XtAppInitialize() is called, so that the locale is established cor-
rectly. The routine uses the font list tag of each compound string segment to
select a compound text format for the segment. A mapping between font list tags
and compound text encoding formats is stored in a registry.

If the compound string segment tag is associated with

XmFONTLIST_DEFAULT _TAG in the registry, the converter calls XmbTex-
tListToTextProperty() with the XCompoundTextStyle encoding style
and uses the resulting compound text for the segment. If the compound string
segment tag is mapped to a registered MIT charset, the routine creates the com-
pound text using the charset as defined in the X Consortium Standard Compound
Text Encoding. If the compound string segment tag is associated with a charset
that is not XmFONTLIST_DEFAULT_TAG or a registered charset, the con-
verter creates the compound text using the charset and the text as an "extended
segment” with a variable number of octets per character. If the compound string
segment tag is not mapped in the registry, the result depends upon the implemen-
tation.

See Also
XmCvtCTToXmString(l), XmMapSegmentEncoding(l),

88 Motif Reference Manual

Motif Functions and Macros

XmRegisterSegmentEncoding(l).

Motif Reference Manual

XmCvtXmStringToCT

89

XmbDeactivateProtocol Motif Functions and Macros

Name
XmDeactivateProtocol — deactivate a protocol.

Synopsis
#include <Xm/Protocols.h>

void XmDeactivateProtocol (Widget shell, Atom property, Atom protocol)

Inputs
shell Specifies the widget associated with the protocol property.

property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.

Description
XmDeactivateProtocol () deactivates the specified protocol without
removing it. If the shell is realized, XmDeactivateProtocol() updates its
protocol handlers and the specified property. A protocol may be active or inac-
tive. If protocol is active, the protocol atom is stored in property; if protocol is
inactive, the protocol atom is not stored in property.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmDeactivateProtocol() allows a client to temporarily stop participating
in the communication. The inverse routine is XmActivateProtocol().

See Also
XmActivateProtocol(1), XmDeactivateWMProtocol(1),
XmInternAtom(1), VendorShel 1(2).

90 Motif Reference Manual

Motif Functions and Macros XmDeactivateWMProtocol

Name
XmDeactivateWMProtocol — deactivate the XA_WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmDeactivateWMProtocol (Widget shell, Atom protocol)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.

Description
XmDeactivateWMProtocol() is a convenience routine that calls XmDeac-
tivateProtocol() with property set to XA WM_PROTOCOL, the window
manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. XmDeactivateWMPro-
tocol () allows a client to temporarily stop participating in the communication
with the window manager. The inverse routine is XmActivateWMProto-
col().

See Also
XmActivateWMProtocol (1), XmDeactivateProtocol(1),
XmInternAtom(1), VendorShel 1(2).

Motif Reference Manual 91

XmDestroyPixmap Motif Functions and Macros

Name
XmDestroyPixmap — remove a pixmap from the pixmap cache.
Synopsis
Boolean XmDestroyPixmap (Screen *screen, Pixmap pixmap)
Inputs
screen Specifies the screen on which the pixmap is located.
pixmap Specifies the pixmap.
Returns
True on success or False if there is no matching pixmap and screen in the cache.
Description
XmDestroyPixmap() removes the specified pixmap from the pixmap cache
when it is no longer needed. A pixmap is not completely freed until there are no
further reference to it.
Usage
The pixmap cache maintains a per-client list of the pixmaps that are in use.
Whenever a pixmap is requested using XmGetP ixmap(), an internal reference
counter for the pixmap is incremented. XmDestroyP ixmap() decrements this
counter, so that when it reaches 0 (zero), the pixmap is removed from the cache.
See Also

XmGetPixmap(l), XmInstall Image(l), XmUninstall Image(1).

92 Motif Reference Manual

Motif Functions and Macros XmDirectionMatch

Name
XmDirectionMatch — compare two directions.
Synopsis
Boolean XmDirectionMatch (XmDirection dir_1, XmDirection dir_2)
Inputs
dir_1 Specifies a direction.
dir_2 Specifies a direction to compare with dir_1.
Returns
True if the directions match, otherwise False.
Availability
Motif 2.0 and later.
Description
XmDirectionMatch() is a convenience function which compares two direc-
tion values, dir_1 and dir_2, returning True or False, depending upon whether
the values are a logical match for each other.
Usage

An XmDirection consists of three parts: a horizontal component, a vertical com-
ponent, and an order of precedence between each. XmDirection values match if
both the horizontal components and vertical components of each are logically the
same, and the order between the components is the same. If one value does not
have a horizontal component, this always matches the horizontal component of

the other value. Similarly, if one value has no vertical component, the vertical

component in the other value is automatically considered to match. Where a

match is found between the directions, the function returns True, otherwise False.

For example, suppose dir_1 is XmTOP_TO_BOTTOM_LEFT_TO_RIGHT.

This has a vertical component XmTOP_TO_BOTTOM, a horizontal component
XmLEFT_TO_RIGHT, the vertical component being first in the order of prece-
dence. If dir_2 is XmLEFT_TO_RIGHT, this has no vertical component, which
automatically matches the vertical component of dir_1. The horizontal compo-

nents are identical, and therefore the two directions are considered a match (it is
also amatch if dir_1 is XmLEFT_TO_RIGHT_TOP_TO_BOTTOM). If dir_2 is

XmRIGHT_TO_LEFT, or XmTOP_TO_BOTTOM_RIGHT_TO_LEFT, no
match is found because the horizontal components differ, and the function

returns False. If dir_2 is XmLEFT_TO_RIGHT_TOP_TO_BOTTOM, the func-
tion also returns False because the horizontal and vertical components, although

fully specified and equal in value, have different orders of precedence.

Motif Reference Manual

93

XmDirectionMatch Motif Functions and Macros

Structures
Valid XmDirection values for each of dir_1 and dir_2 are:

XMLEFT_TO_RIGHT XMRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT _TO_LEFT
XMLEFT_TO_RIGHT_BOTTOM_TO_TOP
XMRIGHT_TO_LEFT_BOTTOM_TO_TOP
XMLEFT_TO_RIGHT_TOP_TO_BOTTOM
XMRIGHT_TO_LEFT_TOP_TO_BOTTOM

See Also
XmDirectionMatchPartial(l),
XmDirectionToStringDirection(l),
XmStringDirectionToDirection(l),

94 Motif Reference Manual

Motif Functions and Macros XmDirectionMatchPartial

Name
XmDirectionMatchPartial — partially compare two directions.

Synopsis

Boolean XmDirectionMatchPartial (XmDirection dir_1, XmDirection dir_2,
XmDirection mask)
Inputs

dir_1 Specifies a direction.

dir_2 Specifies another direction to compare with dir_1.

mask Specifies whether the horizontal component
(XmHORIZONTAL_MASK), vertical component
(XmVERTICAL_MASK), or the order of component precedence
(XmPRECEDENCE_MASK) is compared.

Returns
True if the directions match, otherwise False.

Availability
Motif 2.0 and later.

Description
XmDirectionMatchPartial() is a convenience function which compares
two direction values, dir_1 and dir_2 according to the comparison rule specified
in mask.

Usage
An XmDirection consists of three logical parts: a horizontal component, a verti-
cal component, and an order of precedence between each. The function compares
corresponding logical parts of two XmDirection values. If mask is
XmMHORIZONTAL_MASK, the horizontal components of dir_1 and dir_2 are
compared. If mask is XmVERTICAL_MASK, the vertical components are com-
pared. If mask is XmPRECEDENCE_MASK, the order of precedence between
the horizontal and vertical components is compared. If one value does not have a
particular logical part, this always matches the logical part in the second value.
Where a match is found, the function returns True, otherwise False.

For example, suppose dir_1is XmTOP_TO_BOTTOM_LEFT_TO_RIGHT, and
that dir_2 is XmBOTTOM_TO_TOP_LEFT_TO_RIGHT. If mask is
XmMHORIZONTAL_MASK, the two values match because each has an equiva-
lent horizontal component (XmLEFT_TO_RIGHT). If mask is
XmVERTICAL_MASK, there is no match because each has different vertical
components. If mask is XmPRECEDENCE_MASK, the two values are a match
because each has the vertical component before the horizontal.

Motif Reference Manual 95

XmbDirectionMatchPartial Motif Functions and Macros

Structures
Valid XmDirection values for each of dir_1 and dir_1 are:

XMLEFT_TO_RIGHT XMRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT _TO_LEFT
XMLEFT_TO_RIGHT_BOTTOM_TO_TOP
XMRIGHT_TO_LEFT_BOTTOM_TO_TOP
XMLEFT_TO_RIGHT_TOP_TO_BOTTOM
XMRIGHT_TO_LEFT_TOP_TO_BOTTOM

See Also
XmDirectionMatch(l), XmDirectionToStringDirection(l),
XmStringDirectionToDirection(l),

96 Motif Reference Manual

Motif Functions and Macros XmDirectionToStringDirection

Name
XmDirectionToStringDirection — convert a direction to a string direction.

Synopsis

XmsStringDirection XmDirectionToStringDirection (XmDirection direction)

Inputs
direction Specifies the direction to be converted.

Returns
The equivalent XmStringDirection.

Availability
Motif 2.0 and later.

Description
XmDirectionToStringDirection() converts an XmDirection value
specified by direction into an XmStringDirection value.

Usage
XmDirectionToStringDirection() converts between the XmDirection
and XmStringDirection data types. If direction has a horizontal component, that
component is converted. If the horizontal component is XmLEFT_TO_RIGHT,
the function returns XmSTRING_DIRECTION_LEFT_TO_RIGHT. If the hori-
zontal component is XmRIGHT_TO_LEFT, the function returns
XmSTRING_DIRECTION_RIGHT _TO_LEFT. If direction has no horizontal
component, the function returns XmSTRING_DIRECTION_DEFAULT.

For example, if direction is XmRIGHT_TO_LEFT_TOP_TO_BOTTOM, the
horizontal component is XmRIGHT_TO_LEFT, and the return value is
XmSTRING_DIRECTION_RIGHT_TO_LEFT. If direction is
XmBOTTOM_TO_TOP, the value has only a vertical component, and the func-
tion returns XmSTRING_DIRECTION_DEFAULT.

See Also
XmDirectionMatch(l), XmDirectionMatchPartial(1),
XmStringDirectionToDirection(l).

Motif Reference Manual 97

XmDragCancel Motif Functions and Macros

Name
XmDragCancel — cancel a drag operation.

Synopsis
#include <Xm/DragDrop.h>

void XmDragCancel (Widget dragcontext)

Inputs
dragcontext ~ Specifies the ID of the DragContext object for the drag operation

that is being cancelled.

Description
XmDragCancel () cancels the drag operation that is in progress for the specified
dragcontext. If the DragContext has any actions pending, they are terminated.
The routine can only be called by the client that initiated the drag operation.
XmDragCancel () frees the DragContext object associated with the drag opera-
tion.

Usage
XmDragCancel () allows an initiating client to cancel a drag operation if it
decides that the operation should not continue for whatever reason. Calling
XmDragCancel () is equivalent to the user pressing KCancel during the drag.
The XmNdropStartCallback informs the initiating client of the cancellation by
setting the dropAction field to XmDROP_CANCEL. So that it can undo any
drag-under effects under the dynamic protocol, the receiving client gets an
XmCR_DROP_SITE_LEAVE_MESSAGE when the drag is cancelled.

See Also
XmDragStart(l), XmDragContext(2).

98 Motif Reference Manual

Motif Functions and Macros XmDragStart

Name

Synopsis

XmDragStart — start a drag operation.

#include <Xm/DragDrop.h>

Widget XmDragStart (Widget widget, XEvent *event, ArgList arglist, Cardinal
argcount)

Inputs

widget Specifies the widget or gadget that contains the data that is being
dragged.

event Specifies the event that caused the drag operation.

arglist Specifies the resource name/value pairs used in creating the Drag-
Context.

argcount Specifies the number of name/value pairs in arglist.

Returns

The 1D of the DragContext object that is created.

Availability

In Motif 2.0 and later, XmDragStart() is subsumed into the Uniform Transfer
Model (UTM). The Motif widget classes do not call XmDragStart() directly,
but install the XmQTtransfer trait to provide data transfer and conversion, and
initiate the drag through UTM mechanisms which calls XmDragStart() inter-
nally.

Description

Usage

XmDragStart() starts a drag operation by creating and returning a DragCon-
text object. The DragContext stores information that the toolkit needs to process
a drag transaction. The DragContext object is widget-like, in that it uses
resources to specify its attributes. The toolkit frees the DragContext upon com-
pletion of the drag and drop operation.

The widget argument to XmDragStart() should be the smallest widget that
contains the source data for the drag operation. The event that starts the drag
operation must be a ButtonPress event. The arglist and argcount parameters
work as for any creation routine; any DragContext resources that are not set by
the arguments are retrieved from the resource database or set to their default val-
ues.

Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. These drop sites can
be in the same application or another application.

Motif Reference Manual 99

XmDragStart Motif Functions and Macros

Example

100

The Text and TextField widgets, the List widget, and Label and its subclasses are
set up to act as drag sources by the toolkit. In order for another widget to act as a
drag source, it must have a translation for BTransfer. The action routine for the
translation calls XmDragStart(), either directly or indirectly through the UTM,
to initiate the drag and drop operation.

The only DragContext resource that must be specified when XmDragStart() is
called is the XmNconvertProc procedure. This resource specifies a procedure of
type XtConvertSelectionIncrProc that converts the source data to the format(s)
requested by the receiving client. The specification of the other resources, such as
those for operations and drag-over visuals, is optional. For more information
about the DragContext object, see the manual page in Section 2, Motif and Xt
Widget Classes].

The following routines show the use of XmDragStart() in setting up a Scroll-
Bar to function as a drag source. When the ScrollBar is created, the translations
are overridden to invoke StartDrag when BTransfer is pressed. ConvertProc,
which is not shown here, is set up by StartDrag to perform the translation of the
scrollbar data into compound text format.

/*

** XmSCOMPOUND_TEXT is defined in Motif 2.0 and
later

*/

#ifndef XmSCOMPOUND_TEXT

#define XmSCOMPOUND_TEXT ""COMPOUND_TEXT"
#endit /* XmSCOMPOUND_TEXT */

/* global variable */
Atom COMPOUND_TEXT;

/* start the drag operation */

static void StartDrag(Widget widget,
XEvent *event,
String *params,
Cardinal *num_params)
{

Arg args[10];
int n = 0;
Atom exportList[1];

exportList[0] = COMPOUND_TEXT;

Motif Reference Manual

Motif Functions and Macros XmDragStart

XtSetArg (args[n], XmNexportTargets,
exportList); n++;

XtSetArg (args[n], XmNnumExportTargets, XtNumber
(exportList));

n++:

XtSetArg (args[n], XmNdragOperations,
XmDROP_COPY); n++;

XtSetArg (args[n], XmNconvertProc, ConvertProc);
n++:

XtSetArg (args[n], XmNclientData, widget); n++;

XmDragStart (widget, event, args, n);
}

/* define translations and actions */
static char dragTranslations[] =
“"#override <Btn2Down>: StartDrag()";

static XtActionsRec dragActions[] =
{ {"StartDrag", (XtActionProc) StartDrag} }:

void main (unsigned int argc, char **argv)

{
Arg args[10];
int n;
Widget top, bboard, scrollbar;

XtAppContext app;
XtTranslations parsed_trans;

XtSetLanguageProc (NULL, (XtLanguageProc) NULL,
NULL) ;

top = XtApplnitialize (&app, "Drag"™, NULL, O,
&argc, argv, NULL, NULL,
0);
COMPOUND_TEXT = XInternAtom (XtDisplay (widget),
XmSCOMPOUND_TEXT,

False);
n = 0;
bboard = XmCreateBulletinBoard (top, 'bboard",
args, n);

XtManageChild (bboard);

/* override button two press to start a drag */
parsed_trans = XtParseTranslationTable
(dragTranslations);

Motif Reference Manual 101

XmDragStart

See Also

}

Motif Functions and Macros

XtAppAddActions (app, dragActions, XtNumber
(dragActions));

n = 0;

XtSetArg (args[n], XmNtranslations,
parsed_trans); n++;

XtSetArg (args[n], XmNorientation, XmHORIZON-
TAL); n++;

XtSetArg (args[n], XmNwidth, 100); n++;
scrollbar = XmCreateScrollBar (bboard, *scroll-
bar”, args, n);

XtManageChild (scrollbar);

XtRealizeWidget (top);
XtAppMainLoop (app);

XmDragCancel (1), XmTransfer(1), XmDragContext(2).

102

Motif Reference Manual

Motif Functions and Macros XmDropDownGetArrow

Name
XmDropDownGetArrow —A DropDown function that returns the “arrow” child

of the XmDropDown.
Synopsis
#include <Xm/DropDown.h>
Widget XmDropDownGetArrow(Widget widget)

Inputs
widget Specifies the DropDown widget ID.

Outputs
value_return Returns the widget ID of the “arrow” child of the Drop-

Down widget.

Description
XmDropDownGetArrow() is used to access the “arrow” child within the Drop-
Down widget.

Usage
XmDropDownArrow() is a convenience routine that returns the “arrow” child
within the DropDown widget.

See Also
XmDropDown(2).

Motif Reference Manual 103

XmDropDownGetChild Motif Functions and Macros

Name
XmDropDownGetChild —get the specified child of a DropDown widget.

Synopsis
#include <Xm/DropDown.h>

void XmDropDownGetChild (Widget widget, int child)
Inputs

widget Specifies the DropDown widget.

child Specifies a type of child of the DropDown widget.

Returns
The widget ID of the specified child of the DropDown widget.

Description
XmDropDownGetChild() returns the widget ID of the specified child of the
DropDown widget.

Usage
The child XmDROPDOWN_LABEL specifies the label of the DropDown,
XmDROPDOWN_TEXT specifies the text area of the DropDown,
XmDROPDOWN_ARROW_BUTTON specifies the arrow button of the Drop-
Down, and XmDROPDOWN_LIST specifies the list widget of DropDown.

Structures
The possible values for child are:

XmDROPDOWN_LABEL XmDROPDOWN_TEXT
XmDROPDOWN_ARROW_BUTTON XmDROPDOWN_LIST

104 Motif Reference Manual

Motif Functions and Macros XmDropDownGetChild

Widget Hierarchy
The following names are associated with the DropDown children:

“Label” XmDROPDOWN_LABEL
“Arrow” XmDROPDOWN_ARROW_BUTTON
“Text” XmDROPDOWN_TEXT
“List” XmDROPDOWN_LIST
See Also
XmDropDown(2).

Motif Reference Manual 105

XmDropDownGetLabel Motif Functions and Macros

Name
XmDropDownGetLabel — A DropDown function that returns the “label” child of
the XmDropDown.

Synopsis
#include <Xm/DropDown.h>

Widget XmDropDownGetLabel(Widget widget)

Inputs
widget Specifies the DropDown widget 1D.

Outputs
value_return Returns the widget ID of the “label” child of the DropDown

widget.

Description
XmDropDownGetLabel() is used to access the “label” child within the Drop-
Down widget.

Usage
XmDropDownGetLabel() is a convenience routine that returns the “label”
child of the DropDown widget.

See Also
XmDropDown(2).

106 Motif Reference Manual

Motif Functions and Macros XmDropDownGetL.ist

Name
XmDropDownGetList — A DropDown function that returns the “list” child of the
XmDropDown.
Synopsis
#include <Xm/DropDown.h>
Widget XmDropDownGetList(Widget widget)
Inputs
widget Specifies the DropDown widget 1D.
Outputs
value_return Returns the widget 1D of the “list” child of the DropDown
widget.
Description
XmDropDownGetList() is used to access the “list” child within the Drop-
Down widget.
Usage
XmDropDownGetList() is a convenience routine that returns the “list” child
of the DropDown widget.
See Also

XmDropDown(2).

Motif Reference Manual 107

XmDropDownGetText Motif Functions and Macros

Name
XmDropDownGetText— A DropDown function that returns the “text” child of
the XmDropDown.
Synopsis
#include <Xm/DropDown.h>
Widget XmDropDownGetText (Widget widget)
Inputs
widget Specifies the DropDown widget ID.
Outputs
value_return Returns the widget ID of the “text” child of the DropDown
widget.
Description
XmDropDownGetText() is used to access the “text” child within the Drop-
Down widget.
Usage
XmDropDownGetText() is a convenience routine that returns the “text” child
of the DropDown widget.
See Also

XmDropDown(2).

108 Motif Reference Manual

Motif Functions and Macros XmDropDownGetValue

Name
XmDropDownGetValue-retrieve the value from DropDown.

Synopsis
#include <Xm/DropDown.h>
void String XmDropDownGetValue (Widget w)

Inputs
widget Specifies the DropDown widget ID.
Outputs
value_return Returns the string contained within the text widget of the
DropDown widget.

Description
The XmDropDownGetValue() function returns the string contained within
the text widget of the DropDown widget.

Usage
XmDropDownGetValue() is a convenience routine that returns the string con-
tained within the text widget of the DropDown widget. This string has been allo-
cated with XtMal loc () and must be freed by the application with XtFree().
Always leave the specified margin between its edge and the nearest child. A new
String to fillOption resource converter has been registered to convert the follow-
ing strings to fill options: “none”, “major”, “minor”, “all”. This resource can
therefore be set in an application defaults file.

See Also

XmDropDown(2).

Motif Reference Manual 109

XmDropSiteConfigureStackingOrder Motif Functions and Macros

Name

Synopsis

XmDropSiteConfigureStackingOrder — change the stacking order of a drop site.

#include <Xm/DragDrop.h>

void XmDropSiteConfigureStackingOrder (Widget widget, Widget sibling, Car-
dinal stack_mode)

Inputs

widget Specifies the widget ID associated with the drop site.
sibling Specifies an optional widget 1D of a sibling drop site.
stack_mode Specifies the stacking position. Pass either XmABOVE or
XmBELOW.

Description

Usage

See Also

XmDropSiteConfigureStackingOrder() changes the stacking order of a
drop site relative to its siblings. The routine changes the stacking order of the
drop site associated with the specified widget. The stacking order is changed only
if the drop sites associated with widget and sibling are siblings in both the widget
hierarchy and the drop site hierarchy. The parent of both of the widgets must be
registered as a composite drop site.

If sibling is specified, the stacking order of the drop site is changed relative to the
stack position of the drop site associated with sibling, based on the value of
stack_mode. If stack_mode is XmABOVE, the drop site is positioned just above
the sibling; if stack_mode is XmBELOW, the drop site is positioned just below
the sibling. If sibling is not specified, a stack_mode of XmABOVE causes the

drop site to be placed at the top of the stack, while a stack_mode of XmBELOW?
causes it to be placed at the bottom of the stack.

A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. The stacking order of the
drop sites controls clipping of drag-under effects during a drag and drop opera-
tion. When drop sites overlap, the drag-under effects of the drop sites lower in
the stacking order are clipped by the drop sites above them, regardless of whether
or not the drop sites are active. You can use XmDropSiteConfigure-
StackingOrder() to modify the stacking order. Use XmDropSiteQueryS-
tackingOrder() to get the current stacking order.

1.Erroneously given as BELOW in 1st and 2nd editions.

110

Motif Reference Manual

Motif Functions and Macros XmDropSiteConfigureStackingOrder

XmDropSiteQueryStackingOrder (1),
XmDropSiteRegister(1l), XmDropSite(2)

Motif Reference Manual 111

XmDropSiteEndUpdate Motif Functions and Macros

Name
XmDropSiteEndUpdate — end an update of multiple drop sites.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteEndUpdate (Widget widget)

Inputs
widget Specifies any widget in the hierarchy associated with the drop sites

that are to be updated.

Description
XmDropSiteEndUpdate() finishes an update of multiple drop sites. The
widget parameter specifies a widget in the widget hierarchy that contains all of
the widgets associated with the drop sites being updated. The routine uses widget
to identify the shell that contains all of the drop sites.

Usage
XmDropSiteEndUpdate() is used with XmDropSiteStartUpdate() and
XmDropSiteUpdate() to update information about multiple drop sites in the
DropSite registry. XmDropSiteStartUpdate() starts the update processing,
XmDropSiteUpdate() is called multiple times to update information about
different drop sites, and XmDropSiteEndUpdate() completes the processing.
These routines optimize the updating of drop site information. Calls to XmDrop-
SiteStartUpdate() and XmDropSiteEndUpdate() can be nested recur-
sively.

See Also
XmDropSiteStartUpdate(l), XmDropSiteUpdate(l),
XmDropSite(2).

112 Motif Reference Manual

Motif Functions and Macros XmDropSiteQueryStackingOrder

Name
XmDropSiteQueryStackingOrder — get the stacking order of a drop site.
Synopsis
#include <Xm/DragDrop.h>
Status XmDropSiteQueryStackingOrder (Widget widget,
Widget *parent_return,
Widget **child_returns,
Cardinal *num_child_returns)
Inputs
widget Specifies the widget ID associated with a composite drop
site.
Outputs
parent_return Returns the widget ID of the parent of the specified
widget.
child_returns Returns a list of the children of widget that are registered
as drop sites.
num_child_returns Returns the number of children in child_returns.
Returns
A non-zero value on success or 0 (zero) on failure.
Description

XmDropSiteQueryStackingOrder() retrieves information about the
stacking order of drop sites. For the specified widget, the routine returns its par-
ent and a list of its children that are registered as drop sites. The children are
returned in child_returns, which lists the children in the current stacking order,
with the lowest child in the stacking order at the beginning of the list and the top
child at the end of the list. XmDropSiteQueryStackingOrder() allocates
storage for the list of returned children. The application is responsible for manag-
ing this storage, which can be freed using XtFree(). The routine returns a non-
zero value on success or 0 (zero) on failure.

Motif Reference Manual 113

XmDropSiteQueryStackingOrder Motif Functions and Macros

Usage

See Also

114

A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. The stacking order of the
drop sites controls clipping of drag-under effects during a drag and drop opera-
tion. When drop sites overlap, the drag-under effects of the drop sites lower in
the stacking order are clipped by the drop sites above them, regardless of whether
or not the drop sites are active. Use XmDropSiteQueryStackingOrder()
to get the current stacking order for a composite drop site. You can use
XmDropSiteConfigureStackingOrder() to modify the stacking order.

Text, TextField, and Container widgets are automatically registered as drop sites
by the Motif toolkit.

XmDropSiteConfigureStackingOrder(l),
XmDropSiteRegister(l), XmDropSite(2).

Motif Reference Manual

Motif Functions and Macros XmDropSiteRegister

Name

Synopsis

XmDropSiteRegister — register a drop site.

#include <Xm/DragDrop.h>
void XmDropSiteRegister (Widget widget, ArgList arglist, Cardinal argcount)

Inputs

widget Specifies the widget ID that is to be associated with the drop site.
arglist Specifies the resource name/value pairs used in registering the
drop site.

argcount Specifies the number of name/value pairs in arglist.

Availability

In Motif 2.0 and later, XmDropSiteRegister() is subsumed into the Uni-
form Transfer Model (UTM). The Motif widget classes do not call XmDrop-
SiteRegister() directly, but initiate the site through UTM mechanisms
which call XmDropSiteRegister() internally. The callbacks specified by the
XmNdestinationCallback resource of a widget handle the data drop.

Description

Usage

XmDropSiteRegister() registers the specified widget as a drop site, which
means the widget has a drop site associated with it in the DropSite registry. Drop
sites are widget-like, in that they use resources to specify their attributes. The
arglist and argcount parameters work as for any creation routine; any drop site
resources that are not set by the arguments are retrieved from the resource data-
base or set to their default values. If the drop site is registered with XmNdrop-
SiteActivity set to XmDROP_SITE_ACTIVE and XmNdropProc set to NULL,
the routine generates a warning message.

Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. The DropSite regis-
try stores information about all of the drop sites for a display. Text and TextField
widgets are automatically registered as drop sites when they are created. An
application can register other widgets as drop sites using XmDropSiteRegis-
ter(). Once a widget is registered as a drop site, it can participate in drag and
drop operations. A drop site can be removed from the registry using XmDrop-
SiteUnregister(). When a drop site is removed, the widget no longer partic-
ipates in drag and drop operations.

Motif Reference Manual 115

XmDropSiteRegister Motif Functions and Macros

Example

116

A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. If the drop site being regis-
tered is a descendant of a widget that has already been registered as a drop site,
the XmNdropSiteType resource of the ancestor must be set to
XmDROP_SITE_COMPOSITE. A composite drop site must be registered as a
drop site before its descendants are registered. The stacking order of the drop
sites controls clipping of drag-under effects during a drag and drop operation.
When drop sites overlap, the drag-under effects of the drop sites lower in the
stacking order are clipped by the drop sites above them, regardless of whether or
not the drop sites are active. When a descendant drop site is registered, it is
stacked above all of its sibling drop sites that have already been registered.

The following routine shows the use of XmDropSiteRegister() to register a
Label widget as a drop site. When a drop operation occurs in the Label, the Han-
dleDrop routine, which is not shown here, handles the drop:

/* global variable */
Atom COMPOUND_TEXT;

void main (unsigned int argc, char **argv)

{

Arg args[10];

int n;

Widget top, bb, label;

XtAppContext app;

Atom importList[1];

XtSetLanguageProc (NULL, (XtLanguageProc) NULL,
NULL);

top = XtApplnitialize (&app, 'Drop™, NULL, O,
&argc, argv, NULL, NULL,
0):

n = 0;

bb = XmCreateBulletinBoard (top, '"bb", args, n);

XtManageChild (bb);

COMPOUND_TEXT = XInternAtom (XtDisplay (top),
""COMPOUND_TEXT"",

False);
n = 0;
label = XmCreatelLabel (bb, "Drop Here"™, args,
n);

Motif Reference Manual

Motif Functions and Macros XmDropSiteRegister

See Also

}

XtManageChild (label);

/* register the label as a drop site */
importList[0] = COMPOUND_TEXT;

n = 0;

XtSetArg (args[n], XmNimportTargets,
importList); n++;

XtSetArg (args[n], XmNnumImportTargets, XtNumber
(importList)); n++;

XtSetArg (args[n], XmNdropSiteOperations,
XmDROP_COPY); n++;

XtSetArg (args[n], XmNdropProc, HandleDrop);
n++;

XmDropSiteRegister (label, args, n);

XtRealizeWidget (top);
XtAppMainLoop (app);

XmDropSiteConfigureStackingOrder(1)
XmDropSiteEndUpdate(l), XmDropSiteQueryStackingOrder(1)
XmDropSiteRetrieve(l), XmDropSiteStartUpdate(l),
XmDropSiteUpdate(l), XmDropSiteUnregister(l)

XmTransfer (1), XmDisplay(2), XmDropSite(2), XmScreen(2).

Motif Reference Manual 117

XmDropSiteRetrieve Motif Functions and Macros

Name
XmDropSiteRetrieve — get the resource values for a drop site.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteRetrieve (Widget widget, ArgList arglist, Cardinal argcount)

Inputs
widget Specifies the widget ID associated with the drop site.

arglist Specifies the resource name/address pairs that contain the resource
names and addresses into which the resource values are stored.
argcount Specifies the number of name/value pairs in arglist.

Description
XmDropSiteRetrieve() gets the specified resources for the drop site associ-
ated with the specified widget. Drop sites are widget-like, in that they use
resources to specify their attributes. The arglist and argcount parameters work as
for XtGetValues().

Usage
XmDropSiteRetrieve() can be used to get the current attributes of a drop
site from the DropSite registry. The DropSite registry stores information about
all of the drop sites for a display. An initiating client can also use XmDropSi -
teRetrieve() toretrieve information about the current drop site by passing the
DragContext for the operation to the routine. The initiator can access all of the
drop site resources except XmNdragProc and XmNdropProc! using this tech-
nique.

See Also
XmDropSiteRegister(l), XmDropSiteUpdate(l), XmDropSite(2).

1.Erroneously given as XmdropProc in 1st and 2nd editions.

118 Motif Reference Manual

Motif Functions and Macros XmDropSiteStartUpdate

Name
XmDropSiteStartUpdate — start an update of multiple drop sites.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteStartUpdate (Widget widget)

Inputs
widget Specifies any widget in the hierarchy associated with the drop sites
that are to be updated.

Description
XmDropSiteStartUpdate() begins an update of multiple drop sites. The
widget parameter specifies a widget in the widget hierarchy that contains all of
the widgets associated with the drop sites being updated. The routine uses widget
to identify the shell that contains all of the drop sites.

Usage
XmDropSiteStartUpdate() is used with XmDropSi teUpdate() and
XmDropSiteEndUpdate() to update information about multiple drop sites in
the DropSite registry. XmDropSiteStartUpdate() starts the update process-
ing, XmDropSiteUpdate() is called multiple times to update information
about different drop sites, and XmDropSiteEndUpdate() completes the
processing. These routines optimize the updating of drop site information. Calls
to XmDropSiteStartUpdate() and XmDropSiteEndUpdate() can be
nested recursively.

See Also
XmDropSiteEndUpdate(l), XmDropSiteUpdate(l), XmDropSite(2).

Motif Reference Manual 119

XmDropSiteUnregister Motif Functions and Macros

Name
XmDropSiteUnregister — remove a drop site.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteUnregister (Widget widget)

Inputs
widget Specifies the widget ID associated with the drop site.

Description
XmDropSiteUnregister() removes the drop site associated with the speci-
fied widget from the DropSite registry. After the routine is called, the widget can-
not be the receiver in a drag and drop operation. The routine frees all of the
information associated with the drop site.

Usage
Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. Once a widget is
registered as a drop site with XmDropSiteRegister(), it can participate in
drag and drop operations. Text and TextField widgets are automatically regis-
tered as drop sites when they are created. XmDropSiteUnregister() pro-
vides a way to remaove a drop site from the registry, so that the widget no longer
participates in drag and drop operations.

See Also
XmDropSiteRegister(l), XmDropSite(2).

120 Motif Reference Manual

Motif Functions and Macros XmDropSiteUpdate

Name

Synopsis

XmDropSiteUpdate — change the resource values for a drop site.

#include <Xm/DragDrop.h>
void XmDropSiteUpdate (Widget widget, ArgL.ist arglist, Cardinal argcount)

Inputs

widget Specifies the widget ID associated with the drop site.

arglist Specifies the resource name/value pairs used in updating the drop
site.

argcount Specifies the number of name/value pairs in arglist.

Description

Usage

See Also

XmDropSiteUpdate() changes the resources for the drop site associated with
the specified widget. Drop sites are widget-like, in that they use resources to
specify their attributes. The arglist and argcount parameters work as for
XtSetValues().

XmDropSiteUpdate() can be used by itself to update the attributes of a drop
site. The routine can also be used with XmDropSiteStartUpdate() and
XmDropSiteEndUpdate() to update information about multiple drop sites in
the DropSite registry. XmDropSiteStartUpdate() starts the update
processing, XmDropSiteUpdate() is called multiple times to update informa-
tion about different drop sites, and XmDropSiteEndUpdate() completes the
processing. The DropSite registry stores information about all of the drop sites
for a display. These routines optimize the updating of drop site information by
sending all of the updates at once, rather than processing each one individually.

XmDropSiteEndUpdate(l), XmDropSiteRegister(l),
XmDropSiteStartUpdate(l), XmDropSiteUnregister(l),
XmDropSite(2).

Motif Reference Manual 121

XmDropTransferAdd Motif Functions and Macros

Name
XmDropTransferAdd — add drop transfer entries to a drop operation.
Synopsis
#include <Xm/DragDrop.h>
void XmDropTransferAdd (Widget drop_transfer,
XmDropTransferEntryRec *transfers,
Cardinal num_transfers)
Inputs
drop_transfer Specifies the ID of the DropTransfer object to which the
entries are being added.
transfers Specifies the additional drop transfer entries.
num_transfer Specifies the number of drop transfer entries in transfers.
Availability
In Motif 2.0 and later, the drag and drop mechanisms are rationalized as part of
the Uniform Transfer Model. Motif widget classes do not call XmDropTrans-
FerAdd() directly, but call XmTransferValue() to transfer data to a destina-
tion. XmTransferValue() calls XmDropTransferAdd() internally as the
need arises.
Description
XmDropTransferAdd() specifies a list of additional drop transfer entries that
are to be processed during a drop operation. The widget argument specifies the
DropTransfer object associated with the drop operation. transfers is an array of
XmDropTransferEntryRec structures that specifies the targets of the additional
drop transfer operations. XmDropTransferAdd() can be used to modify the
DropTransfer object until the last call to the XmNtransferProc is made. After the
last call, the result of modifying the DropTransfer object is undefined.
Usage

122

The toolkit uses the DropTransfer object to manage the transfer of data from the
drag source to the drop site during a drag and drop operation. XmDropTrans-
FerAdd() provides a way for a drop site to specify additional target formats after
a drop operation has started. The routine adds the entries to the XmNdropTrans-
fers resource. The attributes of a DropTransfer object can also be manipulated
with XtSetValues() and XtGetValues().

Motif Reference Manual

Motif Functions and Macros XmDropTransferAdd

Structures
XmDropTransferEntryRec is defined as follows:
typedef struct {
XtPointer client_data; /* data passed to the transfer proc */
Atom target; /* target format of the transfer */

XmDropTransferEntryRec, *XmDropTransferEntry;
p y p y

See Also
XmDropTransferStart(l), XmTransferValue(l),
XmDragContext(2), XmDropTransfer(2).

Motif Reference Manual

123

XmDropTransferStart Motif Functions and Macros

Name

Synopsis

XmDropTransferStart — start a drop operation.

#include <Xm/DragDrop.h>

Widget XmDropTransferStart (Widget widget, ArgList arglist, Cardinal arg-
count)

Inputs

widget Specifies the ID of the DragContext object associated with the
operation.

arglist Specifies the resource name/value pairs used in creating the
DropTransfer.

argcount Specifies the number of name/value pairs in arglist.

Returns

The ID of the DropTransfer object that is created.

Availability

In Motif 2.0 and later, the drag and drop mechanisms are rationalized as part of
the Uniform Transfer Model. XmDropTransferStart() is called on request
internally as the need arises by the destination callback handlers, or through the
XmTransferValue() and XmTransferDone() functions.

Description

Usage

124

XmDropTransferStart() starts a drop operation by creating and returning a
DropTransfer object. The DropTransfer stores information that the toolkit needs
to process a drop transaction. The DropTransfer is widget-like, in that it uses
resources to specify its attributes. The toolkit frees the DropTransfer upon com-
pletion of the drag and drop operation.

The widget argument to XmDropTransferStart() is the DragContext object
associated with the drag operation. The arglist and argcount parameters work as
for any creation routine; any DropTransfer resources that are not set by the argu-
ments are retrieved from the resource database or set to their default values.

Motif 1.2 supports the drag and drop model of selection actions. In a widget that
acts as a drag source, a user can make a selection and then drag the selection,
using BTransfer, to other widgets that are registered as drop sites. These drop
sites can be in the same application or another application. The toolkit uses the
DropTransfer object to manage the transfer of data from the drag source to the
drop site. XmDropTransferStart() is typically called from within the XmNdrop-
Proc procedure of the drop site.

Motif Reference Manual

Motif Functions and Macros XmDropTransferStart

The attributes of a DropTransfer object can be manipulated with XtSetVval-
ues() and XtGetValues() until the last call to the XmNtransferProc proce-
dure is made. You can also use XmDropTransferAdd() to add drop transfer
entries to be processed. After the last call to XmNtransferProc, the result of using
the DropTransfer object is undefined. For more information about the Drop-
Transfer object, see the manual page in Section 2, Motif and Xt Widget Classes.

Example
The following routine shows the use of XmDropTransferStart() in the
HandleDrop routine, which is the XmNdropProc procedure for a Label widget
that is being used as a drop site. The data transfer procedure TransferProc()
which presumably translates the data in the Label into compound text format, is
not shown

/* global variable */
Atom COMPOUND_TEXT;

static void HandleDrop(Widget widget,
XtPointer client _data,
XtPointer call_data)

{
XmDropProcCal Iback DropData;
XmDropTransferEntryRec transferEntries[1];
XmDropTransferEntry transferList;
Arg args[10];
int n;

DropData = (XmDropProcCallback) call_data;
n = 0;

if ((DropData->dropAction != XmDROP) ||
(DropData->operation = XmDROP_COPY)) {

XtSetArg (args[n], XmNtransferStatus,
XmTRANSFER_FAILURE) ;
n++;

}

else {
transferEntries[0]-.target = COMPOUND_TEXT;
transferEntries[0].client_data = (XtPointer)
widget;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, trans-
ferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,

Motif Reference Manual 125

XmDropTransferStart Motif Functions and Macros

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, Transfer-
Proc); n++;

}

XmDropTransferStart (DropData->dragContext,
args, n);
¥
See Also

XmDropTransferAdd(l), XmTransferValue(l), XmTransferDone(1),
XmDragContext(2), XmDropTransfer(2).

126 Motif Reference Manual

Motif Functions and Macros XmFileSelectionBoxGetChild

Name
XmFileSelectionBoxGetChild — get the specified child of a FileSelectionBox
widget.
Synopsis
#include <Xm/FileSB.h>
Widget XmFileSelectionBoxGetChild (Widget widget, unsigned char child)
Inputs
widget Specifies the FileSelectionBox widget.
child Specifies the child of the FileSelectionBox widget. Possible values
are defined below.
Returns
The widget ID of the specified child of the FileSelectionBox.
Availability
From Motif 2.0, XmFi leSelectionBoxGetChi Id() is deprecated code.
XtNameToWidget() is the preferred method of accessing children of the
widget.
Description
XmFileSelectionBoxGetChi ld() returns the widget ID of the specified
child of the FileSelectionBox widget.
Usage

XmDIALOG_APPLY_BUTTON, XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in the widget. XmDIALOG_DEFAULT_BUTTON specifies the
current default button. XmDIALOG_DIR_LIST and
XmDIALOG_DIR_LIST_LABEL specify the directory list and its label, while
XmDIALOG_LIST and XmDIALOG_LIST_LABEL specify the file list and its
label. XmDIALOG_FILTER_LABEL and XmDIALOG_FILTER_TEXT spec-
ify the filter text entry area and its label, while XmDIALOG_TEXT and
XmDIALOG_SELECTION_LABEL specify the file text entry area and its label.
XmDIALOG_SEPARATOR specifies the separator and
XmDIALOG_WORK_AREA specifies any work area child that has been added
to the FileSelectionBox.

In Motif 2.0 and later, if the resource XmNpathMode is
XmPATH_MODE_RELATIVE, the directory pattern specification is displayed
in two text fields, rather than the single filter text entry area. When this is the
case, the pattern is displayed in the original filter text area, and the directory por-
tion is displayed in an additional text field called DirText. The Label associated

Motif Reference Manual 127

XmFileSelectionBoxGetChild Motif Functions and Macros

with the DirText child is called DirL. No corresponding mask has been defined to
access this extra text field or its Label through XmFi leSelection-
BoxGetChi ld(): XtNameToWidget() should be used to access the DirText
widget ID when required.

For more information on the different children of the FileSelectionBox, see the
manual page in Section 2, Motif and Xt Widget Classes.

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON or XmDIALOG_WORK_AREA children

using a public interface except through XmSeIectionBoxGetChiId()l, the routine
should not be considered truly deprecated. For consistency with the preferred
new style, when fetching all other child values, consider giving preference to the
Intrinsics routine XtNameToWidget(), passing one of the following names as the
second parameter:

“Apply” (XmDIALOG_APPLY_BUTTON)

“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)

“Help” (XmDIALOG_HELP _BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)
“*|temsList"2 (XmDIALOG_LIST)

“Items” (XmDIALOG_LIST_LABEL)
“Selection” (XmDIALOG_SELECTION_LABEL)
“Text” (XmDIALOG_TEXT)

“*DjrList*3 (XmDIALOG_DIR_LIST)

“Dir- (XmDIALOG_DIR_LIST_LABEL)
“FilterLabel* (XmDIALOG_FILTER_LABEL)
“FilterText* (XmDIALOG_FILTER_TEXT)

“DirL" (no macro - must use XtNameToWidget()))
“DirText" (no macro - must use XtNameToWidget())

1.Called internally by XmFileSelectionBoxGetChild().
2.The “*” is important: the Files List is not a direct child of the SelectionBox, but of a ScrolledL.ist.
3.As above; the Directories list is a child of a ScrolledWindow, not the SelectionBox itself.

128 Motif Reference Manual

Motif Functions and Macros XmFileSelectionBoxGetChild

CDE variants of the Motif 2.1 toolkit may support a ComboBox in place of the

Directory Text field (DirText). This is known as “DirComboBox”, and also has

no defined public macro®:

“DirComboBox” (no macro - must use XtNameToWidget())
Structures
The possible values for child are:
XmDIALOG_APPLY_BUTTON XmDIALOG_LIST
XmDIALOG_CANCEL_BUTTON XmDIALOG_LIST_LABEL
XmDIALOG_DEFAULT_BUTTON XmDIALOG_OK_BUTTON
XmDIALOG_DIR_LIST
XmDIALOG_SELECTION_LABEL
XmDIALOG_DIR_LIST_LABEL XmDIALOG_SEPARATOR
XmDIALOG_FILTER_LABEL XmDIALOG_TEXT
XmDIALOG_FILTER_TEXT XmDIALOG_WORK_AREA
XmDIALOG_HELP BUTTON
See Also

XmFileSelectionBox(2).

1.The ComboBox, containing a List of directories, is enabled if the CDE resource XmNenableFsbPickList is true.

Motif Reference Manual 129

XmPFileSelectionDoSearch Motif Functions and Macros

Name
XmFileSelectionDoSearch — start a directory search.

Synopsis
#include <Xm/FileSB.h>

void XmFileSelectionDoSearch (Widget widget, XmString dirmask)
Inputs
widget Specifies the FileSelectionBox widget.
dirmask Specifies the directory mask that is used in the directory search.

Description
XmFileSelectionDoSearch() starts a directory and file search for the
specified FileSelectionBox widget. dirmask is a text pattern that can include
wildcard characters. XmFi leSe lectionDoSearch() updates the lists of
directories and files that are displayed by the FileSelectionBox. If dirmask is
non-NULL, the routine restricts the search to directories that match the dirmask.

Usage

XmFi leSelectionDoSearch()! allows you to force a FileSelectionBox to
reinitialize itself, which is useful if you want to set the directory mask directly.

See Also
XmFileSelectionBox(2).

1.Erroneously given as XmFileSelectionBoxDoSearch() in 1st and 2nd editions.

130 Motif Reference Manual

Motif Functions and Macros XmFontListAdd

Name
XmFontListAdd — create a new font list.
Synopsis
XmFontList XmFontListAdd (XmFontList oldlist, XFontStruct *font, XmString-
CharSet charset)
Inputs
oldlist Specifies the font list to which font is added.
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.
Returns
The new font list, oldlist if font or charset is NULL, or NULL if oldlist is NULL.
Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively. To maintain backwards compatibility, the XmFontList is re-implemented
as a render table.
Description

XmFontListAdd() makes a new font list by adding the font structure specified
by font to the old font list. The routine returns the new font list and deallocates
oldlist. charset specifies the character set that is associated with the font. It can
be XmSTRING_DEFAULT_CHARSET, which takes the character set from the
current language environment, but this value may be removed from future ver-
sions of Motif.

XmFontListAdd() searches the font list cache for a font list that matches the
new font list. If the routine finds a matching font list, it returns that font list and
increments its reference count. Otherwise, the routine allocates space for the new
font list and caches it. In either case, the application is responsible for managing
the memory associated with the font list. When the application is done using the
font list, it must be freed using XmFontListFree().

Motif Reference Manual 131

XmFontListAdd Motif Functions and Macros

Usage
In Motif 1.1 and 1.2, a font list contains entries that describe the fonts that are in
use. In Motif 1.1, each entry associates a font and a character set. In Motif 1.2,
each entry consists of a font or a font set and an associated tag. In Motif 2.0 and
later, the XmFontList is implemented using the XmRenderTable type. XmRendi-
tion objects within a render table represent the font entries. XmFontL i stAdd()
returns a reference counted render table.

XmFontListAdd() is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

See Also
XmFontListAppendEntry(l), XmFontListFree(l),
XmRenderTableAddRenditions(l), XmRenditionCreate(l),
XmRendition(2).

132 Motif Reference Manual

Motif Functions and Macros XmFontListAppendEntry

Name

Synopsis

XmFontListAppendEntry — append a font entry to a font list.

XmFontList XmFontListAppendEntry (XmFontList oldlist, XmFontListEntry
entry)

Inputs

oldlist Specifies the font list to which entry is appended.
entry Specifies the font list entry.

Returns

The new font list or oldlist if entry is NULL.

Availability

Motif 1.2 and later. In Motif 2.0 and later, the XmFontList and XmFontListEntry
are obsolete. They are superseded by the XmRenderTable type and the XmRen-
dition object respectively.

Description

Usage

XmFontListAppendEntry() makes a new font list by appending the speci-
fied entry to the old font list. If oldlist is NULL, the routine creates a new font list
that contains the single entry. XmFontListAppendEntry() returns the new
font list and deallocates oldlist. The application is responsible for freeing the font
list entry using XmFontListEntryFree().

XmFontListAppendEntry() searches the font list cache for a font list that
matches the new font list. If the routine finds a matching font list, it returns that
font list and increments its reference count. Otherwise, the routine allocates space
for the new font list and caches it. In either case, the application is responsible for
managing the memory associated with the font list. When the application is done
using the font list, it should be freed using XmFontListEntryFree().

In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. Before a font list can be added to a font list,
it has to be created with XmFontListEntryCreate() or XmFontListEn-
tryLoad(). In Motif 2.0 and later, the XmFontList is an alias for the
XmRenderTable type. XmRendition objects within a render table represent the
font entries. XmFontListAppendEntry() returns a reference counted render
table.

XmFontListAppendEntryy() is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

Motif Reference Manual 133

XmFontListAppendEntry Motif Functions and Macros

See Also
XmFontListEntryCreate(l), XmFontListEntryFree(l),
XmFontListEntrylLoad(l), XmFontListFree(l),
XmFontListRemoveEntry(1), XmRenderTableAddRenditions(l),
XmRenditionCreate(l), XmRendition(2).

134 Motif Reference Manual

Motif Functions and Macros XmFontListCopy

Name
XmFontListCopy — copy a font list.
Synopsis
XmFontList XmFontListCopy (XmFontList fontlist)
Inputs
fontlist Specifies the font list to be copied.
Returns
The new font list or NULL if fontlist is NULL.
Availability

In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-

tively.

Description
XmFontListCopy() makes and returns a copy of fontlist.

The routine searches the font list cache for the font list, returns the font list, and
increments its reference count. The application is responsible for managing the
memory associated with the font list. When the application is done using the font

list, it should be freed using XmFontListFree().
Usage

A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists

of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects

within a render table represent the font entries. XmFontListCopy() is a con-

venience routine which calls XmRenderTableCopy() to copy and return a
erence counted render table.

ref-

XmFontListCopy() makes a correct copy of the font list regardless of the type

of entries in the list.

When a font list is assigned to a widget, the widget makes a copy of the font list,
so it is safe to free the font list. When you retrieve a font list from a widget using
XtGetValues(), you should not alter the font list directly. If you need to make

changes to the font list, use XmFontListCopy/() to make a copy of the font
and then change the copy.

XmFontListCopy() is retained for compatibility with Motif 1.2 and should
be used in newer applications.

Motif Reference Manual

list

not

135

XmFontListCopy Motif Functions and Macros

See Also

XmFontListFree(1), XmRenderTableCopy(1),
XmRenditionCreate(1), XmRendition(2)

136 Motif Reference Manual

Motif Functions and Macros XmFontListCreate

Name
XmFontListCreate — create a font list.

Synopsis

XmFontList XmFontListCreate (XFontStruct *font, XmStringCharSet charset)

Inputs
font Specifies the font structure.

charset Specifies a tag that identifies the character set for the font.

Returns
The new font list or NULL if font or charset is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListCreate() creates a new font list that contains a single entry with
the specified font and charset. charset specifies the character set that is associ-
ated with the font. It can be XmSTRING_DEFAULT_CHARSET, which takes
the character set from the current language environment, but this value may be
removed from future versions of Motif.

XmFontListCreate() searches the font list cache for a font list that matches
the new font list. If the routine finds a matching font list, it returns that font list
and increments its reference count. Otherwise, the routine allocates space for the
new font list and caches it. In either case, the application is responsible for man-
aging the memory associated with the font list. When the application is done
using the font list, it should be freed using XmFontListFree().

Usage
A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects
within a render table represent the font entries. XmFontListCreate() is a
convenience routine which calls XmRenditionCreate() to create a rendition
object for the font. The rendition object is added to a render table by the
XmRenderTableAddRenditions() function. The render table is returned.

XmFontListCreate() is retained for compatibility with Motif 1.2 and should
not be used in newer applications.

Motif Reference Manual 137

XmFontListCreate Motif Functions and Macros

See Also

138

XmFontListCreate() is not multi-thread safe if the application has multiple
application contexts. In Motif 2.1, the function XmFontListCreate_r()isto
be preferred within multi-threaded applications.

Fonts must not be shared between displays in a multi-threaded environment.

XmFontListAppendEntry(1), XmRenderTableAddRenditions(l),
XmRenditionCreate(l), XmRendition(2).

Motif Reference Manual

Motif Functions and Macros XmFontListCreate_r

Name
XmFontListCreate r — create a font list in a thread-safe manner.

Synopsis

XmFontList XmFontListCreate_r (XFontStruct *font, XmStringCharSet charset,
Widget widget)
Inputs
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.
widget Specifies a widget.
Returns
The new font list or NULL if font or charset is NULL.

Availability
Motif 2.1 and later.

Description
XmFontListCreate_r() isidentical to XmFontListCreate(), except that
it is multi-thread safe. The additional widget parameter is used to obtain a lock
upon the application context associated with widget. The older routine
XmFontListCreate() is not safe in threaded environments which have multi-
ple application contexts.

Usage
The widget does not need to be the widget which uses font. It must be on the
same display. The sharing of fonts or fontlists across multiple displays is not safe
for multi-threaded applications.

Although the XmFontList is obsolete in Motif 2.0 and later,
XmFontListCreate_ r() is provided for backwards compatibility with appli-
cations, using the XmFontList interface, which are intended to run in multi-
threaded environments. XmFontListCreate_r() should not be used in appli-
cations using the newer XmRendition and XmRenderTable interface.

See Also
XmFontListCreate(1l), XmRendition(2).

Motif Reference Manual 139

XmFontListEntryCreate Motif Functions and Macros

Name
XmFontListEntryCreate — create a font list entry.

Synopsis
XmFontListEntry XmFontListEntryCreate (char *tag, XmFontType type,
XtPointer font)

Inputs
tag Specifies the tag for the font list entry.
type Specifies the type of the font argument. Pass either
XmFONT_IS_FONT, XmFONT_IS_FONTSET, or
XmFONT_IS_XFT if support of Xft is enabled.
font Specifies the font or font set.
Returns

A font list entry.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively. To maintain backwards compatibility, the XmFontList is re-implemented
as a render table.

Description
XmFontListEntryCreate() makes a font list entry that contains the speci-
fied font, which is identified by tag. type indicates whether font specifies an
XFontSet or a pointer to an XFontStruct. tag is a NULL-terminated string that
identifies the font list entry. It can have the value
XmFONTLIST_DEFAULT_TAG, which identifies the default font list entry in a
font list.
XmFontListEntryCreate() allocates space for the new font list entry. The
application is responsible for managing the memory associated with the font list
entry. When the application is done using the font list entry, it should be freed
using XmFontListEntryFree().

Usage

140

In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. XmFontListEntryCreate() creates a
font list entry using an XFontStruct returned by XLoadQueryFont() or an
XFontSet returned by XCreateFontSet(). The routine does not copy the font
structure, so the XFontStruct or XFontSet must not be freed until all references to
it have been freed. The font list entry can be added to a font list using
XmFontListAppendEntry().

Motif Reference Manual

Motif Functions and Macros XmFontListEntryCreate

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryCreate() returns a rendition object.

XmFontListEntryCreate() is not multi-thread safe if the application has
multiple application contexts. In Motif 2.1, the function
XmFontListEntryCreate_r() is to be preferred within multi-threaded
applications.

Fonts must not be shared between displays in a multi-threaded environment.

XmFontListEntryCreate() is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

Example
The following code fragment shows how to create font list entries using
XmFontListEntryCreate():

Widget toplevel;

XFontStruct *fontl, *font2; /* Previously loaded
fonts */

XFontSet fontset3; /* Previously created

font sets */
XmFontListEntry entryl, entry2, entry3;
XmFontList fontlist;

entryl = XmFontListEntryCreate(''tagl™, XmFONT_1S_FONT,
fontl);

entry2 = XmFontListEntryCreate(''tag2"™, XmFONT_1S_FONT,
font2);

entry3 = XmFontListEntryCreate(''tag3",
XmFONT_1S_FONTSET, fontset3);

fontlist = XmFontListAppendEntry (NULL, entryl);
fontlist = XmFontListAppendEntry (fontlist, entry2);
fontlist = XmFontListAppendEntry (fontlist, entry3);

/* Bug in Motif 1.2.1: see XmFontListEntryFree() */
#1T ((XmVERSION == 1) && (XmREVISION == 2) &&
(XmUPDATE_LEVEL == 1))
XtFree (entryl);
XtFree (entry2);
XtFree (entry3);
#else /* Motif 1.2.1 */
XmFontListEntryFree (entryl);
XmFontListEntryFree (entry2);

Motif Reference Manual 141

XmFontListEntryCreate Motif Functions and Macros

See Also

142

XmFontListEntryFree (entry3);
#endif /* Motif 1.2.1 */

XtVaCreateManagedWidget (“'widget_name™, xmLabelWidget-
Class, toplevel, XmNfontList,
fontlist, NULL);

XmFontListFree (fontlist);

XmFontListAppendEntry(1), XmFontListEntryFree(l),
XmFontListEntryCreate r(1), XmFontListEntryGetFont(1)
XmFontListEntryGetTag(l), XmFontListEntrylLoad(1)
XmFontListRemoveEntry(1l), XmRenditionCreate(l),
XmRendition(2).

Motif Reference Manual

Motif Functions and Macros XmFontListEntryCreate_r

Name
XmFontListEntryCreate_r — create a font list entry in a thread-safe manner.
Synopsis
XmFontListEntry XmFontListEntryCreate r (char *tag,
XmFontType type,
XtPointer font,
Widget widget)
Inputs
tag Specifies the tag for the font list entry.
type Specifies the type of the font argument. Pass either
XmFONT_IS_FONT, XmFONT_IS_FONTSET, or
XmFONT_IS_XFT if support of Xft is enabled.
font Specifies the font or font set.
widget Specifies a widget.
Returns
A font list entry.
Availability
Motif 2.1 and later.
Description
XmFontListEntryCreate_r() is in all respects identical to XmFontLis-
tEntryCreate(), except that XmFontListEntryCreate_r() is provided
for multi-threaded applications: the additional widget parameter is used to obtain
a lock upon an application context. The older routine XmFontListEntry-
Create() is not safe in threaded environments which have multiple application
contexts.
Usage
The widget does not need to be the widget which uses font. It must be on the
same display. The sharing of fonts or fontlists across multiple displays is not safe
for multi-threaded applications.
Although the XmFontList is obsolete in Motif 2.0 and later,
XmFontListEntryCreate_r() is provided for backwards compatibility
with applications, using the XmFontList interface, which are intended to run in
multi-threaded environments. XmFontListEntryCreate_r() should not be
used in applications using the newer XmRendition and XmRenderTable inter-
face.
See Also

XmFontListEntryCreate(l), XmRendition(2).

Motif Reference Manual 143

XmFontListEntryFree Motif Functions and Macros

Name
XmFontListEntryFree — free the memory used by a font list entry.

Synopsis

void XmFontListEntryFree (XmFontListEntry *entry)

Inputs
entry Specifies the address of the font list entry that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryFree() deallocates storage used by the specified font list
entry. The routine does not free the XFontSet or XFontStruct data structure asso-
ciated with the font list entry.

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. A font list entry can be created using
XmFontListEntryCreate() or XmFontListEntryLoad() and then
appended to a font list with XmFontListAppendEntry(). Once the entry has
been appended to the necessary font lists, it should be freed using XmFontLis-
tEntryFree().

In Motif 1.2.1, there is a bug in XmFontListEntryFree() that causes it to
free the font or font set, rather than the font list entry. As a workaround for this
specific version, you can use XtFree() to free the font list entry.

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryFree() is a simple convenience routine which calls
XmRenditionFree().

XmFontListEntryFree() is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

See Also
XmFontListAppendEntry(l), XmFontListEntryCreate(l),
XmFontListEntryLoad(l), XmFontListNextEntry(1),
XmFontListRemoveEntry(1l), XmRenditionFree(l),
XmRendition(2).

144 Motif Reference Manual

Motif Functions and Macros XmFontListEntryGetFont

Name
XmFontListEntryGetFont — get the font information from a font list entry.

Synopsis

XtPointer XmFontListEntryGetFont (XmFontListEntry entry, XmFontType
*type_return)

Inputs
entry Specifies the font list entry.

Outputs
type_return Returns the type of the font information that is returned. Valid

types are XmFONT_IS_FONT, XmFONT _IS_FONTSET, or
XmFONT _IS_XFT if support of Xft is enabled.

Returns
An XFontSet or a pointer to an XFontStruct.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryGetFont() retrieves the font information for the speci-
fied font list entry. When the font list entry contains a font, type_return is
XmFONT_IS_FONT and the routine returns a pointer to an XFontStruct. When
the font list entry contains a font set, type_return is XmFONT_IS_FONTSET
and the routine returns the XFontSet. The XFontSet or XFontStruct that is
returned is not a copy of the data structure, so it must not be freed by an applica-
tion. When the font list entry contains an xft font, type_return is
Xm_FONT_IS_XFT and the runtime returns the XftFont*.

Usage

The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListEntryGetFont() can be used to get the font structure for a font
list entry once it has been retrieved from the font list using XmFontListNex-
tEntry().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryGetFont() is a convenience routine which fetches the

Motif Reference Manual 145

XmFontListEntryGetFont Motif Functions and Macros

See Also

XmNfont and XmNfontType values of the rendition object represented by entry.
The values are fetched through the function XmRenditionRetrieve().
type_return is set to the value of the XmNfontType resource, and the function
XmFontListEntryGetFont() returns the value of the XmNfont resource of
the rendition object.

XmFontListEntryGetFont()1 is retained for compatibility with Motif 1.2
and should not be used in newer applications.

XmFontListEntryCreate(l), XmFontListEntryGetTag(l),
XmFontListEntrylLoad(l), XmFontListNextEntry(l),
XmRenditionRetrieve(l), XmRendition(2).

1.Erroneously given as XmFontListGetFont() in 2nd edition.

146

Motif Reference Manual

Motif Functions and Macros XmFontListEntryGetTag

Name
XmFontListEntryGetTag — get the tag of a font list entry.

Synopsis

char* XmFontListEntryGetTag (XmFontListEntry entry)

Inputs
entry Specifies the font list entry.

Returns
The tag for the font list entry.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryGetTag() retrieves the tag of the specified font list entry.
The routine allocates storage for the tag string; the application is responsible for
freeing the memory using XtFree().

Usage
The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListEntryGetTag() can be used to get the tag of a font list entry
once it has been retrieved from the font list using XmFontListNextEntry().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryGetTag() is a convenience routine which fetches and
returns a copy of the XmNtag value of the rendition object represented by entry.
The value is fetched through the function XmRenditionRetrieve().

XmFontListEntryGetTag()! is retained for compatibility with Motif 1.2
and should not be used in newer applications.

See Also
XmFontListEntryCreate(l), XmFontListEntryGetFont(l),
XmFontListEntryLoad(l), XmFontListNextEntry(1),
XmRenditionRetrieve(l), XmRendition(2).

1.Erroneously given as XmFontListGetTag() in 2nd edition.

Motif Reference Manual 147

XmFontListEntryLoad Motif Functions and Macros

Name
XmFontListEntrylLoad — load a font or create a font set and then create a font list
entry.
Synopsis
XmFontListEntry XmFontListEntryLoad (Display *display,
char *font_name,
XmFontType type,
char *tag)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
font_name Specifies an X Logical Font Description (XLFD) string.
type Specifies the type of font_name. Pass either XmFONT_IS_FONT,
XmFONT_IS_FONTSET, or XmFONT_IS_XFT.
tag Specifies the tag for the font list entry.
Returns
A font list entry or NULL if the font cannot be found or the font set cannot be
created.
Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.
Description

148

XmFontListEntryLoad() either loads a font or creates a font set depending
on the value of type and then creates a font list entry that contains the font data
and the specified tag. font_name is an XLFD string which is parsed as either a
font name or a base font name list. tag is a NULL-terminated string that identifies
the font list entry. It can have the value XmFONTLIST_DEFAULT_TAG, which
identifies the default font list entry in a font list.

If type is set to XmFONT _IS_FONT, the routine uses the XtCvtStringTo-
FontStruct() converter to load the font struct specified by font_name. If the
value of type is XmFONT _IS_FONTSET, XmFontListEntryLoad uses the
XtCvtStringToFontSet() converter to create a font set in the current
locale.

XmFontListEntryLoad() allocates space for the new font list entry. The
application is responsible for managing the memory associated with the font list
entry. When the application is done using the font list entry, it should be freed
using XmFontListEntryFree().

Motif Reference Manual

Motif Functions and Macros XmFontListEntryLoad

Usage

See Also

In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. XmFontListEntryLoad() sets up the
font data and creates a font list entry. The font list entry can be added to a font list
using XmFontListAppendEntry().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntrylLoad() is a convenience routine which creates and returns
a rendition object whose XmNfontName resource is set to font_name, and XmN-
fontType value is type. The rendition object is created with an XmNloadModel
of XmLOAD_IMMEDIATE.

XmFontListEntrylLoad() is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

XmFontListAppendEntry(l), XmFontListEntryCreate(l),
XmFontListEntryFree(l), XmFontListEntryGetFont(l),
XmFontListEntryGetTag(l), XmFontListRemoveEntry(1),
XmRenditionCreate(l), XmRendition(2).

Motif Reference Manual 149

XmFontListFree Motif Functions and Macros

Name
XmFontListFree — free the memory used by a font list.

Synopsis

void XmFontListFree (XmFontList fontlist)

Inputs
fontlist Specifies the font list that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListFree() deallocates storage used by the specified fontlist. The rou-
tine does not free the XFontSet or XFontStruct data structures associated with the
font list.

Usage

A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. XmFontL i stFree() frees the stor-
age used by the font list but does not free the associated font data structures. In
Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListFree() is a convenience function which simply calls
XmRenderTableFree().

It is important to call XmFontListFree() rather than XtFree() because
Motif caches font lists. A call to XmFontL istFree() decrements the reference
count for the font list; the font list is not actually freed until the reference count
reaches 0 (zero).

XmFontListFree() is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

See Also
XmFontListAppendEntry(1), XmFontListCopy(l),
XmFontListEntryFree(l), XmFontListRemoveEntry(l),
XmRenderTableFree(l).

150 Motif Reference Manual

Motif Functions and Macros XmFontListFreeFontContext

Name
XmFontListFreeFontContext — free a font context.

Synopsis

void XmFontListFreeFontContext (XmFontContext context)

Inputs
context Specifies the font list context that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListFreeFontContext() deallocates storage used by the specified
font list context.

Usage
The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a
font list. XmFontListFreeFontContext() is the last of the three font con-
text routines that an application should call when processing a font list, as it frees
the font context data structure. An application begins by calling XmFontLis-
tInitFontContext() to create a font context and then makes repeated calls
to XmFontListNextEntry() or XmFontListGetNextFont() to cycle
through the font list.

XmFontListFreeFontContext() is retained for compatibility with Motif
1.2, and should not be used in newer applications.

See Also
XmFontListGetNextFont(l), XmFontListInitFontContext(l),
XmFontListNextEntry(l), XmRenderTableAddRendition(l),
XmRenditionCreate(l), XmRendition(2).

Motif Reference Manual 151

XmFontListGetNextFont Motif Functions and Macros

Name
XmFontListGetNextFont — retrieve information about the next font list element.

Synopsis

Boolean XmFontListGetNextFont (XmFontContext context,
XmStringCharSet *charset,
XFontStruct **font)

Inputs
context Specifies the font context for the font list.

Outputs
charset Returns the tag that identifies the character set for the font.

font Returns the font structure for the current font list element.

Returns
True if the values being returned are valid or False otherwise.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListGetNextFont() returns the character set and font for the next
element of the font list. context is the font context created by XmFontListIn-
itFontContext(). The first call to XmFontListGetNextFont() returns
the first font list element. Repeated calls to XmFontListGetNextFont()
using the same context access successive font list elements. The routine returns
False when it has reached the end of the font list.

Usage

A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects
within a render table represent the font entries. The XmFontContext is an opaque
type which contains an index into the renditions of a render table.

If the routine is called with a font context that contains a font set, it returns the
first font of the font set.

The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a

152 Motif Reference Manual

Motif Functions and Macros XmFontListGetNextFont

font list. XmFontListGetNextFont() cycles through the fonts in a font list.
XmFontListInitFontContext() is called first to create the font context.
When an application is done processing the font list, it should call
XmFontListFreeFontContext() with the same context to free the allo-
cated data.

XmFontListGetNextFont() is retained for compatibility with Motif 1.2,
and should not be used in newer applications.

See Also
XmFontListFreeFontContext(l),
XmFontListlnitFontContext(l),
XmFontListNextEntry(1), XmRendition(2).

Motif Reference Manual 153

XmFontListInitFontContext Motif Functions and Macros

Name
XmFontListInitFontContext — create a font context.

Synopsis

Boolean XmFontListInitFontContext (XmFontContext *context, XmFontL.ist
fontlist)

Inputs
fontlist Specifies the font list.

Outputs
context Returns the allocated font context structure.

Returns
True if the font context is allocated or False otherwise.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListlnitFontContext() creates a font context for the specified
fontlist. This font context allows an application to access the information that is
stored in the font list. XmFontListiInitFontContext() allocates space for
the font context. The application is responsible for managing the memory associ-
ated with the font context. When the application is done using the font context, it
should be freed using XmFontListFreeFontContext().

Usage
The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a
font list. XmFontListInitFontContext() is the first of the three font con-
text routines that an application should call when processing a font list, as it cre-
ates the font context data structure. The context is passed to
XmFontListNextEntry() or XmFontListGetNextFont() to cycle
through the font list. When an application is done processing the font list, it
should call XmFontListFreeFontContext() with the same context to free
the allocated data.

154 Motif Reference Manual

Motif Functions and Macros XmFontListInitFontContext

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries. The
XmFontContext is an opaque type which contains an index into the renditions of
a render table.

XmFontListInitFontContext() is retained for compatibility with Motif
1.2, and should not be used in newer applications.

See Also
XmFontListFreeFontContext(l), XmFontListGetNextFont(1),
XmFontListlnitFontContext(l), XmFontListNextEntry(1),
XmRendition(2).

Motif Reference Manual 155

XmFontListNextEntry Motif Functions and Macros

Name
XmFontListNextEntry — retrieve the next font list entry in a font list.

Synopsis

XmFontListEntry XmFontListNextEntry (XmFontContext context)

Inputs
context Specifies the font context for the font list.

Returns
A font list entry or NULL if the context refers to an invalid entry or if it is at the

end of the font list.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListNextEntry() returns the next font list entry in a font list. con-
text is the font context created by XmFontListInitFontContext(). The
first call to XmFontListNextEntry() returns the first entry in the font list.
Repeated calls to XmFontListNextEntry() using the same context access
successive font list entries. The routine returns NULL when it has reached the
end of the font list.

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. In Motif 2.0 and later, the XmFontList is an
alias for the XmRenderTable type. XmRendition objects within a render table
represent the font entries. The XmFontContext is an opaque type which contains
an index into the renditions of a render table.

The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListlnitFontContext() is called first to create the font context.
XmFontListNextEntry() cycles through the font entries in a font list.
XmFontListEntryGetFont() and XmFontListEntryGetTag() access
the information in a font list entry. When an application is done processing the
font list, it should call XmFontListFreeFontContext() with the same con-
text to free the allocated data.

156 Motif Reference Manual

Motif Functions and Macros XmFontListNextEntry

XmFontListNextEntry() is retained for compatibility with Motif 1.2, and should
not be used in newer applications.

See Also
XmFontListEntryFree(l), XmFontListEntryGetFont(l),
XmFontListEntryGetTag(l), XmFontListFreeFontContext(1),
XmFontListlnitFontContext(l), XmRendition(2).

Motif Reference Manual 157

XmFontListRemoveEntry Motif Functions and Macros

Name

Synopsis

XmFontListRemoveEntry — remove a font list entry from a font list.

XmFontList XmFontListRemoveEntry (XmFontList oldlist, XmFontListEntry
entry)

Inputs

oldlist Specifies the font list from which entry is removed.
entry Specifies the font list entry.

Returns

The new font list, oldlist if entry is NULL or no entries are removed, or NULL if
oldlist is NULL.

Availability

In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description

Usage

158

XmFontListRemoveEntry() makes a new font list by removing any entries
in oldlist that match the specified entry. The routine returns the new font list and
deallocates oldlist. XmFontListRemoveEntry() does not deallocate the font
list entry, so the application should free the storage using XmFontListEn-
tryFree().

XmFontListRemoveEntry() searches the font list cache for a font list that
matches the new font list. If the routine finds a matching font list, it returns that
font list and increments its reference count. Otherwise, the routine allocates space
for the new font list and caches it. In either case, the application is responsible for
managing the memory associated with the font list. When the application is done
using the font list, it should be freed using XmFontListFree().

In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. In Motif 2.0 and later, the XmFontList is an
alias for the XmRenderTable type. XmRendition objects within a render table
represent the font entries. The XmFontContext is an opaque type which contains
an index into the renditions of a render table.

An application can use XmFontListRemoveEntry() to remove a font list
entry from a font list. If an application needs to process the font list to determine
which entries to remove, it can use XmFontListlnitFontContext() and
XmFontListNextEntry() to cycle through the entries in the font list.

Motif Reference Manual

Motif Functions and Macros XmFontListRemoveEntry

XmFontListRemoveEntry() is retained for compatibility with Motif 1.2,
and should not be used in newer applications.

See Also
XmFontListAppendEntry(1l), XmFontListEntryCreate(l),
XmFontListEntryFree(l), XmFontListEntrylLoad(l),
XmFontListFree(l), XmRendition(2).

Motif Reference Manual 159

XmGetAtomName Motif Functions and Macros

Name
XmGetAtomName — get the string representation of an atom.

Synopsis
#include <Xm/AtomMgr.h>

String XmGetAtomName (Display *display, Atom atom)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
atom Specifies the atom for the property name to be returned.

Returns
The string that represents atom.

Availability
In Motif 2.0 and later, XGetAtomName() is preferred.

Description
XmGetAtomName() returns the string that is used to represent a given atom.
This routine works like Xlib’s XGetAtomName() routine, but the Motif routine
provides the added feature of client-side caching. XmGetAtomName() allocates
space for the returned string; the application is responsible for freeing this storage
using XtFree() when the atom is no longer needed.

Usage
An Atom is a number that identifies a property. Properties also have string
names. XmGetAtomName() returns the string name specified in the original call
to XmInternAtom() or XInternAtom(), or for predefined atoms, a string
version of the symbolic constant without the XA _ attached.

In Motif 2.0 and later, XmGetAtomName() is no more than a convenience rou-
tine which calls XGetAtomName(). While XmGetAtomName() is not yet obso-
lete, XGetAtomName() is to be preferred.

See Also
XmInternAtom(l).

160 Motif Reference Manual

Motif Functions and Macros XmGetColorCalculation

Name
XmGetColorCalculation — get the procedure that calculates default colors.

Synopsis

XmColorProc XmGetColorCalculation (void)

Returns
The procedure that calculates default colors.

Description
XmGetColorCalculation() returns the procedure that calculates the default
foreground, top and bottom shadow, and select colors. The procedure calculates
these colors based on the background color that is passed to the procedure.

Usage
Motif widgets rely on the use of shadowed borders to achieve their three-dimen-
sional appearance. The top and bottom shadow colors are lighter and darker
shades of the background color; these colors are reversed to make a component
appear raised out of the screen or recessed into the screen. The select color is a
slightly darker shade of the background color that indicates that a component is
selected. The default foreground color is either black or white, depending on
which color provides the most contrast with the background color. XmGet-
ColorCalculation() returns the procedure that calculates these colors. Use
XmSetColorCalculation() to change the calculation procedure.

In Motif 2.0 and later, color calculation procedures can be specified on a per-
screen basis by specifying a value for the XmScreen object XmNcolorCalcula-
tionProc resource. Where a particular XmScreen does not have an assigned cal-
culator, the procedure specified by XmGetColorCalculation() is used as
the default.

Procedures
The XmColorProc has the following syntax:

typedef void (*XmColorProc) (XColor *bg_color, /* specifies the
background color */

XColor *fg_color, /* returns the fore-
ground color */

XColor *sel_color, /* returns the select
color */

XColor *ts_color, /* returns the top
shadow color */

XColor *bs_color) /* returns the bot-
tom shadow color */

Motif Reference Manual 161

XmGetColorCalculation Motif Functions and Macros

See Also

162

An XmColorProc takes five arguments. The first argument, bg_color, is a pointer
to an XColor structure that specifies the background color. The red, green, blue,
and pixel fields in the structure contain valid values. The rest of the arguments
are pointers to XColor structures for the colors that are to be calculated. The pro-
cedure fills in the red, green, and blue fields in these structures.

XmChangeColor(1), XmGetColors(1l), XmSetColorCalculation(l).
XmScreen(2).

Motif Reference Manual

Motif Functions and Macros XmGetColors

Name

Synopsis

XmGetColors — update the colors for a widget.

void XmGetColors (Screen *screen,
Colormap color_map,
Pixel background,
Pixel *foreground_return,
Pixel *top_shadow_return,
Pixel *bottom_shadow_return,
Pixel *select_return)

Inputs

screen Specifies the screen for which colors are to be allocated.
color_map Specifies a Colormap from which the colors are allocated.
background Specifies the background from which to calculate allocated
colors.

Outputs

foreground_return Specifies an address into which the foreground Pixel
is returned.

top_shadow_return Specifies an address into which the top shadow Pixel
is returned.

bottom_shadow_return Specifies an address into which the bottom shadow
Pixel is returned.

select_return Specifies an address into which the select Pixel is
returned.

Description

Usage

XmGetColors() allocates and returns a set of pixels within a Colormap associ-
ated with a given screen for use as the foreground, top shadow, bottom shadow,
and select colors of a widget. The returned values are calculated based upon a
supplied background.

XmGetColors() allocates a set of pixels from a colormap. The pixels required
are based upon a supplied background pixel. If any return address is specified as
NULL, the relevant pixel is not allocated. In Motif 1.2 and earlier, pixels are allo-
cated using the current color calculation procedure, which can be specified using
XmSetColorCalculation(). In Motif 2.0 and later, per-screen color calcu-
lation procedures are supported: if the XmNcolorCalculationProc resource of the
XmScreen object associated with screen is not NULL, the procedure specified by
the resource is used to calculate the pixels. Otherwise, the current color calcula-
tion procedure is used.

Motif Reference Manual 163

XmGetColors Motif Functions and Macros

See Also
XmGetColorCalculation(l), XmSetColorCalculation(l).
XmScreen(2).

164 Motif Reference Manual

Motif Functions and Macros XmGetDestination

Name
XmGetDestination — get the current destination widget.

Synopsis

Widget XmGetDestination (Display *display)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().

Returns
The widget ID of the current destination widget or NULL if there is no current
destination widget.

Description
XmGetDestination() returns the widget ID of the current destination widget
for the specified display. The destination widget is usually the widget most
recently changed by a select, edit, insert, or paste operation. XmGetDestina-
tion() identifies the widget that serves as the destination for quick paste opera-
tions and some clipboard routines. This routine returns NULL if there is no
current destination, which occurs when no edit operations have been performed

on a widget.

Usage
XmGetDestination() provides a way for an application to retrieve the widget that
would be acted on by various selection operations, so that the application can do
any necessary processing before the operation occurs.

See Also

XmGetFocusWidget(l), XmGetTabGroup(1).

Motif Reference Manual 165

XmGetDragContext Motif Functions and Macros

Name

Synopsis

XmGetDragContext — get information about a drag and drop operation.

#include <Xm/DragDrop.h>
Widget XmGetDragContext (Widget widget, Time timestamp)

Inputs

widget Specifies a widget on the display where the drag and drop opera-
tion is taking place.
timestamp Specifies a timestamp that identifies a DragContext.

Returns

The ID of the DragContext object or NULL if no active DragContext is found.

Availability

Motif 1.2 and later.

Description

Usage

See Also

166

XmGetDragContext() retrieves the DragContext object associated with the
display of the specified widget that is active at the specified timestamp. When
more that one drag operation has been started on a display, a timestamp can
uniquely identify the active DragContext. If the specified timestamp corresponds
to a timestamp processed between the beginning and end of a single drag and
drop operation, XmGetDragContext() returns the DragContext associated
with the operation. If there is no active DragContext for the time-stamp, the rou-
tine returns NULL.

Motif 1.2 and later supports the drag and drop model of selection actions. Every
drag and drop operation has a DragContext object associated with it that stores
information about the drag operation. Both the initiating and the receiving clients
use information in the DragContext to process the drag transaction. The Drag-
Context object is widget-like, in that it uses resources to specify its attributes.
These resources can be checked using XtGetValues() and modified using
XtSetValues().

XmGetDragContext() provides a way for an application to retrieve a Drag-
Context object. The application can then use XtGetValues() and XtSet-
Values() to manipulate the DragContext.

XmDragCancel (1), XmDragStart(l), XmDragContext(2).

Motif Reference Manual

Motif Functions and Macros XmGetFocusWidget

Name
XmGetFocusWidget — get the widget that has the keyboard focus.

Synopsis
Widget XmGetFocusWidget (Widget widget)

Inputs
widget Specifies the widget whose hierarchy is to be traversed.
Returns

The widget ID of the widget with the keyboard focus or NULL if no widget has
the focus.

Availability
Motif 1.2 and later.

Description
XmGetFocusWidget() returns the widget ID of the widget that has keyboard
focus in the widget hierarchy that contains the specified widget. The routine
searches the widget hierarchy that contains the specified widget up to the nearest
shell ancestor. XmGetFocusWidget() returns the widget in the hierarchy that
currently has the focus, or the widget that last had the focus when the user navi-
gated to another hierarchy. If no widget in the hierarchy has the focus, the routine
returns NULL.

Usage
XmGetFocusWidget() provides a means of determining the widget that currently
has the keyboard focus, which can be useful if you are trying to control keyboard
navigation in an application.

See Also

XmGetTabGroup(l), XmGetVisibility(l), XmlsTraversable(l),
XmProcessTraversal(1).

Motif Reference Manual 167

XmGetMenuCursor Motif Functions and Macros

Name
XmGetMenuCursor — get the current menu cursor.
Synopsis
Cursor XmGetMenuCursor (Display *display)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
Returns
The cursor ID for the current menu cursor or None if no cursor has been defined.
Availability

In Motif 1.2 and later, XmGetMenuCursor() is obsolete. It has been super-
seded by getting the Screen resource XmNmenuCursor.

Description
XmGetMenuCursor() returns the cursor 1D of the menu cursor currently in use
by the application on the specified display. The routine returns the cursor for the
default screen of the display. If the cursor is not yet defined because the applica-
tion called the routine before any menus were created, then XmGetMenuCursor()
returns the value None.

Usage
The menu cursor is the pointer shape that is used whenever a menu is posted.
This cursor can be different from the normal pointer shape. In Motif 1.2 and later,
the new Screen object has a resource, XmNmenuCursor, that specifies the menu
cursor. XmGetMenuCursor () is retained for compatibility with Motif 1.1 and
should not be used in newer applications.

See Also

XmSetMenuCursor(1), XmScreen(2).

168 Motif Reference Manual

Motif Functions and Macros XmGetPixmap

Name

Synopsis

XmGetPixmap — create and return a pixmap.

Pixmap XmGetPixmap (Screen *screen, char *image_name, Pixel foreground,
Pixel background)

Inputs

screen Specifies the screen on which the pixmap is to be drawn.
image_name Specifies the string name of the image used to make the pixmap.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.

background Specifies the background color that is combined with the image
when it is a bitmap.

Returns

A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Description

Usage

XmGetPixmap() generates a pixmap, stores it in the pixmap cache, and returns
its resource ID. Before the routine actually creates the pixmap, it checks the pix-
map cache for a pixmap that matches the specified image_name, screen, fore-
ground, and background. If a match is found, the reference count for the pixmap
is incremented and the resource ID for the pixmap is returned. If no pixmap is
found, XmGetPixmap() checks the image cache for a image that matches the
specified image_name. If a matching image is found, it is used to create the pix-
map that is returned.

When no matches are found, XmGetP ixmap() begins a search for an X10 or
X11 bitmap file, using image_name as the filename. If a file is found, its contents
are read, converted into an image, and cached in the image cache. Then, the
image is used to generate a pixmap that is subsequently cached and returned. The
depth of the pixmap is the default depth of the screen. If image_name specifies a
bitmap, the foreground and background colors are combined with the image. If
no file is found, the routine returns XmUNSPECIFIED_PIXMAP.

When image_name starts with a slash (/), it specifies a full pathname and
XmGetP ixmap() opens the specified file. Otherwise, image_name specifies a
filename which causes XmGetP 1 xmap() to look for the file using a search path.
In Motif 1.2 and earlier, the XBMLANGPATH environment variable specifies
the search path for X bitmap files. In Motif 2.0 and later, the environment varia-
bles XMICONSEARCHPATH and XMICONBMSEARCHPATH specify search

Motif Reference Manual 169

XmGetPixmap Motif Functions and Macros

See Also

170

paths for pixmap files: XMICONSEARCHPATH is used if a color server is run-
ning, XMICONBMSEARCHPATH otherwise, and XBMLANGPATH is used as
a fallback.

The search path can contain the substitution character %B, where image_name is
substituted for %B. The search path can also use the substitution characters
accepted by XtResolvePathname(), where %T is mapped to bitmaps and %S
is mapped to NULL.

If XBMLANGPATH is not set, XmGetP ixmap() uses a default search path. If
the XAPPLRESDIR environment variable is set, the routine searches the follow-
ing paths:

%B

$XAPPLRESDIR/%L/bitmaps/%N/%B Jusr/lib/X11/%L/bitmaps/%N/
%B

$XAPPLRESDIR/%I_%t/bitmaps/%N/%B Jusr/lib/X11/%I_%t/bitmaps/
%N/%B

$XAPPLRESDIR/%I/bitmaps/%N/%B usr/lib/X11/%l/bitmaps/%N/

%B

$XAPPLRESDIR/bitmaps/%N/%B Jusr/lib/X11/bitmaps/%N/%B

$XAPPLRESDIR/%L/bitmaps/%B usr/lib/X11/%L/bitmaps/%B

$XAPPLRESDIR/%I_%t/bitmaps/%B Jusr/lib/X11/%I_%t/bitmaps/

%B

$XAPPLRESDIR/%I/bitmaps/%B Jusr/lib/X11/%l/bitmaps/%B

$XAPPLRESDIR/bitmaps/%B {usr/lib/X11/bitmaps/%B
Jusr/include/X11/bitmaps/%B

$HOME/bitmaps/%B $HOME/%B

If XAPPLRESDIR is not set, XmGetP i xmap() searches the same paths, except
that XAPPLRESDIR is replaced by HOME. These search paths are vendor-
dependent and a vendor may use different directories for /usr/lib/X11 and /usr/
include/X11. In the search paths, the image name is substituted for %B, the
class name of the application is substituted for %N, the language string of the dis-
play is substituted for %L, the language component of the language string is sub-
stituted for %I, and the territory string is substituted for %t.

XmDestroyPixmap(1l), XmGetPixmapByDepth(1),
XmInstallImage(1), XmUninstall Image(l).

Motif Reference Manual

Motif Functions and Macros XmGetPixmapByDepth

Name

Synopsis

XmGetPixmapByDepth — create and return a pixmap of the specified depth.

Pixmap XmGetPixmapByDepth (Screen *screen,
char *image_name,
Pixel foreground,
Pixel background,
int depth)

Inputs

screen Specifies the screen on which the pixmap is to be drawn.
image_name Specifies the string name of the image used to make the pixmap.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.

background Specifies the background color that is combined with the image
when it is a bitmap.

depth Specifies the depth of the pixmap.

Returns

A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Availability

Motif 1.2 and later.

Description

XmGetP ixmapByDepth() generates a pixmap, stores it in the pixmap cache,
and returns its resource ID. Before the routine actually creates the pixmap, it
checks the pixmap cache for a pixmap that matches the specified image_name,
screen, foreground, background, and depth. If a match is found, the reference
count for the pixmap is incremented and the resource ID for the pixmap is
returned. If no pixmap is found, XmGetP i xmapByDepth() checks the image
cache for a image that matches the specified image_name. If a matching image is
found, it is used to create the pixmap that is returned.

When no matches are found, XmGetP i xmapByDepth() begins a search for an
X10 or X11 bitmap file, using image_name as the filename. If a file is found, its
contents are read, converted into an image, and cached in the image cache. Then,
the image is used to generate a pixmap that is subsequently cached and returned.
The depth of the pixmap is the specified depth. If image_name specifies a bit-
map, the foreground and background colors are combined with the image. If no
file is found, the routine returns XmUNSPECIFIED_PIXMAP.

Motif Reference Manual 171

XmGetPixmapByDepth Motif Functions and Macros

Usage

See Also

172

XmGetP ixmapByDepth() works just like XmGetP ixmap() except that the
depth of the pixmap can be specified. With XmGetP ixmap(), the depth of the
returned pixmap is the default depth of the screen. See XmGetPixmap() for an
explanation of the search path that is used to find the image.

XmDestroyPixmap(l), XmGetPixmap(1l), XmInstal I Image(1),
XmUninstall Image(l).

Motif Reference Manual

Motif Functions and Macros XmGetPostedFromWidget

Name

XmGetPostedFromWidget — get the widget that posted a menu.
Synopsis

#include <Xm/RowColumn.h>

Widget XmGetPostedFromWidget (Widget menu)

Inputs
menu Specifies the menu widget.

Returns
The widget ID of the widget that posted the menu.

Description

XmGetPostedFromWidget() returns the widget from which the specified

menu is posted. The value that is returned depends on the type of menu that is
specified. For a PopupMenu, the routine returns the widget from which menu is

popped up. For a PulldownMenu, the routine returns the RowColumn widget

from which menu is pulled down. For cascading submenus, the returned widget
is the original RowColumn widget at the top of the menu system. For tear-off
menus in Motif 1.2 and later, XmGetPostedFromWidget() returns the widget

from which the menu is torn off.
Usage

If an application uses the same menu in different contexts, it can use XmGet-

PostedFromWidget() in an activate callback to determine the context in
which the menu callback should be interpreted.

See Also
XmRowCo lumn(2), XmPopupMenu(2), XmPul IdownMenu(2).

Motif Reference Manual

173

XmGetScaledPixmap Motif Functions and Macros

Name
XmGetScaledPixmap — create and return a scaled pixmap.
Synopsis
Pixmap XmGetScaledPixmap (Widget widget,
char *image_name,
Pixel foreground,
Pixel background,
int depth,
double scaling_ratio)
Inputs
widget Specifies a widget.
image_name Specifies the string name of the image used to make the pix-
map.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.
background Specifies the background color that is combined with the
image when it is a bitmap.
depth Specifies the depth of the pixmap.
scaling_ratio Specifies a scaling ratio applied to the pixmap.
Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.
Availability

Motif 2.1 and later.

Description

Usage

174

XmGetScaledPixmap() is similar to XmGetPixmapByDepth() except that
the returned pixmap is scaled.

widget is used to find a PrintShell by wandering up the widget hierarchy, and sec-
ondly to find a Screen on which to create the pixmap. If scaling_ratio is zero
and an ancestral PrintShell is found, the ratio applied is given by

(printer resolution / default pixmap resolution)
where the default pixmap resolution is the XmNdefaultPixmapResolution
resource of the PrintShell, and the printer resolution is fetched by the PrintShell
using Xp extensions to communicate with the XPrint server. The default value of
the PrintShell XmNdefaultPixmapResolution resource is 100.

Motif Reference Manual

Motif Functions and Macros XmGetScaledPixmap

At present, any resolution specified within the pixmap file itself is currently
ignored, although it is intended that this should take precedence over any Print-
Shell setting.

Although otherwise fully documented, the function does not have a functional
prototype in any of the supplied public headers.

See Also
XmDestroyPixmap(1l), XmGetPixmapByDepth(1l), XmPrintShell(2).

Motif Reference Manual 175

XmGetSecondaryResourceData Motif Functions and Macros

Name
XmGetSecondaryResourceData — retrieve secondary widget resource data.

Synopsis

Cardinal XmGetSecondaryResourceData (WidgetClass
widget_class,

XmSecondaryResourceData
**secondary_data_return)

Inputs
widget_class Specifies the widget class.

Outputs
secondary_data_return Returns an array of XmSecondaryResourceData

pointers.

Returns
The number of secondary resource data structures associated with the widget

class.

Availability
Motif 1.2 and later.

Description
XmGetSecondaryResourceData() provides access to the secondary widget
resource data associated with a widget class. Some Motif widget classes have
resources that are not accessible with the functions XtGetResourcelList()
and XtGetConstraintResourcelList(). If the specified widget_class has
secondary resources, XmGetSecondaryResourceData() provides descrip-
tions of the resources in one or more data structures and returns the number such
structures. If the widget_class does not have secondary resources, the routine
returns 0 (zero) and the value of secondary_data_return is undefined.
If the widget_class has secondary resources, XmGetSecondaryResource-
Data() allocates an array of pointers to the corresponding data structures. The
application is responsible for freeing the allocated memory using XtFree(). The
resource list in each structure (the value of the resources field), the structures, and
the array of pointers to the structures all need to be freed.

176 Motif Reference Manual

Motif Functions and Macros XmGetSecondaryResourceData

Usage

XmGetSecondaryResourceData()! only returns the secondary resources
for a widget class if the class has been initialized. You can initialize a widget
class by creating an instance of the class or any of its subclass. VendorShell and
Text are two Motif widget classes that have secondary resources. The two fields
in the XmSecondaryResourceData structure that are of interest to an application
are resources and num_resources. These fields contain a list of the secondary
resources and the number of such resources.

Most applications do not need to query a widget class for the resources it sup-
ports. XmGetSecondaryResourceData() is intended to support interface
builders and applications like editres that allow a user to view the available
resources and set them interactively. Use XtGetResourceList() and
XtGetConstraintResourcel ist() to get the regular and constraint
resources for a widget class.

Example
The following code fragment shows the use of XmGetSecondaryRe-
sourceData() to print the names of the secondary resources of the Vendor-

Shell widget:

XmSecondaryResourceData *res; Cardinal num_res, 1,

J:

if (hum_res = XmGetSecondaryResourceData (vendor-
Shell-
WidgetCla
ss,
&res)) {

for (i = 0; i < num_res; i++) {
for (J = 0; j < res[i]->num_resources; j++) {
printf ("%s\n", res[i]-
>resources[j]-resource_name);
}
XtFree ((char*) res[i]->resources);
XtFree ((char*) res[i]);
}
XtFree ((char*) res);

}

1.Erroneously given as XmGetSecondaryResources() in 1st and 2nd edition.

Motif Reference Manual 177

XmGetSecondaryResourceData Motif Functions and Macros

Structures
The XmSecondaryResourceData structure is defined as follows:
typedef struct {
XmResourceBaseProc base_proc;
XtPointer client_data;
String name;
String res_class;
XtResourceList resources;
Cardinal Nnum_resources;

}XmSecondaryResourceDataRec, *XmSecondaryResourceData;

See Also
VendorShel 1(2), XmText(2).

178 Motif Reference Manual

Motif Functions and Macros XmGetTabGroup

Name
XmGetTabGroup — get the tab group for a widget.

Synopsis

Widget XmGetTabGroup (Widget widget)

Inputs
widget Specifies the widget whose tab group is to be returned.

Returns
The widget ID of the tab group of widget.

Availability
Motif 1.2 and later.

Description
XmGetTabGroup() returns the widget ID of the widget that is the tab group for
the specified widget. If widget is a tab group or a shell, the routine returns widget.
If widget is not a tab group and no ancestor up to the nearest shell ancestor is a
tab group, the routine returns the nearest shell ancestor. Otherwise, XmGetTab-
Group() returns the nearest ancestor of widget that is a tab group.

Usage
XmGetTabGroup() provides a way to find out the tab group for a particular
widget in an application. A tab group is a group of widgets that can be traversed
using the keyboard rather than the mouse. Users move from widget to widget
within a single tab group by pressing the arrow keys. Users move between differ-
ent tab groups by pressing the Tab or Shift-Tab keys. If the tab group widget is a
manager, its children are all members of the tab group (unless they are made into
separate tab groups). If the widget is a primitive, it is its own tab group. Certain
widgets must not be included with other widgets within a tab group. For exam-
ple, each List, ScrollBar, OptionMenu, or multi-line Text widget must be placed
in a tab group by itself, since these widgets define special behavior for the arrow
or Tab keys, which prevents the use of these keys for widget traversal.

See Also
XmGetFocusWidget(l), XmGetVisibility(l), XmlsTraversable(l),
XmProcessTraversal(l), XmManager(2), XmPrimitive(2).

Motif Reference Manual 179

XmGetTearOffControl Motif Functions and Macros

Name

Synopsis

XmGetTearOffControl — get the tear-off control for a menu.

#include <Xm/RowColumn.h>
Widget XmGetTearOffControl (Widget menu)

Inputs

menu Specifies the RowColumn widget whose tear-off control is to be
returned.

Returns

The widget ID of the tear-off control or NULL if no tear-off control exists.

Availability

Motif 1.2 and later.

Description

Usage

See Also

180

XmGetTearOffControl() retrieves the widget ID of the widget that is the
tear-off control for the specified menu. When the XmNtearOffModel resource of
a RowColumn widget is set to XmTEAR_OFF_ENABLED for a PulldownMenu
or a PopupMenu, the RowColumn creates a tear-off button for the menu. The
tear-off button, which contains a dashed line by default, is the first element in the
menu. When the button is activated, the menu is torn off. If the specified menu
does not have a tear-off control, XmGetTearOffControl() returns NULL.

In Motif 1.2, a RowColumn that is configured as a PopupMenu or a Pulldown-
Menu supports tear-off menus. When a menu is torn off, it remains on the screen
after a selection is made so that additional selections can be made. The tear-off
control is a button that has a Separator-like appearance. Once you retrieve the
widget ID of the tear-off control, you can set resources to specify its appearance.
You can specify values for the following resources: XmNbackground, XmN-
backgroundPixmap, XmNbottomShadowColor, XmNforeground, XmNheight,
XmNmargin, XmNseparatorType, XmNshadowThickness, and XmNtopShad-
owColor. You can also set these resources in a resource file by using the name of
the control, which is TearOffControl.

XmRepTypelnstal ITearOffModelConverter(l), XmPopupMenu(2),
XmPul IdownMenu(2), XmRowColumn(2), XmSeparator(2).

Motif Reference Manual

Motif Functions and Macros XmGetVisibility

Name
XmGetVisibility — determine whether or not a widget is visible.

Synopsis
XmVisibility XmGetVisibility (Widget widget)

Inputs
widget Specifies the widget whose visibility state is to be returned.
Returns

XmVISIBILITY_UNOBSCURED if widget is completely visi-
ble, XmVISIBILITY_PARTIALLY_ OBSCURED if widget is partially visible,
XmVISIBILITY_FULLY_OBSCURED or if widget is not visible.

Availability
Motif 1.2 and later.

Description
XmGetVisibility() determines whether or not the specified widget is visi-
ble. The routine returns XmVISIBILITY_UNOBSCURED if the entire rectangu-
lar area of the widget is visible. It returns
XmVISIBILITY_PARTIALLY_OBSCURED if a part of the rectangular area of
the widget is obscured by its ancestors. XmGetVisibi lity() returns
XmVISIBILITY_FULLY_OBSCURED if the widget is completely obscured by
its ancestors or if it is not visible for some other reason, such as if it is unmapped
or unrealized.

Usage

XmGetVisibility() provides a way for an application to find out the visibility
state of a particular widget. This information can be used to help determine
whether or not a widget is eligible to receive the keyboard focus. In order for a
widget to receive the keyboard focus, it and all of its ancestors must not be in the
process of being destroyed and they must be sensitive to input. The widget and its
ancestors must also have their XmNtraversalOn resources set to True. If the
widget is viewable, which means that it and its ancestors are managed, mapped,
and realized and some part of the widget is visible, then the widget is eligible to
receive the keyboard focus. A fully-obscured widget is not eligible to receive the
focus unless part of it is within the work area of a ScrolledWindow with an
XmNscrollingPolicy of XmAUTOMATIC that has an XmNtraverseObscured-
Callback.

Motif Reference Manual 181

XmGetVisibility Motif Functions and Macros

Structures
XmVisibility is defined as follows:

typedef enum {
XmVISIBILITY_UNOBSCURED,
XmVISIBILITY_PARTIALLY_OBSCURED,
XmVISIBILITY_FULLY_OBSCURED

} XmVisibility;

See Also
XmGetFocusWidget(1l), XmGetTabGroup(l), XmIsTraversable(l),
XmProcessTraversal(l), XmManager(2), XmScrol ledWindow(2).

182 Motif Reference Manual

Motif Functions and Macros XmGetXmDisplay

Name
XmGetXmDisplay — get the Display object for a display.

Synopsis

#include <Xm/Display.h>
Widget XmGetXmDisplay (Display *display)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

Returns
The Display object for the display.

Availability
Motif 1.2 and later.

Description
XmGetXmDisplay/() retrieves the Display object for the specified display.

Usage
In Motif 1.2, the Display object stores display-specific information for use by the
toolkit. An application has a Display object for each display it accesses. When an
application creates its first shell on a display, typically by calling XtAppIni-
tialize() or XtAppCreateShel I(), a Display object is created automati-
cally. There is no way to create a Display independently. Use
XmGetXmDisplay() to get the ID of the Display object, so that you can use
XtGetValues() and XtSetValues() to access and modify Display
resources.

See Also
XmDisplay(2), XmScreen(2).

Motif Reference Manual 183

XmGetXmScreen Motif Functions and Macros

Name
XmGetXmScreen — get the Screen object for a screen.
Synopsis
Widget XmGetXmScreen (Screen *screen)
Inputs
screen Specifies a screen on a display; returned by XtScreen().
Returns
The Screen object for the screen.
Availability
Motif 1.2 and later.
Description
XmGetXmScreen() retrieves the Screen object for the specified screen.
Usage
In Motif 1.2, the Screen object stores screen-specific information for use by the
toolkit. An application has a Screen object for each screen that it accesses. When
an application creates its first shell on a screen, typically by calling XtAppIni-
tialize() or XtAppCreateShel I(), a Screen object is created automati-
cally. There is no way to create a Screen independently. Use
XmGetXmScreen() to get the ID of the Screen object, so that you can use
XtGetValues() and XtSetValues() to access and modify Screen resources.
See Also

XmDisplay(2), XmScreen(2).

184 Motif Reference Manual

Motif Functions and Macros XmHierarchyGetChildNodes

Name

XmHierarchyGetChildNodes — A Hierarchy function that returns the list of
“node children” of the node widget.

Synopsis
#include <Xm/Hierarchy.h>

WidgetList XmHierarchyGetChildNodes(Widget widget, int *value_return)

Inputs
widget Specifies the Node widget whose list of node children is
requested.

Outputs
value_return Returns the list of “node children” of the node widget.

Description
XmHierarchyGetChi ldNodes() returns a list of widgets that name the node
widget as their XmNparentNode; that is, it returns the list of “node children” of
the node widget. Not that all the widgets are children (in the Xt sense) of the
XmHierarchy or its subclass. The returned list is NULL if there are no node
children.

Usage
XmHierarchyGetChi ldNodes() is a convenience routine that returns the
list of “node children” of the node widget. The array of widgets returned is
NULL-terminated. It should be freed with XtFree().

See Also
XmHierarchy(2).

Motif Reference Manual 185

XmHierarchyOpenAllAncestors Motif Functions and Macros

Name
XmHierarchyOpenAllAncestors — A Hierarchy function that opens all ancestors
of a given node.

Synopsis
#include <Xm/Hierarchy.h>

void XmHierarchyOpenAllAncestors (Widget widget)

Inputs
widget Specifies the node widget that wishes to be shown.

Outputs
value_return Returns the current slider position for the Scale.

Description
XmHierarchyOpenAl lAncestors() opens all ancestors of the given node,
so that the node is displayed.

Usage
XmHierarchyOpenAl lAncestors() is a convenience routine that opens all
ancestors of the given node.

See Also
XmHierarchy(2).

186 Motif Reference Manual

Motif Functions and Macros XmlconBoxIsCellEmpty

Name
XmliconBoxIsCellEmpty — An IconBox function that determines whether a cell
in the IconBox is empty.
Synopsis
#include <Xm/lconBox.h>
Boolean XmlconBoxIsCellEmpty (Widget widget,
Position cell_x
Position cell_y
Widget ignore)
Inputs
widget Specifies the IconBox widget.
cell_x Specifies the x location of the cell to check.
cell_y Specifies the y location of the cell to check.
ignore Specifies widget ID what will be ignored if it is present in
the specified cell.
Outputs
value_return Returns True if the specified cell contains no child, and
False otherwise.
Description
XmIconBoxl1sCel IEmpty() determines whether a cell in the IconBox is
empty.
Usage
XmIconBox1sCel lEmpty() is a convenience routine that determines whether
a cell in the IconBox is empty. If the widget id specified by ignore is present in
the specified cell, it will be ignored and the function will return True.
See Also

XmlconBox (2.

Motif Reference Manual 187

Xmim Motif Functions and Macros

Name
XmlIm- introduction to input methods.

Synopsis

Public Header:
<Xm/Xmlm.h>

Functions/Macros:
XmImCloseXIM(), XmImFreeXIC(), XmImGetXIC(), XmIm-
GetXIM(),
XmImMbLookupString(), XmImMbResetIC(), XmImRegister(),
XmImSetFocusValues(), XmImSetValues(), XmImSetXIC(),
XmImUnregister(), XmlmUnsetFocus(), XmImVaSetFocusVal-
ues(),
XmImVaSetValues()

Availability
Motif 1.2 and later.

Description
Many languages are ideographic, and have considerably more characters than
there are keys on the keyboard: the Ascii keyboard was not originally designed
for languages that are not based upon the Latin alphabet. For such languages, in
order to provide a mapping between the alphabet and the keyboard, it is neces-
sary to represent particular characters by a key sequence rather than a single key-
stroke. An input method is the means by which X maps between the characters of
the language, and the representative key sequences. The most common use of an
input method is in implementing language-independent text widget input. As the
user types the key sequences, the input method displays the actual keystrokes
until the sequence completes a character, when the required character is dis-
played in the text widget. The process of composing a character from a key
sequence is called pre-editing.
In order to facilitate pre-editing, the input method may maintain several areas on
the screen: a status area, a pre-edit area, and an auxiliary area. The status area is
an output-only window which provides feedback on the interaction with the input
method. The pre-edit area displays the keyboard sequence as it is typed. The aux-
iliary area is used for popup menus, or for providing customized controls
required by the particular input method. The location of the pre-edit area is deter-
mined by the XmNpreeditType resource of VendorShell. The value OnTheSpot
displays the key sequence as it is typed into the destination text widget itself.
OverTheSpot superimposes an editing window over the top of the text widget.
OffTheSpot creates a dedicated editing window, usually at the bottom of the dia-

188 Motif Reference Manual

Motif Functions and Macros Xmim

Usage

See Also

log. Root uses a pre-edit window which is a child of the root window of the dis-
play.

To control the interaction between the application and the input method, X
defines a structure called an input context, which the programmer can fetch and
manipulate where the need arises. Each widget registered with the input method
has an associated input context, which may or may not be shared amongst the
registered widgets. Motif extends the mechanisms provided by the lower level X
libraries, and provides a caching mechanism whereby input contexts are shared
between widgets.

Input methods are usually supplied by the vendors of the hardware, and the appli-
cation generally connects to the input method without the need for any special
coding by the programmer. The Motif widgets are fully capable of connecting to
an input method when required, and although Motif provides a functional inter-
face to enable the programmer to interact with an input method, the interface is
not required for the Motif widgets. The exceptions are where the programmer is
writing new widgets, or where internationalized input is required for the Drawin-
gArea.

XmImRegister() registers a widget with an input method. XmImSetVval -
ues() manipulates an input context by registering callbacks which respond to
specific states. XmImSetFocusValues() is similar, except that after the input
context has been modified, the focus is reset to the widget providing the input.
XmImMbLookupString() performs the necessary key sequence to character
translation on behalf of the input widget. XmImUnRegi ster () unregisters the
widget with the input method. Typically, XmImRegister () is called within
the Initialize method of a widget, XmImUnRegister () is called by the Destroy
method, and XmImMbLookupString() is called within an action or callback
routine of the widget in response to an event. These are the primary functions
which a programmer may need to call, and are all that are required to implement
internationalized input for the Motif text widget.

Note that an input method does not need to support all styles of XmNpreedit-
Type.

XmImCloseXIM(1), XmImFreeXIC(1l), XmImGetXIM(1),
XmImGetXIC(1), XmImMbLookupString(l), XmImMbResetlIC(1),
XmImRegister(l), XmImSetFocusValues(l), XmImSetValues(l),
XmImSetXIC(1), XmImUnregister(l), XmImUnsetFocus(l),
XmImVaSetFocusValues(l), XmImVaSetValues(1).

Motif Reference Manual 189

XmImCloseXIM Motif Functions and Macros

Name

XmImCloseXIM - close all input contexts.
Synopsis

#include <Xm/XmlIm.h>

void XmImCloseXIM (Widget widget)

Inputs

widget Specifies a widget used to determine the display connection.

Availability

Motif 2.0 and later.

Description
XmImCloseXIM() is a convenience function which closes all input contexts
associated with the current input method. The widget parameter is used to iden-
tify the XmDisplay object of the application.

Usage
XmImCloseXIM() uses the widget parameter to deduce the input method associ-
ated with the XmDisplay object. The application’s connection to the input
method is closed, and all widgets which are registered with any input context
associated with the input method are unregistered. In order to close the input con-
text associated with a single widget, rather than closing down all connections,
use XmImUnregister().

The Motif widgets internally register and unregister themselves with the input
manager using XmImRegister() and XmImUnregister() as required. The
VendorShell calls XmImCloseXIM() within its Destroy method once the last
VendorShell is destroyed in order to clean up the connection to the input method.
An application which dynamically switches between input methods in a multi-
language application may need to invoke XmImCloseXIM() because Motif only
supports a single input method at any given instance. Application programmers
will not normally need to use XmImCloseXIM() directly.

See Also
XmImRegister(l), XmImUnregister(l), XmIm(1).

190 Motif Reference Manual

Motif Functions and Macros XmImFreeXIC

Name
XmimFreeXIC — free an input context.

Synopsis
#include <Xm/Xmim.h>
void XmImFreeXIC (Widget widget, XIC xic)

Inputs

widget Specifies a widget from which the input context registry is
deduced.
xic Specifies the input context which is to be freed.

Availability
Motif 2.0 and later.

Description
XmImFreeXI1C() is a convenience function which unregisters all widgets asso-
ciated with the input context xic, and then frees the input context.

Usage
XmImFreeX1C() uses the widget parameter to deduce an ancestral \endorShell,
from which the X input context registry is found. All widgets associated with the
input context xic within the registry are unregistered, and the input context is
freed.

See Also

XmImGetXI1C(1), XmImRegister(l). XmImSetXI1C(1),
XmImUnregister(l), XmIm(1).

Motif Reference Manual

191

XmImGetXIC Motif Functions and Macros

Name
XmImGetXIC — create an input context for a widget.
Synopsis
#include <Xm/XmlIm.h>
XIC XmImGetXIC (Widget widget, XmInputPolicy input_policy, ArgList
arglist, Cardinal argcount)
Inputs
widget Specifies a widget for which the input context is required.
input_policy Specifies the policy for creating input contexts.
arglist Specifies a list of arguments consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.
Returns
The input context associated with widget.
Availability
Motif 2.0 and later.
Description

192

XmImGetX1C() creates and registers a new input context for a widget, depend-
ing upon the input_policy. If input_policy is XmPER_WIDGET, a new input
context is created for the widget. If the value is XmPER_SHELL, a new input
context is created only if an input context associated with the ancestral shell of
widget does not already exist, otherwise the widget is registered with the existing
input context. If the policy is XmINHERIT_POLICY, the input policy is inher-
ited by taking the value of the XmNinputPolicy resource from the nearest ances-
tral VendorShell. The set of attributes for the input context is specified through
the resource list arglist, each element of the list being a structure containing a
name/value pair. The number of elements within the list is given by argcount.
The name/value pairs are passed through to the function XCreate I C() if the
input context is created. XmImGetX1C() returns either the input context which is
newly created if the input policy is XmPER_WIDGET, otherwise it returns the
shared context.

Motif Reference Manual

Motif Functions and Macros XmImGetXIC

Usage
In Motif 1.2, the supported attributes for configuring the created input context are
XmNbackground, XmNforeground, XmNbackgroundPixmap, XmNspotLoca-

tion, XmNfontList, and XmNarea.

In Motif 2.0 and later, the list is extended to include XmNpreeditCaretCallback,
XmNpreeditDoneCallback, XmNpreeditDrawCallback, and XmNpreeditStart-
Callback resources.

You are referred to the XCreate I C() entry within the Xlib Reference Manual
for the interpretation of each of the resource types. The function allocates storage
associated with the created input context, and it is the responsibility of the pro-
grammer to reclaim the space at a suitable point by calling XmImFreeX1C().

Structures
The enumerated type XminputPolicy has the following possible values:

XmINHERIT_POLICY
XmPER_WIDGET
XmPER_SHELL

See Also
XmImFreeX1C(1), XmImSetXI1C(1), XmIm(1).

Motif Reference Manual 193

XmImGetXIM Motif Functions and Macros

Name
XmImGetXIM - retrieve the input method for a widget.
Synopsis
#include <Xm/Xmim.h>
XIM XmImGetXIM (Widget widget)
Inputs
widget Specifies a widget registered with the input manager.
Returns
The input method associated with widget.
Availability
Motif 1.2 and later.
Description
XmImGetXIM() returns a pointer to an opaque data structure which represents
the input method which the input manager has opened for the specified widget.
Usage
Widgets are normally registered with the input manager through a call to XmIm-
Register(). If no input method is associated with the widget, the procedure
uses any specified XmNinputMethod resource of the nearest ancestral Vendor-
Shell in order to open an input method. If the resource is NULL, the input
method associated with the current locale is opened. If no input method can be
opened, the function returns NULL.
XmImGetXIM() allocates storage for the opaque data structure which is
returned, and it is the responsibility of the programmer to reclaim the space by a
call to XmImCloseXIM() at a suitable point. XmImGetX1M() is not a procedure
which an application programmer needs to use: the routine is of more use to the
programmer of new widgets.
See Also

XmImRegister(l), XmImCloseXIM(1), XmIm(1).

194 Motif Reference Manual

Motif Functions and Macros XmImMbLookupString

Name
XmImMbLookupString — retrieve a composed string from an input method.
Synopsis
#include <Xm/Xmim.h>
int XmImMbLookupString (Widget widget,
XKeyPressedEvent *event,
char *puffer,
int num_bytes,
KeySym *keysym,
int *status)
Inputs
widget Specifies a widget registered with the input manager.
event Specifies a key press event.
num_bytes Specifies the length of the buffer array.
Outputs
buffer Returns the composed string.
keysym Returns any keysym associated with the input keyboard event.
status Returns the status of the lookup.
Returns
The length of the composed string in bytes.
Availability
Motif 1.2 and later.
Description

XmImMbLookupString() translates an event into a composed character, and/
or a keysym, using the input context associated with a given widget. Any com-
posed string which can be deduced from the event is placed in buffer; the com-
posed string consists of multi-byte characters in the encoding of the locale of the
input context. If a keysym is associated with the event, this is returned at the
address specified by keysym. The function returns the number of bytes placed
into buffer.

Motif Reference Manual 195

XmImMbLookupString Motif Functions and Macros

Usage
A widget is registered with an input method through the function XmImRegis-
ter(). If no input context is associated with the widget, the function uses
XLookupString() to map the key event into composed text. Otherwise the
function calls XmbLookupString() with the input context as the first parame-
ter. If the programmer is not interested in keysym values, a NULL value can be
passed as the keysym parameter. XmImMbLookupString() places into buffer
any composed character string associated with the key event: if the event at the
given point in the input sequence does not signify a unique character in the lan-
guage of the current locale, the function returns zero: subsequent key events may
be required before a character is composed.

Structures
The possible values returned in status are the same as those returned from
XmbLookupString(): you are referred to the Xlib Reference Manual for a full
description and interpretation of the values.

XBufferOverflow [* buffer size insufficient to hold composed sequence */
XLookupNone /* no character sequence matching the input exists */
XLookupChars /* input characters were composed */
XLookupKeysym /* input is keysym rather than composed character */
XLookupBoth /* both a keysym and composed character are returned */

See Also
XmImRegister(l), XmIm(1).

196 Motif Reference Manual

Motif Functions and Macros XmImMbResetIC

Name
XmImMbResetIC — reset an input context.

Synopsis
#include <Xm/XmlIm.h>
void XmImMbResetIC (Widget widget, char **mb_text)

Inputs
widget Specifies a widget registered with the Input Manager.
Outputs

mb_text Returns pending input on the input context.

Availability
Motif 2.0 and later.

Description
XmImMbReset1C() resets the input context associated with a widget.

Usage
XmImMbResetIC() is a convenience function which resets an input context to
the initial state. The function is no more than a wrapper onto the function
XmbReset I C(), which clears the pre-edit area and updates the status area of the
input context. The return value of XmbReset1C() is placed into the address
specified by mb_text. This data is implementation dependent, and may be NULL.
If data is returned, the programmer is responsible for freeing it by calling
XFree().

See Also

XmImRegister(l), XmIm(1).

Motif Reference Manual 197

XmImRegister Motif Functions and Macros

Name
XmImRegister — register a widget with an Input Manager.

Synopsis
#include <Xm/Xmim.h>
void XmImRegister (Widget widget, unsigned int reserved)
Inputs

widget Specifies a widget to register with the input manager.
reserved This parameter is current unused.

Availability
Motif 1.2 and later.

Description
XmImRegister() is a convenience function which registers a widget with the
input manager to establish a connection to the current input method. The function
is called when an application needs to specially arrange for internationalized
input to a widget.

Usage
The Motif widgets internally register themselves with the input manager as
required. Only a programmer who is writing a new widget, or who requires inter-
nationalized input for the DrawingArea needs to call XmImRegister()
directly. If the VendorShell ancestor containing the widget already has an associ-
ated input context, the function simply returns. Otherwise, the XmNinputPolicy
resource of the nearest VendorShell ancestor is fetched to determine whether to
share an existing input context. The function opens an input method by inspect-
ing the XmNinputMethod resource of the VendorShell. If the resource is NULL,
a default input method is opened using information from the current locale.
XmImRegister() should not be called twice using the same widget parameter
without unregistering the widget from the input method first.

The programmer is responsible for closing down the connection to the input
method by calling XmImUnregister(). The Destroy method of the widget is
an appropriate place to call this.

See Also
XmImUnregister(l), XmIm(1).

198 Motif Reference Manual

Motif Functions and Macros XmImSetFocusValues

Name
XmImSetFocusValues — set the values and focus for an input context.

Synopsis
#include <Xm/Xmim.h>

void XmImSetFocusValues (Widget widget, ArgL.ist arglist, Cardinal argcount)

Inputs
widget Specifies a widget registered with the input manager.

arglist Specifies a list of resources consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Availability
Motif 1.2 and later.

Description
XmImSetFocusValues() notifies the input manager that a widget has
received the input focus. If the previous values of the input context associated
with the widget do not allow the context to be reused, the old context is unregis-
tered, and a new one registered with the widget.

Usage
XmImSetFocusValues() is identical in all respects to XmImSetValues(),
except that after the input context has been reset, the focus window attribute of
the input context is set to the window of the input widget.

The Motif widgets invoke XmImSetFocusValues() as and when required.
For example, the Text and TextField widgets automatically invoke XmImSetFo-
cusValues() in response to Focuslin and EnterNotify events. A programmer who
is implementing internationalized input for a DrawingArea or creating a new
widget may need to call this function when the widget receives the input focus.

See Also
XmImRegister(l), XmImSetValues(1), XmIm(1).

Motif Reference Manual 199

XmImSetValues Motif Functions and Macros

Name
XmImSetValues — set the values for an input context.

Synopsis
#include <Xm/Xmim.h>

void XmImSetValues (Widget widget, ArgL.ist arglist, Cardinal argcount)

Inputs
widget Specifies a widget registered with the Input Manager.

arglist Specifies a list of resources consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Availability
Motif 1.2 and later.

Description
XmImSetValues() sets the attributes for the input context associated with the
specified widget. The set of attributes to be modified is specified through the
resource list arglist, each element of the list being a structure containing a name/
value pair. The number of elements within the list is given by argcount.

Usage
XmImSetValues() is a convenience routine which invokes XSet1CValues()
in order to configure an input context. You are referred to the Xlib Reference
Manual for the set of attributes supported by XSetlCValues(), and for their
interpretation.

The Motif widgets invoke XmImSetValues() as and when required. For exam-
ple, the Text and TextField widgets automatically invoke XmImSetValues()
when the widget is resized or the font changed. A programmer who is imple-
menting internationalized input for a DrawingArea or creating a new widget may
need to call this function when, for example, the widget needs to reconfigure the
spot location.

See Also
XmImSetFocusValues(l), XmImRegister(l), XmIm(1).

200 Motif Reference Manual

Motif Functions and Macros XmImSetXIC

Name
XmImSetXIC - register a widget with an existing input context.

Synopsis
#include <Xm/Xmim.h>

XIC XmImSetXIC (Widget widget, XIC xic)
Inputs
widget Specifies a widget to be registered with the input context.
xic Specifies an input context where the widget is to be registered.

Returns
The input context where the widget is registered.

Availability
Motif 2.0 and later.

Description
XmImSetX1C() is a convenience function which registers a widget with an input
context. If the widget is registered with another input context, the widget is firstly
unregistered with that context. The widget is then registered with the input con-
text xic. If xic is NULL, the function creates a new input context and registers the
widget with it. The function returns the input context where the widget is regis-
tered.

Usage
XmImSetX1C() allocates storage when it creates a new input context, and it is
the responsibility of the programmer to free the space at an appropriate point by
calling XmImFreeX1C().

See Also
XmImFreeXI1C(1), XmImRegister(1), XmIm(1).

Motif Reference Manual 201

XmImUnregister Motif Functions and Macros

Name
XmImUnregister — unregister the input context for a widget.

Synopsis
#include <Xm/Xmim.h>

void XmImUnregister (Widget widget)

Inputs
widget Specifies a widget whose input context is to be unregistered.

Availability
Motif 1.2 and later.

Description
XmImUnregister() is a convenience function which unregisters the input
context associated with a given widget. The function is the inverse of XmImReg-
ister(), which is called when an application needs to specially arrange for
internationalized input to a widget.

Usage
The Motif widgets internally register themselves with the input manager as
required. Only a programmer who is writing a new widget, or who requires inter-
nationalized input for the DrawingArea needs to call XmImRegister()
directly. Where XmImRegister() has been called by the application, it is the
responsibility of the programmer to also call XmImUnregister(), usually
within the Destroy() method of the widget for which internationalized input is
required. XmImUnregister() uses the widget parameter to deduce the input
method associated with a display connection. Any input context associated with
the input method is unregistered.

See Also
XmImRegister(l), XmIm(1).

202 Motif Reference Manual

Motif Functions and Macros XmImUnsetFocus

Name
XmImUnsetFocus — unset focus for input context.
Synopsis
#include <Xm/Xmim.h>
void XmImuUnsetFocus (Widget widget)
Inputs
widget Specifies a widget which has lost the input focus.
Availability
Motif 1.2 and later.
Description
XmImUnsetFocus() notifies the input manager that a widget has lost the input
focus.
Usage
XmImUnsetFocus() is a convenience routine which invokes XUnset1CFo-
cus() using the input context associated with the specified widget. The input
method is notified that no more input is expected from the widget.
The Motif widgets invoke XmImUnsetFocus() as and when required. For
example, the Text and TextField widgets automatically invoke XmImUnsetFo-
cus()1 in response to FocusOut and LeaveNotify events. A programmer who is
implementing internationalized input for a DrawingArea or creating a new
widget may need to call this function when the widget loses the input focus.
See Also

XmImSetFocusValues(l), XmImVaSetFocusValues(1), XmIm(1).

1.Erroneously given as XmUnsetFocus() in 2nd edition.

Motif Reference Manual 203

XmImVaSetFocusValues Motif Functions and Macros

Name
XmImVaSetFocusValues — set the values and focus for an input context.

Synopsis
#include <Xm/Xmim.h>

void XmlImVaSetFocusValues (Widget widget,....,NULL)
Inputs
widget Specifies a widget registered with the Input Manager.
... NULL A NULL-terminated variable-length list of resource name/value
pairs.

Availability
Motif 1.2 and later.

Description
XmImVaSetFocusValues() natifies the input manager that a widget has
received the input focus. If the previous values of the input context associated
with the widget do not allow the context to be reused, the old context is unregis-
tered, and a new one registered with the widget.

Usage
XmImVaSetFocusValues() is simply a convenience routine with a variable
length argument list which constructs internal arglist and argcount parameters to
a XmImSetFocusValues() call.

See Also
XmImSetFocusValues(l).

204 Motif Reference Manual

Motif Functions and Macros XmImVaSetValues

Name
XmlImVaSetValues — set the values for an input context.
Synopsis
#include <Xm/Xmim.h>
void XmlImVaSetValues (Widget widget,...,NULL)
Inputs
widget Specifies a widget registered with the Input Manager.
...NULL A NULL-terminated variable-length list of resource name/value
pairs.
Availability
Motif 1.2 and later.
Description
XmImvaSetValues()! sets the attributes for the input context associated with
the specified widget.
Usage
XmImVaSetValues() is simply a convenience routine with a variable length
argument list which constructs internal arglist and argcount parameters to a
XmImSetValues() call.
See Also

XmImSetValues(l).

1.Erroneously given as XmImSetValues() in 2nd edition.

Motif Reference Manual 205

Xminstalllmage Motif Functions and Macros

Name

Synopsis

Xminstalllmage — install an image in the image cache.

Boolean Xmlnstalllmage (XImage *image, char *image_name)

Inputs

image Specifies the image to be installed.
image_name Specifies the string name of the image.

Returns

True on success or False if image or image_name is NULL or image_name
duplicates an image name already in the cache.

Description

Usage

XmInstal I Image() installs the specified image in the image cache. The image
can later be used to create a pixmap. When the routine installs the image, it does
not make a copy of the image, so an application should not destroy the image
until it has been uninstalled. The routine also expands the resource converter that
handles images so that image_name can be used in a resource file. In order to
allow references from a resource file, XmInstal I Image() must be called to
install an image before any widgets that use the image are created.

An application can use XmInstal I Image() to install and cache images, so that
the images can be shared throughout the application. Once an image is installed,
it can be used to create a pixmap with XmGetP i xmap(). The toolkit provides the
following pre-installed images that can be referenced in a resource file or used to
create a pixmap:

Image Name Image Description

background Solid background tile

25_foreground A 25% foreground, 75% background tile

50_foreground A 50% foreground, 50% background tile

75_foreground A 75% foreground, 25% background tile

horizontal_tile Horizontal lines tile, in Motif 1.2.3 and later.

vertical_tile Vertical lines tile, in Motif 1.2.3 and later.

horizontal As horizontal_tile: maintained for 1.2.2 compatibility.

vertical

As vertical_tile: maintained for 1.2.2 compatibility.

slant_right Right slanting lines tile

slant_left Left slanting lines tile

206

Motif Reference Manual

Motif Functions and Macros

Image Name
menu_cascade
menu_cascade
menu_checkm
menu_dash
collapsed
collapsed_rtol

expanded

Image Description

_rtol
ark A tick mark, in Motif 2.0 and later.

A horizontal line, in Motif 2.0 and later.

A filled arrow pointing to the left, in Motif 2.0 and

Xminstalllmage

An arrow pointing to the right, in Motif 2.0 and later.

An arrow pointing to the left, in Motif 2.0 and later.

A filled arrow pointing to the right, in Motif 2.0 and later.

later.

A filled arrow pointing downwards, in Motif 2.0 and later.

Example

You might use the following code to define and install an image:

#define bitmap_width 16
#define bitmap_height 16

static char bitmap_bits[] = {
0xFF, 0x00, OxFF, 0x00, OxFF, 0x00, OxFF, 0x00,
0xFF, 0x00, OxFF, 0x00, OxFF, 0x00, OxFF, 0x00,
0x00, OxFF, 0x00, OxFF, 0x00, OxFF, 0x00, OxFF,
0x00, OxFF, 0x00, OxFF, 0x00, OxFF, 0x00, OxFF

3

static XImage ximage = {
bitmap_width, /* width */
bitmap_height, /* height */
0, [* xoffset */
XYBitmap, /* format */
bitmap_bits, /* data */
MSBFirst, /* byte_order */
8, /* bitmap_unit */
LSBFirst, [* bitmap_bit_order */
8, /* bitmap_pad */
1, /* depth */
2, /* bytes_per_line */
NULL [* obdata */

3

Xminstallimage (&ximage, "image_name");

See Also

Motif Reference Manual

207

Xminstalllmage Motif Functions and Macros

XmDestroyPixmap(l), XmGetPixmap(l), XmUninstal l Image(l).

208 Motif Reference Manual

Motif Functions and Macros XmlInternAtom

Name
XminternAtom — return an atom for a given property hame string.

Synopsis
#include <Xm/AtomMgr.h>

Atom XminternAtom (Display *display, String name, Boolean only_if_exists)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().

name Specifies the string name of the property for which you want the
atom.

only_if_exists Specifies a Boolean value that indicates whether or not the atom
is created if it does not exist.

Returns
An atom on success or None.

Availability
In Motif 2.0 and later, XInternAtom() is preferred.

Description
XmInternAtom() returns the atom that corresponds to the given property
name. This routine works like Xlib’s XInternAtom() routine, but the Motif
routine provides the added feature of client-side caching. If no atom exists with
the specified name and only_if_exists is True, XmInternAtom() does not create
a new atom; it simply returns None. If only_if _exists is False, the routine creates
the atom and returns it.

Usage

An atom is a number that identifies a property. Properties also have string names.
XminternAtom() returns the atom associated with a property if it exists, or it may
create the atom if it does not exist. The atom remains defined even after the client
that defined it has exited. An atom does not become undefined until the last con-
nection to the X server closes. Predefined atoms are defined in <X11/Xatom.h>
and begin with the prefix XA _. Predefined atoms do not need to be interned with
XmInternAtom().

In Motif 2.0 and later, XmInternAtom() is no more than a convenience routine
which calls XInternAtom(). While XmInternAtom() is not yet officially
obsolete, XInternAtom() is to be preferred.

See Also
XmGetAtomName(l).

Motif Reference Manual 209

XmlsMotifWMRunning Motif Functions and Macros

Name

XmlisMotifWMRunning — check whether the Motif Window Manager (mwm) is
running.

Synopsis

Boolean XmlIsMotifWMRunning (Widget shell)

Inputs
shell Specifies the shell widget whose screen is queried.

Returns
True if mwm is running or False otherwise.

Description
XmIsMotifWMRunning() checks for the presence of the
_MOTIF_WM_INFO property on the root window of the screen of the specified
shell to determine whether the Motif Window Manager (mwm) is running on the
screen.

Usage
mwm defines additional types of communication between itself and client pro-
grams. This communication is optional, so an application should not depend on
the communication or the presence of mwm for any functionality. XmlsMo-
tifWMRunning() allows an application to check if mwm is running and act
accordingly.

See Also
mwm(4).

210 Motif Reference Manual

Motif Functions and Macros Xmls<Emphasis>Object<Default Para Font>

Name

Synopsis

XmlsObject — determine whether a widget is a subclass of a class.

#include <Xm/Gadget.h>
Boolean XmlsGadget (Widget widget)

#include <Xm/Manager.h>
Boolean XmlIsManager (Widget widget)

#include <Xm/Primitive.h>
Boolean XmlsPrimitive (Widget widget)

#include <Xm/ArrowB.h>
Boolean XmlsArrowButton (Widget widget)

#include <Xm/ArrowBG.h>
Boolean XmlsArrowButtonGadget (Widget widget)

#include <Xm/BulletinB.h>
Boolean XmlsBulletinBoard (Widget widget)

#include <Xm/CascadeB.h>
Boolean XmlsCascadeButton (Widget widget)

#include <Xm/CascadeBG.h>
Boolean XmlsCascadeButtonGadget (Widget widget)

#include <Xm/ComboBox.h>
Boolean XmlIsComboBox (Widget widget)

#include <Xm/Command.h>
Boolean XmlIsCommand (Widget widget)

#include <Xm/Container.h>
Boolean XmlsContainer (Widget widget)

#include <Xm/DialogS.h>
Boolean XmlsDialogShell (Widget widget)

#include <Xm/Display.h>
Boolean XmlsDisplay (Widget widget)

#include <Xm/DragC.h>
Boolean XmlsDragContext (Widget widget)

#include <Xm/Draglcon.h>
Boolean XmlsDraglconObjectClass (Widget widget)

Motif Reference Manual 211

Xmls<Emphasis>Object<Default Para Font>

212

#include <Xm/DrawingA.h>
Boolean XmlsDrawingArea (Widget widget)

#include <Xm/DrawnB.h>
Boolean XmlsDrawnButton (Widget widget)

#include <Xm/DropSMgr.h>
Boolean XmlsDropSiteManager (Widget widget)

#include <Xm/DropTrans.h>
Boolean XmlsDropTransfer (Widget widget)

#include <Xm/FileSB.h>
Boolean XmlsFileSelectionBox (Widget widget)

#include <Xm/Form.h>
Boolean XmlsForm (Widget widget)

#include <Xm/Frame.h>
Boolean XmlsFrame (Widget widget)

#include <Xm/GrabShell.h>
Boolean XmlsGrabShell (Widget widget)

#include <Xm/lconG.h>
Boolean XmlslconGadget (Widget widget)

#include <Xm/Label.h>
Boolean XmlsLabel (Widget widget)

#include <Xm/LabelG.h>
Boolean XmlsLabelGadget (Widget widget)

#include <Xm/List.h>
Boolean XmlsList (Widget widget)

#include <Xm/MainW.h>
Boolean XmlIsMainWindow (Widget widget)

#include <Xm/MenuShell.h>
Boolean XmlIsMenuShell (Widget widget)

#include <Xm/MessageB.h>
Boolean XmlIsMessageBox (Widget widget)

#include <Xm/Notebook.h>
Boolean XmlsNotebook (Widget widget)

#include <Xm/PanedW.h>
Boolean XmlsPanedWindow (Widget widget)

Motif Functions and Macros

Motif Reference Manual

Motif Functions and Macros Xmls<Emphasis>Object<Default Para Font>

#include <Xm/PrintS.h>
Boolean XmlsPrintShell (Widget widget)

#include <Xm/PushB.h>
Boolean XmlsPushButton (Widget widget)

#include <Xm/PushBG.h>
Boolean XmlsPushButtonGadget (Widget widget)

#include <Xm/RowColumn.h>
Boolean XmlIsRowColumn (Widget widget)

#include <Xm/Scale.h>
Boolean XmlsScale (Widget widget)

#include <Xm/Screen.h>
Boolean XmlsScreen (Widget widget)

#include <Xm/ScrollBar.h>
Boolean XmlsScrollBar (Widget widget)

#include <Xm/ScrolledW.h>
Boolean XmlsScrolledWindow (Widget widget)

#include <Xm/SelectioB.h>
Boolean XmlsSelectionBox (Widget widget)

#include <Xm/Separator.h>
Boolean XmlsSeparator (Widget widget)

#include <Xm/SeparatoG.h>
Boolean XmlsSeparatorGadget (Widget widget)

#include <Xm/Text.h>
Boolean XmlsText (Widget widget)

#include <Xm/TextF.h>
Boolean XmlsTextField (Widget widget)

#include <Xm/ToggleB.h>
Boolean XmlsToggleButton (Widget widget)

#include <Xm/ToggleBG.h>
Boolean XmlsToggleButtonGadget (Widget widget)

#include <Xm/VendorS.h>
Boolean XmlsVendorShell (Widget widget)

Inputs
widget Specifies the widget ID of the widget whose class is to be checked.

Motif Reference Manual 213

Xmls<Emphasis>Object<Default Para Font> Motif Functions and Macros

Returns

True if widget is of the specified class or False otherwise.

Availability

XmIsDisplay(), XmIsDragContext(), XmlsDraglconObject-
Class(), XmIsDropSiteManager(), XmIsDropTransfer(), and
XmIsScreen() are only available in Motif 1.2 and later.

XmlsComboBox(), XmlsContainer(), XmIsNotebook(), XmIslcon-
Gadget(), and XmIsGrabShel I () are available in Motif 2.0 and later.

XmIsPrintShell() is available in Motif 2.1. Note that although the SpinBox
class is available in Motif 2.0, and the SimpleSpinBox class in Matif 2.1, neither

XmlsSpinBox() nor XmIsSimpleSpinBox() are defined. 1

Description

Usage

Example

The Xmls*() routines are macros that check the class of the specified widget. The
macros returns True if widget is of the specified class or a subclass of the speci-
fied class. Otherwise, the macros return False.

An application can use the Xmls*() macros to check the class of a particular
widget. All of the macros use XtlsSubclass() to determine the class of the
widget.

The missing macro XmlsSpinBox() could be defined as follows:

#include <Xm/SpinB.h>

#ifndef XmlsSpinBox

#define XmlsSpinBox(w) XtlsSubclass(w, xmSpinBoxWidgetClass)
#endif /* XmlsSpinBox */

1.Be warned that certain platforms, although they ship the PrintShell headers, do not compile the component into the
native Motif toolkit. Sun Solaris is a case in point.

214

Motif Reference Manual

Motif Functions and Macros

See Also

Xmls<Emphasis>Object<Default Para Font>

XmCreateObject(1), VendorShell(2), XmArrowButton(2),

XmArrowButtonGadget(2), XmBulletinBoard(2),
XmCascadeButton(2), XmCascadeButtonGadget(2),
XmComboBox(2), XmCommand(2), XmContainer(2),
XmDialogShell(2), XmDisplay(2), XmDragContext(2),

XmDraglcon(2), XmDrawingArea(2), XmDrawnButton(2),

XmDropSite(2), XmDropTransfer(2),
XmFileSelectionBox(2), XmForm(2), XmFrame(2),
XmGadget(2), XmGrabShell(2), XmlconGadget(2),
XmLabel (2), XmLabelGadget(2), XmList(2),
XmMainWindow(2), XmManager(2), XmMenuShell(2),
XmMessageBox(2), XmNotebook(2), XmPanedWindow(2),
XmPrimitive(2), XmPrintShell(2), XmPushButton(2),

XmPushButtonGadget(2), XmRowColumn(2), XmScale(2),

XmScreen(2), XmScrollBar(2), XmScrolledWindow(2),
XmSelectionBox(2), XmSeparator(2),
XmSeparatorGadget(2), XmSpinBox(2),
XmSimpleSpinBox(2), XmText(2), XmTextField(2),
XmToggleButton(2), XmToggleButtonGadget(2).

Motif Reference Manual

215

XmlsTraversable Motif Functions and Macros

Name
XmlsTraversable — determine whether or not a widget can receive the keyboard
focus.

Synopsis

Boolean XmlsTraversable (Widget widget)

Inputs
widget Specifies the widget whose traversability state is to be returned.

Returns
True if widget is eligible to receive the keyboard focus or False otherwise.

Availability
Motif 1.2 and later.

Description
XmlsTraversable() determines whether or not the specified widget can
receive the keyboard focus. The routine returns True if the widget is eligible to
receive the keyboard focus; otherwise it returns False.

Usage
In order for a widget to receive the keyboard focus, it and all of its ancestors must
not be in the process of being destroyed and they must be sensitive to input. The
widget and its ancestors must also have their XmNtraversalOn resources set to
True. If the widget is viewable, which means that it and its ancestors are man-
aged, mapped, and realized and some part of the widget is visible, then the
widget is eligible to receive the keyboard focus. A fully-obscured widget is not
eligible to receive the focus unless part of it is within the work area of a Scrolled-
Window with an XmNscrollingPolicy of XmAUTOMATIC that has an XmNtra-
verseObscuredCallback.

Primitive widgets and gadgets can receive the keyboard focus, while most man-
ager widgets cannot, even if they have traversable children. However, some man-
agers may be eligible to receive the keyboard focus under certain conditions. For
example, a DrawingArea can receive the keyboard focus if it meets the condi-
tions above and it does not have any children with the XmNtraversalOn resource
set to True.

See Also
XmGetFocusWidget(1l), XmGetTabGroup(l), XmGetVisibility(l),
XmProcessTraversal(l), XmManager(2), XmScrol ledWindow(2).

216 Motif Reference Manual

Motif Functions and Macros XmListAddltem

Name

Synopsis

XmListAddltem, XmListAddltems — add an item/items to a list.

#include <Xm/List.h>

void XmListAddIltem (Widget widget, XmString item, int position)
void XmListAddltems (Widget widget, XmString *items, int item_count, int
position)

Inputs

widget Specifies the List widget.

item Specifies the item that is to be added.

items Specifies a list of items that are to be added.
item_count Specifies the number of items to be added.

position Specifies the position at which to add the new item(s).

Description

Usage

See Also

XmListAddItem() inserts the specified item into the list, while XmL i stAd-
dltems() inserts the specified list of items. If item_count is smaller than the
number of items, only the first item_count items of the array are added. The posi-
tion argument specifies the location of the new item(s) in the list. A position
value of 1 indicates the first item, a position value of 2 indicates the second item,
and so on. A value of 0 (zero) specifies the last item in the list. An inserted item
appears selected if it matches an item in the XmNselectedltems list.

XmListAddItem() and XmListAdd I tems() are convenience routines that
allow you to add items to a list. The routines add items to the list by internally
manipulating the arrays of compound strings specified by the XmNitems,
XmNitemCount, XmNselectedltems, and XmNselectedltemCount resources. |If
an item being added to the list duplicates an item that is already selected, the new
item appears as selected. You should only use these routines if the list supports
multiple selections and you want to select the new items whose duplicates are
already selected. In order to add items with these routines, you have to create a
compound string for each item.

XmListAddltemUnselected(l), XmListReplaceltems(1),
XmListReplacel temsPos(1),
XmListReplaceltemsPosUnselected(l),
XmListReplacePositions(l), XmList(2).

Motif Reference Manual 217

XmListAddltemUnselected Motif Functions and Macros

Name

Synopsis

XmListAddltemUnselected, XmListAddltemsUnselected — add an item/items to
a list.

#include <Xm/List.h>

void XmListAddltemUnselected (Widget widget, XmString item, int position)
void XmListAddltemsUnselected (Widget widget, XmString *items, int
item_count, int position)

Inputs

widget Specifies the List widget.

item Specifies the item that is to be added.

items Specifies a list of items that are to be added.
item_count Specifies the number of items to be added.

position Specifies the position at which to add the new item(s).

Availability

XmListAddIltemsUnselected() is only available in Motif 1.2 and later.

Description

Usage

Example

218

XmListAddltemUnselected() inserts the specified item into the list, while
XmListAddltemsUnselected() inserts the specified list of items. If
item_count is smaller than the number of items, only the first item_count items of
the array are added. The position argument specifies the location of the new
item(s) in the list. A position value of 1 indicates the first item, a position value
of 2 indicates the second item, and so on. A value of 0 (zero) specifies the last
item in the list. An inserted item does not appear selected, even if it matches an
item in the XmNselectedltems list.

XmListAddltemUnselected() and XmListAddItemsUnselected()
are convenience routines that allow you to add items to a list. These routines add
items to the list by internally manipulating the array of compound strings speci-
fied by the XmNitems and XmNitemCount resources. If an item being added to
the list duplicates an item that is already selected, the new item does not appear
as selected. In order to add items with these routines, you have to create a com-
pound string for each item.

The following callback routine shows how to use of XmListAddltemUnse-

lected() to insert an item into a list in alphabetical order:

void add_item (Widget text w,

Motif Reference Manual

Motif Functions and Macros XmListAddItemUnselected

XtPointer client_data,
XtPointer call_data)

char *text, *newtext = XmTextFieldGetString
(text_w);

XmString str, *strlist;

int u_bound, 1 _bound = 0;

Widget list w = (Widget) client_data;

/* newtext iIs the text typed in the TextField
widget */
if (Inewtext || !*newtext) {

XtFree (newtext);

return;

}

/* get the current entries (and number of entries)

from the List */

XtVaGetvValues (list_w, XmNitemCount, &u_bound,
XmNitems, &strlist, NULL);

u_bound--;

/* perform binary search */
while (u_bound >= 1_bound) {
int i = 1 _bound + (u_bound - 1_bound)/2;

text = (char *) XmStringUnparse (strlist[i],
NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, O,
XmOUTPUT_ALL);

if (ltext)
break;

if (strcmp (text, newtext) > 0)
u_bound = i-1;

else
I_bound = i+1;

XtFree (text);
3

/* insert item at appropriate location */

Motif Reference Manual 219

XmListAddltemUnselected Motif Functions and Macros

See Also

220

str = XmStringCreatelLocalized (nhewtext);
XmListAddltemUnselected (list w, str, 1 _bound+l);
XmStringFree (str);

XtFree (newtext);

}

XmListAddltem(l), XmListReplacel tems(1),
XmListReplaceltemsPos(1)
XmListReplaceltemsPosUnselected(1)
XmListReplaceltemsUnselected(1)
XmListReplacePositions(l), XmList(2).

Motif Reference Manual

Motif Functions and Macros XmListDeleteAllltems

Name
XmListDeleteAllltems — delete all of the items from a list.
Synopsis
#include <Xm/List.h>
void XmListDeleteAllltems (Widget widget)
Inputs
widget Specifies the List widget.
Description
XmListDeleteAll l1'tems() removes all of the items from the specified List
widget.
Usage
XmListDeleteAlll1tems() is a convenience routine that allows you to
remove all of the items from a list. The routine removes items from the list by
internally manipulating the array of compound strings specified by the
XmNitems and XmNitemCount resources.
See Also

XmListDeleteltem(l), XmListDeleteltemsPos(l),
XmListDeletePos(1), XmListDeletePositions(l), XmList(2).

Motif Reference Manual 221

XmListDeleteltem Motif Functions and Macros

Name
XmListDeleteltem, XmListDeleteltems — delete an item/items from a list.

Synopsis
#include <Xm/List.h>

void XmListDeleteltem (Widget widget, XmString item)

void XmListDeleteltems (Widget widget, XmString *items, int item_count)
Inputs

widget Specifies the List widget.

item Specifies the item that is to be deleted.

items Specifies a list of items that are to be deleted.

item_count Specifies the number of items to be deleted.

Description

XmListDeleteltem()! removes the first occurrence of the specified item
from the list, while XmL istDe lete I tems() removes the first occurrence of
each of the elements of items. If an item does not exist, a warning message is dis-
played.

Usage
XmListDeleteltem() and XmListDeleteltems() are convenience rou-
tines that allow you to remove items from a list. The routines remove items from
the list by internally manipulating the array of compound strings specified by the
XmNitems and XmNitemCount resources. If there is more than one occurrence
of an item in the list, the routines only remove the first occurrence. In order to
remove items with these routines, you have to create a compound string for each
item. The routines use a linear search to locate the items to be deleted.

See Also
XmListDeleteAllltems(l), XmListDeleteltemsPos(l),
XmListDeletePos(1l), XmListDeletePositions(l), XmList(2).

1.Erroneously given as ListDeleteltem() in 1st and 2nd editions.

222 Motif Reference Manual

Motif Functions and Macros XmListDeleteltemsPos

Name
XmListDeleteltemsPos — delete items starting at a specified position from a list.

Synopsis
#include <Xm/List.h>

void XmListDeleteltemsPos (Widget widget, int item_count, int position)
Inputs

widget Specifies the List widget.

item_count Specifies the number of items to be deleted.

position Specifies the position from which to delete items.

Description
XmListDeleteltemsPos() removes item_count items from the list, starting
at the specified position. A position value of 1 indicates the first item, a position
value of 2 indicates the second item, and so on. If the number of items between
position and the end of the list is less than item_count, the routine deletes all of
the items up through the last item in the list.

Usage
XmListDeleteltemsPos() is a convenience routine that allows you to
remove items from a list. The routine removes items from the list by internally
manipulating the array of compound strings specified by the XmNitems and
XmNitemCount resources. Since you are specifying the position of the items to
be removed, you do not have to create compound strings for the items. The rou-
tine does not have to search for the items, so it avoids the linear search that is
used by XmListDeleteltems().

See Also
XmListDeleteAllltems(1), XmListDeleteltem(l),
XmListDeletePos(1l), XmListDeletePositions(l), XmList(2).

Motif Reference Manual 223

XmListDeletePos Motif Functions and Macros

Name
XmListDeletePos — delete an item at the specified position from a list.

Synopsis
#include <Xm/List.h>

void XmListDeletePos (Widget widget, int position)

Inputs
widget Specifies the List widget.

position Specifies the position from which to delete an item.

Description
XmListDeletePos() removes the item at the specified position from the list.
A position value of 1 indicates the first item, a position value of 2 indicates the
second item, and so on. A value of 0 (zero) specifies the last item in the list. If the
list does not have the specified position, a warning message is displayed.

Usage
XmListDeletePos() is a convenience routine that allows you to remove an
item from a list. The routine remaoves items from the list by internally manipulat-
ing the array of compound strings specified by the XmNitems and XmNitem-
Count resources. Since you are specifying the position of the item to be removed,
you do not have to create a compound string for the item. The routine does not
have to search for the item, so it avoids the linear search that is used by
XmListDeleteltem().

See Also
XmListDeleteAllltems(1), XmListDeleteltem(l),
XmListDeleteltemsPos(1), XmListDeletePositions(l),
XmList(2).

224 Motif Reference Manual

Motif Functions and Macros XmListDeletePositions

Name

Synopsis

XmListDeletePositions — delete items at the specified positions from a list.

#include <Xm/List.h>

void XmListDeletePositions (Widget widget, int *position_list, int
position_count)

Inputs

widget Specifies the List widget.
position_list Specifies a list of positions from which to delete items.
position_count Specifies the number of positions to be deleted.

Availability

Motif 1.2 and later.

Description

Usage

See Also

XmListDeletePositions() removes the items that appear at the positions
specified in position_list from the list. A position value of 1 indicates the first
item, a value of 2 indicates the second item, and so on. If the list does not have
the specified position, a warning message is displayed. If position_count is
smaller than the number of positions in position_list, only the first position_count
items of the array are deleted.

XmListDeletePositions() is a convenience routine that allows you to
remove items from a list. The routine remove the items by modifying the
XmNitems and XmNitemCount resources. Since you are specifying the positions
of the items to be removed, you do not have to create compound strings for the
items. The routine does not have to search for the items, so it avoids the linear
search that is used by XmListDeleteltems().

XmListDeleteAllltems(l), XmListDeleteltem(l),
XmListDeleteltemsPos(1), XmListDeletePos(1), XmList(2).

Motif Reference Manual 225

XmListDeselectAllltems Motif Functions and Macros

Name
XmListDeselectAllltems — deselect all items in a list.

Synopsis
#include <Xm/List.h>
void XmListDeselectAllltems (Widget widget)

Inputs

widget Specifies the List widget.

Description
XmListDeselectAll l'tems() unhighlights all of the selected items in the
specified widget and removes these items from the XmNselectedltems list. If the
list is in normal mode, the item with the keyboard focus remains selected,; if the
list is in add mode, all of the items are deselected.

Usage
XmListDeselectAlll1tems() is a convenience routine that allows you to
deselect all of the items in a list. The routine deselects items in the list by inter-
nally manipulating the array of compound strings specified by the XmNselecte-
ditems and XmNselectedltemCount resources. This routine does not invoke any
selection callbacks for the list when the items are deselected.

See Also

XmListDeselectltem(l), XmListDeselectPos(1),
XmListSelectltem(l), XmListSelectPos(1),
XmListUpdateSelectedList(l), XmList(2).

226 Motif Reference Manual

Motif Functions and Macros XmListDeselectltem

Name
XmListDeselectltem — deselect an item from a list.
Synopsis
#include <Xm/List.h>
void XmListDeselectltem (Widget widget, XmString item)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be deselected.
Description

XmListDeselectltem() unhighlights and removes from the XmNselecte-
ditems list the first occurrence of the specified item.

Usage

XmListDeselectltem() is a convenience routine that allows you to deselect
an item in a list. The routine deselects items in the list by internally manipulating
the array of compound strings specified by the XmNselectedItems and XmNse-
lectedltemCount resources. This routine does not invoke any selection callbacks
for the list when the item is deselected. If there is more than one occurrence of an
item in the list, the routine only deselects the first occurrence. In order to deselect
an item with this routine, you have to create a compound string for the item. The
routine uses a linear search to locate the item to be deselected.

See Also
XmListDeselectAllltems(1), XmListDeselectPos(1),
XmListSelectltem(l), XmListSelectPos(1),
XmListUpdateSelectedList(l), XmList(2).

Motif Reference Manual 227

XmListDeselectPos Motif Functions and Macros

Name
XmListDeselectPos — deselect an item at the specified position from a list.

Synopsis
#include <Xm/List.h>

void XmListDeselectPos (Widget widget, int position)

Inputs
widget Specifies the List widget.

position Specifies the position at which to deselect an item.

Description
XmListDeselectPos() unhighlights the item at the specified position in the
list and removes the item from the XmNselectedltems list. A position value of 1
indicates the first item, a position value of 2 indicates the second item, and so on.
A value of 0 (zero) specifies the last item in the list. If the list does not have the
specified position, the routine does nothing.

Usage
XmListDeselectPos() is a convenience routine that allows you to deselect
an item in a list. The routine deselects items in the list by internally manipulating
the array of compound strings specified by the XmNselectedItems and XmNse-
lectedltemCount resources. This routine does not invoke any selection callbacks
for the list when the item is deselected. Since you are specifying the position of
the item to be deselected, you do not have to create a compound string for the
item. The routine does not have to search for the item, so it avoids the linear
search that is used by XmListDeselectltem().

See Also
XmListDeselectAllltems(1), XmListDeselectPos(1),
XmListGetSelectedPos(1), XmListPosSelected(l),
XmListSelectltem(l), XmListSelectPos(1),
XmListUpdateSelectedList(l), XmList(2).

228 Motif Reference Manual

Motif Functions and Macros XmListGetKbdltemPos

Name
XmListGetKbdItemPos — get the position of the item in a list that has the location
cursor.

Synopsis
#include <Xm/List.h>

int XmListGetKbdltemPos (Widget widget)

Inputs
widget Specifies the List widget.

Returns
The position of the item that has the location cursor.

Availability
Motif 1.2 and later.

Description
XmListGetKbdItemPos() retrieves the position of the item in the specified
List widget that has the location cursor. A returned value of 1 indicates the first
item, a value of 2 indicates the second item, and so on. The value 0 (zero) speci-
fies that the list is empty.

Usage
XmListGetKbdltemPos() provides a way to determine which item in a list
has the keyboard focus. This information is useful if you need to perform actions
based on the position of the location cursor in the list.

See Also
XmListSetAddMode(1), XmListSetKbdltemPos(1), XmList(2).

Motif Reference Manual 229

XmListGetMatchPos Motif Functions and Macros

Name

Synopsis

XmListGetMatchPos — get all occurrences of an item in a list.

#include <Xm/List.h>

Boolean XmListGetMatchPos (Widget widget, XmString item, int
**position_list, int *position_count)

Inputs

widget Specifies the List widget.
item Specifies the item whose positions are to be retrieved.

Outputs

position_list Returns a list of the positions of the item.
position_count Returns the number of items in position_list.

Returns

True if the item is in the list or False otherwise.

Description

Usage

Example

230

XmListGetMatchPos() determines whether the specified item exists in the
list. If the list contains item, the routine returns True and position_list returns a
list of positions that specify the location(s) of the item. A position value of 1 indi-
cates the first item, a position value of 2 indicates the second item, and so on.
XmListGetMatchPos() allocates storage for the position_list array when the
item is found; the application is responsible for freeing this storage using
XtFree(). If the list does not contain item, the routine returns False, and
position_count is set to zero. In Motif 1.2.3 and earlier, the value of position_list
is undefined if item is not within the list. From Motif 1.2.4 and later, position_list
is set to NULL.

XmListGetMatchPos() is a convenience routine that provides a way to locate
all of the occurrences of an item in a list. Alternatively, you could obtain this
information yourself using the XmNitems resource and XmListltemPos().

The following code fragments show the use of XmListGetMatchPos():

Widget list w;

int *pos_list;

int pos_cnt, i;

char *choice = "A Sample Text String";
XmString str = XmStringCreatelLocalized (choice);

Motif Reference Manual

Motif Functions and Macros XmListGetMatchPos

if (I XmListGetMatchPos (list w, str, &pos_list,

&pos_cnt))
XtWarning ("Can’t get items in list™);

else {
printf ("%s exists at %d positions:', choice,
pos_cnt);

for (i = 0; 1 < pos_cnt; i1++)
printf (" %d", pos_list[i]);
puts ()3

XtFree (pos_list);
b

XmStringFree (str);

See Also
XmListGetSelectedPos(1), XmList(2).

Motif Reference Manual 231

XmListGetSelectedPos Motif Functions and Macros

Name
XmListGetSelectedPos — get the positions of the selected items in a list.

Synopsis
#include <Xm/List.h>

Boolean XmListGetSelectedPos (Widget widget, int **position_list, int
*position_count)

Inputs
widget Specifies the List widget.

Outputs
position_list Returns a list of the positions of the selected items.

position_count Returns the number of items in position_list.

Returns
True if there are selected items in the list or False otherwise.

Description
XmListGetSelectedPos() determines whether there are any selected items
in the list. If the list has selected items, the routine returns True and position_list
returns a list of positions that specify the location(s) of the items. A position
value of 1 indicates the first item, a position value of 2 indicates the second item,
and so on. XmListGetSelectedPos() allocates storage for the position_list
array when there are selected items; the application is responsible for freeing this
storage using XtFree(). If the list does not contain any selected items, the routine
returns False and position_count is set to zero. In Motif 1.2.3 and earlier, the
value of position_list is undefined if there are no selected items within the list.
From Motif 1.2.4 and later, position_list is set to NULL.

Usage
XmListGetSelectedPos() is a convenience routine that provides a way to
determine the positions of all of the selected items in a list. Alternatively, you

could obtain this information yourself using the XmNselectedltems resource and
XmListltemPos().

See Also
XmListGetMatchPos(1), XmList(2).

232 Motif Reference Manual

Motif Functions and Macros XmListltemExists

Name
XmListltemExists — determine if a specified item is in a list.

Synopsis
#include <Xm/List.h>

Boolean XmListltemExists (Widget widget, XmString item)

Inputs
widget Specifies the List widget.

item Specifies the item whose presence in the list is checked.
Returns

True if the item is in the list or False otherwise.

Description
XmListltemExists() determines whether the list contains the specified item.
The routine returns True if the item is present and False if it is not.

Usage
XmListltemExists() is a convenience routine that determines whether or
not an item is in a list. In order to use the routine, you have to create a compound
string for the item. The routine uses a linear search to locate the item. You may
be able to obtain this information more effectively by searching the XmNitems
list using your own search procedure.

See Also
XmListGetMatchPos(1), XmListltemPos(1), XmList(2).

Motif Reference Manual 233

XmListltemPos Motif Functions and Macros

Name
XmListltemPos — return the position of an item in a list

Synopsis
#include <Xm/List.h>
int XmListltemPos (Widget widget, XmString item)

Inputs
widget Specifies the List widget.
item Specifies the item whose position is returned.
Returns

The position of the item in the list or 0 (zero) if the item is not in the list.

Description
XmListltemPos() returns the position of the first occurrence of the specified
item in the list. A position value of 1 indicates the first item, a position value of 2
indicates the second item, and so on. If item is not in the list, XmListltem-
Pos() returns 0 (zero).

Usage
XmListltemPos() is a convenience routine that finds the position of an item in
a list. If there is more than one occurrence of the item in the list, the routine only
returns the position of the first occurrence. In order to use the routine, you have
to create a compound string for the item. The routine uses a linear search to
locate the item.

Example
The following routines show how to make sure that a given item in a list is visi-
ble:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetvValues (list_w, XmNtopltemPosition,
&top,

XmNvisibleltemCount,
&visible,

NULL);

if (item_no < top)
XmListSetPos (list_w, item_nho);

else if (item_no >= top+visible)
XmListSetBottomPos (list _w, item no);

234 Motif Reference Manual

Motif Functions and Macros XmListltemPos

¥
void MakeltemVisible (Widget list_w, XmString item)
{
int item_no = XmListltemPos (list_w, item);
if (item_no > 0)
MakePosVisible (list _w, item _no);
¥

See Also
XmListltemExists(l), XmListPosSelected(l), XmList(2).

Motif Reference Manual 235

XmListPosSelected Motif Functions and Macros

Name
XmListPosSelected — check if the item at a specified position is selected in a list.
Synopsis
#include <Xm/List.h>
Boolean XmListPosSelected (Widget widget, int position)
Inputs
widget Specifies the List widget.
position Specifies the position that is checked.
Returns
True if the item is selected or False if the item is not selected or the position is
invalid.
Availability
Motif 1.2 and later.
Description
XmListPosSelected() determines whether or not the list item at the speci-
fied position is selected. A position value of 1 indicates the first item, a position
value of 2 indicates the second item, and so on. The value 0 (zero) specifies the
last item in the list. The routine returns True if the list item is selected. It returns
False if the item is not selected or the list does not have the specified position.
Usage
XmListPosSelected() is a convenience routine that lets you check if an item at a
particular position is selected. Alternatively, you could check the list of positions
returned by XmListGetSelectedPos() to see if the item at a position is
selected.
See Also

XmListDeselectPos(1), XmListGetSelectedPos(1),
XmListSelectPos(1), XmListUpdateSelectedList(l), XmList(2).

236 Motif Reference Manual

Motif Functions and Macros XmListPosToBounds

Name
XmListPosToBounds — return the bounding box of an item at the specified posi-
tion in a list.
Synopsis
#include <Xm/List.h>
Boolean XmListPosToBounds (Widget widget,
int position,
Position *X,
Position *Y,
Dimension *width,
Dimension *height)
Inputs
widget Specifies the List widget.
position Specifies the position of the item for which to return the bounding
box.
Outputs
X Returns the x-coordinate of the bounding box for the item.
y Returns the y-coordinate of the bounding box for the item.
width Returns the width of the bounding box for the item.
height Returns the height of the bounding box for the item.
Returns
True if item at the specified position is visible or False otherwise.
Availability
Motif 1.2 and later.
Description

XmListPosToBounds() returns the bounding box of the item at the specified
position in the list. A position value of 1 indicates the first item, a position value
of 2 indicates the second item, and so on. A value of 0 (zero) specifies the last
item in the list. The routine returns the x and y coordinates of the upper left corner
of the bounding box in relation to the upper left corner of the List widget.
XmListPosToBounds() also returns the width and height of the bounding
box. Passing a NULL value for any of the x, y, width, or height parameters indi-
cates that the value for the parameter should not be returned. If the item at the
specified position is not visible, XmL i stPosToBounds() returns False and the
return values are undefined.

Motif Reference Manual 237

XmListPosToBounds Motif Functions and Macros

Usage
XmListPosToBounds() provides a way to determine the bounding box of an
item in a list. This information is useful if you want to perform additional event
processing or draw special graphics for the list item.

See Also

XmListYToPos(1), XmList(2).

238 Motif Reference Manual

Motif Functions and Macros XmListReplaceltems

Name

Synopsis

XmListReplaceltems — replace specified items in a list.

#include <Xm/List.h>

void XmListReplaceltems (Widget widget,
XmsString *old_items,
int item_count,
XmString *new_items)

Inputs

widget Specifies the List widget.

old_items Specifies a list of the items that are to be replaced.
item_count Specifies the number of items that are to be replaced.
new_items Specifies a list of the new items.

Description

Usage

See Also

XmListReplaceltems() replaces the first occurrence of each item in the
old_items list with the corresponding item from the new_items list. If an item in
the old_items list does not exist in the specified List widget, the corresponding

item in new_items? is skipped. If item_count is smaller than the number of
old_items or new_items, only the first item_count items are replaced. A new item
appears selected if it matches an item in the XmNselectedItems list.

XmListReplaceltems() is a convenience routine that allows you to replace
particular items in a list. The routine replaces items by manipulating the array of
compound strings specified by the XmNitems and XmNitemCount resources. If a
new item duplicates an item that is already selected, the new item appears as
selected. You should only use this routine if the list supports multiple selections
and you want to select the new items whose duplicates are already selected. In
order to replace items with this routine, you have to create compound strings for
all of the old and new items. The routine uses a linear search to locate the items to
be replaced.

XmListAddltem(l), XmListAddltemUnselected(l),
XmListReplacel temsPos(1),
XmListReplaceltemsPosUnselected(l),
XmListReplaceltemsUnselected(l),
XmListReplacePositions(l), XmList(2).

1.Erroneously given as new_list in 1st and 2nd edition.

Motif Reference Manual 239

XmListReplaceltemsPos Motif Functions and Macros

Name

Synopsis

XmListReplaceltemsPos — replace specified items in a list.

#include <Xm/List.h>

void XmListReplaceltemsPos (Widget widget, XmString *new_items, int
item_count, int position)

Inputs

widget Specifies the List widget.

new_items Specifies a list of the new items.

item_count Specifies the number of items that are to be replaced.
position Specifies the position at which to replace items.

Description

Usage

See Also

240

XmListReplaceltemsPos() replaces a consecutive number of items in the
list with items from the new_items list. The first item that is replaced is located at
the specified position and each subsequent item is replaced by the corresponding
item from new_items. A position value of 1 indicates the first item, a position
value of 2 indicates the second item, and so on. If item_count is smaller than the
number of new_items, only the first item_count items are replaced. If the number
of items between position and the end of the list is less than item_count, the rou-
tine replaces all of the items up through the last item in the list. A new item
appears selected if it matches an item in the XmNselectedItems list.

XmListReplaceltemsPos() is a convenience routine that allows you to
replace a contiguous sequence of items in a list. The routine replaces items by
manipulating the array of compound strings specified by the XmNitems and
XmNitemCount resources. If a new item duplicates an item that is already
selected, the new item appears as selected. You should only use this routine if the
list supports multiple selections and you want to select the new items whose
duplicates are already selected. In order to replace items with this routine, you
have to create compound strings for all of the new items. The routine does not
have to search for the items, so it avoids the linear searches that are used by
XmListReplaceltems().

XmListAddltem(l), XmListAddltemUnselected(l),
XmListReplaceltems(l),
XmListReplaceltemsPosUnselected(l),
XmListReplaceltemsUnselected(l),
XmListReplacePositions(l), XmList(2).

Motif Reference Manual

Motif Functions and Macros XmListReplaceltemsPosUnselected

Name

Synopsis

XmListReplaceltemsPosUnselected — replace specified items in a list.

#include <Xm/List.h>

void XmListReplaceltemsPosUnselected (Widget widget,
XmsString *new_items,
int item_count,
int position)

Inputs

widget Specifies the List widget.

new_items Specifies a list of the new items.

item_count Specifies the number of items that are to be replaced.
position Specifies the position at which to replace items.

Availability

Motif 1.2 and later.

Description

Usage

XmListReplaceltemsPosUnselected() replaces a consecutive number
of items in the list with items from the new_items list. The first item that is
replaced is located at the specified position and each subsequent item is replaced
by the corresponding item from new_items. A position value of 1 indicates the
first item, a position value of 2 indicates the second item, and so on. If
item_count is smaller than the number of new_items, only the first item_count
items are replaced. If the number of items between position and the end of the list
is less than item_count, the routine replaces all of the items up through the last
item in the list. A new item does not appear selected, even if it matches an item in
the XmNselectedltems list.

XmListReplacel temsPosUnselected() is a convenience routine that
allows you to replace a contiguous sequence of items in a list. The routine
replaces items by modifying the array of compound strings specified through the
XmNitems and XmNitemCount resources. If a new item duplicates an item that
is already selected, the new item does not appear as selected. In order to replace
items with this routine, you have to create compound strings for all of the new
items. The routine does not have to search for the items, so it avoids the linear
searches that are used by XmListReplacel temsUnselected().

Motif Reference Manual 241

XmListReplaceltemsPosUnselected Motif Functions and Macros

See Also
XmListAddItem(l), XmListAdd I temUnselected(l),
XmListReplaceltems(l), XmListReplacel temsPos(1),
XmListReplaceltemsUnselected(l),
XmListReplacePositions(l), XmList(2).

242 Motif Reference Manual

Motif Functions and Macros XmListReplaceltemsUnselected

Name
XmListReplaceltemsUnselected — replace specified items in a list.

Synopsis
#include <Xm/List.h>
void XmListReplaceltemsUnselected (Widget widget,

XmString *old_items,
int item_count,
XmString *new_items)
Inputs
widget Specifies the List widget.
old_items Specifies a list of the items that are to be replaced.
item_count Specifies the number of items that are to be replaced.
new_items Specifies a list of the new items.

Availability
Motif 1.2 and later.

Description
XmListReplaceltemsUnselected() replaces the first occurrence of each
item in the old_items list with the corresponding item from the new_items list. If
an item in the old_items list does not exist in the specified List widget, the corre-
sponding item in new_items? is skipped. If item_count is smaller than the number
of old_items or new_items, only the first item_count items are replaced. A new
item does not appear selected, even if it matches an item in the XmNselecte-
dltems list.

Usage
XmListReplaceltemsUnselected() is a convenience routine that allows
you to replace particular items in a list. The routine replaces items by modifying
the array of compound strings specified through the XmNitems and XmNitem-
Count resources. If a new item duplicates an item that is already selected, the
new item does not appear as selected. In order to replace items with this routine,
you have to create compound strings for all of the old and new items. The routine
uses a linear search to locate the items to be replaced.

See Also

XmListAddltem(1l), XmListAddltemUnselected(1),
XmListReplaceltems(1l), XmListReplaceltemsPos(1l),
XmListReplaceltemsPosUnselected(1),

1.Erroneously given as new_list in 1st and 2nd editions.

Motif Reference Manual 243

XmListReplaceltemsUnselected Motif Functions and Macros

XmListReplacePositions(1l), XmList(2).

244 Motif Reference Manual

Motif Functions and Macros XmListReplacePositions

Name

Synopsis

XmListReplacePositions — replace items at the specified positions in a list.

#include <Xm/List.h>

void XmListReplacePositions (Widget widget, int *position_list, XmString
*item_list, int item_count)

Inputs

widget Specifies the List widget.

position_list Specifies a list of positions at which to replace items.
item_list Specifies a list of the new items.

item_count Specifies the number of items that are to be replaced.

Availability

Motif 1.2 and later.

Description

Usage

See Also

XmListReplacePositions() replaces the items that appear at the positions
specified in position_list with the corresponding items from item_list. A position
value of 1 indicates the first item, a value of 2 indicates the second item, and so
on. If the list does not have the specified position, a warning message is dis-
played. If item_count is smaller than the number of positions in position_list,
only the first item_count items are replaced. A new item appears selected if it
matches an item in the XmNselectedltems list.

XmListReplacePositions() is a convenience routine that allows you to
replace items at particular positions in a list. The routine replaces items by modi-
fying the array of compound strings specified through the XmNitems and
XmNitemCount resources. If a new item duplicates an item that is already
selected, the new item appears as selected. You should only use this routine if the
list supports multiple selections and you want to select the new items whose
duplicates are already selected. In order to replace items with this routine, you
have to create compound strings for all of the new items. The routine does not
have to search for the items, so it avoids the linear searches that are used by
XmListReplaceltems().

XmListAddltem(l), XmListAddltemUnselected(l),
XmListReplaceltems(l), XmListReplaceltemsPos(1),
XmListReplaceltemsPosUnselected(l),
XmListReplaceltemsUnselected(l), XmList(2).

Motif Reference Manual 245

XmListSelectltem Motif Functions and Macros

Name

Synopsis

XmListSelectltem — select an item from a list.

#include <Xm/List.h>
void XmListSelectltem (Widget widget, XmString item, Boolean notify)

Inputs

widget Specifies the List widget.
item Specifies the item that is to be selected.
notify Specifies whether or not the selection callback is invoked.

Description

Usage

See Also

246

XmListSelectltem() highlights and selects the first occurrence of the speci-
fied item in the list. If the XmNselectionPolicy resource of the list is
XmMULTIPLE_SELECT, the routine toggles the selection state of item. For any
other selection policy, XmListSelectltem() replaces the currently selected
item(s) with item. The XmNselectedltems resource specifies the current selection
of the list. If notify is True, XmListSelectltem() invokes the selection call-
back for the current selection policy.

XmListSelectltem() is a convenience routine that allows you to select an
item in a list. The routine selects the item by modifying the array of compound
strings specified by the XmNselectedltems and XmNselectedltemCount
resources. In order to select an item with this routine, you have to create a com-
pound string for the item. The routine uses a linear search to locate the item to be
selected. XmListSelectltem() only allows you to select a single item; there are no
routines for selecting multiple items. If you need to select more than one item,
use XtSetValues() to set XmNselectedltems and XmNselectedltemCount.

The notify parameter indicates whether or not the selection callbacks for the cur-
rent selection policy are invoked. You can avoid redundant code by setting this
parameter to True. If you are calling XmListSelectltem() from a selection
callback routine, you probably want to set the parameter to False to avoid the
possibility of an infinite loop. Calling XmL i stSe lectItem() with notify set to
True causes the callback routines to be invoked in a way that is indistinguishable
from a user-initiated selection action.

XmListDeselectAllltems(l), XmListDeselectltem(l),
XmListDeselectPos(1l), XmListSelectPos(1),
XmListUpdateSelectedList(l), XmList(2).

Motif Reference Manual

Motif Functions and Macros XmListSelectPos

Name
XmListSelectPos — select an item at the specified position from a list.
Synopsis
#include <Xm/List.h>
void XmListSelectPos (Widget widget, int position, Boolean notify)
Inputs
widget Specifies the List widget.
position Specifies the position of the item that is to be selected.
notify Specifies whether or not the selection callback is invoked.
Description
XmListSelectPos() highlights and selects the item at the specified position
in the list. A position value of 1 indicates the first item, a position value of 2 indi-
cates the second item, and so on. A value of 0 (zero) specifies the last item in the
list. 1f the XmNselectionPolicy resource of the list is XmMULTIPLE_SELECT,
the routine toggles the selection state of the item. For any other selection policy,
XmListSelectPos() replaces the currently selected item with the specified
item. The XmNselectedltems resource lists the current selection of the list. If
notify is True, XmListSelectPos() invokes the selection callback for the cur-
rent selection policy.
Usage

XmListSelectPos() is a convenience routine that allows you to select an
item at a particular position in a list. The routine selects the item by modifying
the array of compound strings specified through the XmNselectedltems and
XmNselectedltemCount resources. Since you are specifying the position of the
item to be selected, you do not have to create a compound string for the item. The
routine does not have to search for the item, so it avoids the linear search that is
used by XmListSelectltem(). XmListSelectPos() only allows you to
select a single item; there are no routines for selecting multiple items. If you need
to select more than one item, use XtSetValues() to set XmNselectedItems and
XmNselectedltemCount.

The notify parameter indicates whether or not the selection callbacks for the cur-
rent selection policy are invoked. You can avoid redundant code by setting this
parameter to True. If you are calling XmListSelectPos() from a selection callback
routine, you probably want to set the parameter to False to avoid the possibility
of an infinite loop. Calling XmL i stSelectPos() with notify set to True causes
the callback routines to be invoked in a way that is indistinguishable from a user-
initiated selection action.

Motif Reference Manual 247

XmListSelectPos Motif Functions and Macros

See Also
XmListDeselectAllltems(l), XmListDeselectltem(l),
XmListDeselectPos(1), XmListGetSelectedPos(1),
XmListPosSelected(l), XmListSelectltem(l), XmList(2).

248 Motif Reference Manual

Motif Functions and Macros XmListSetAddMode

Name
XmListSetAddMode - set add mode in a list.

Synopsis
#include <Xm/List.h>

void XmListSetAddMode (Widget widget, Boolean mode)
Inputs

widget Specifies the List widget.

mode Specifies whether to set add mode on or off.

Description
XmListSetAddMode() sets the state of add mode when the XmNselectionPol-
icy is XmEXTENDED_SELECT. If mode is True, add mode is turned on; if
mode is False, add mode is turned off. When a List widget is in add mode, the
user can move the location cursor without disturbing the current selection.

Usage
XmListSetAddMode() provides a way to change the state of add mode in a list.
The distinction between normal mode and add mode is only important for mak-
ing keyboard-based selections. In normal mode, the location cursor and the selec-
tion move together, while in add mode, the location cursor and the selection can
be separate.

See Also
XmListGetKbdltemPos(1), XmListSetKbdltemPos(1), XmList(2).

Motif Reference Manual 249

XmListSetBottomltem Motif Functions and Macros

Name
XmListSetBottomltem — set the last visible item in a list.

Synopsis
#include <Xm/List.h>

void XmListSetBottomItem (Widget widget, XmString item)
Inputs

widget Specifies the List widget.

item Specifies the item that is made the last visible item.

Description

XmListSetBottomltem() scrolls the List widget so that the first occurrence
of the specified item appears as the last visible item in the list.

Usage
XmListSetBottomltem() provides a way to make sure that a particular item
is visible in a list. The routine changes the viewable portion of the list so that the
specified item is displayed at the bottom of the viewport. If there is more than one
occurrence of the item in the list, the routine uses the first occurrence. In order to
use this routine, you have to create a compound string for the item. The routine
uses a linear search to locate the item.

See Also

XmListSetBottomPos(1), XmListSetHorizPos(1),
XmListSetltem(l), XmListSetPos(1), XmList(2).

250 Motif Reference Manual

Motif Functions and Macros XmListSetBottomPos

Name
XmListSetBottomPos — set the last visible item in a list.

Synopsis
#include <Xm/List.h>

void XmListSetBottomPos (Widget widget, int position)

Inputs
widget Specifies the List widget.

position Specifies the position of the item that is made the last visible item.

Description
XmListSetBottomPos() scrolls the List widget so that the item at the speci-
fied position appears as the last visible item in the list. A position value of 1 indi-
cates the first item, a position value of 2 indicates the second item, and so on. A
value of 0 (zero) specifies the last item in the list.

Usage
XmListSetBottomPos() provides a way to make sure that an item at a partic-
ular position is visible in a list. The routine changes the viewable portion of the
list so that the item at the specified position is displayed at the bottom of the
viewport. Since you are specifying the position of the item, you do not have to
create a compound string for the item. The routine does not have to search for the
item, so it avoids the linear search that is used by XmL istSetBottomltem().

Example
The following routine shows how to make sure that an item at a given position in
a list is visible:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopltemPosition, &top, XmNuvisibleltem-
Count, &visible, NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);

See Also
XmListSetBottomltem(l), XmListSetHorizPos(l),
XmListSetltem(l), XmListSetPos(1), XmList(2).

Motif Reference Manual 251

XmListSetHorizPos Motif Functions and Macros

Name
XmListSetHorizPos — set the horizontal position of a list.

Synopsis
#include <Xm/List.h>
void XmListSetHorizPos (Widget widget, int position)

Inputs

widget Specifies the List widget.
position Specifies the horizontal position.

Description
XmListSetHorizPos() scrolls the list to the specified horizontal position. If
XmNlistSizePolicy is set to XmCONSTANT or XmRESIZE_IF_POSSIBLE and
the horizontal scroll bar is visible, XmL i stSetHor i zPos() sets the XmNvalue
resource of the horizontal scroll bar to the specified position and updates the vis-
ible area of the list.

Usage
When a list item is too long to fit horizontally inside the viewing area of a List
widget, the widget either expands horizontally or adds a horizontal scroll bar,
depending on the value of the XmNlistSizePolicy resource. Calling XmListSe-
tHorizPos() is equivalent to the user moving the horizontal scroll bar to the
specified location.

See Also

XmListSetBottomltem(l), XmListSetBottomPos(1),
XmListSetltem(l), XmListSetPos(1), XmList(2).

252 Motif Reference Manual

Motif Functions and Macros XmListSetltem

Name
XmListSetltem — set the first visible item in a list.

Synopsis
#include <Xm/List.h>

void XmListSetltem (Widget widget, XmString item)

Inputs
widget Specifies the List widget.

item Specifies the item that is made the first visible item.

Description
XmListSetltem() scrolls the List widget so that the first occurrence of the
specified item appears as the first visible item in the list.

Usage

XmListSetltem() provides a way to make sure that a particular item is visible
in a list. The routine changes the viewable portion of the list so that the specified
item is displayed at the top of the viewport. Using this routine is equivalent to set-
ting the XmNtopltemPosition resource. If there is more than one occurrence of
the item in the list, the routine uses the first occurrence. In order to use this rou-
tine, you have to create a compound string for the item. The routine uses a linear
search to locate the item.

See Also
XmListSetBottomltem(l), XmListSetBottomPos(1),
XmListSetHorizPos(1), XmListSetPos(1), XmList(2).

Motif Reference Manual 253

XmListSetKbdltemPos Motif Functions and Macros

Name
XmListSetKbdltemPos — set the position of the location cursor in a list.
Synopsis
#include <Xm/List.h>
Boolean XmListSetKbdIltemPos (Widget widget, int position)
Inputs
widget Specifies the List widget.
position Specifies the position where the location cursor is set.
Returns
True on success or False if there is not item at position or the list is empty.
Availability
Motif 1.2 and later.
Description
XmListSetKbdltemPos() sets the location cursor at the specified position. A
position value of 1 indicates the first item, a position value of 2 indicates the sec-
ond item, and so on. A value of 0 (zero) specifies the last item in the list. The rou-
tine does not check the selection state of the item at the specified location.
Usage
XmListSetKbdltemPos() provides a way to change which item in a list has
the keyboard focus. The routine is useful if you need to make sure that particular
item has the keyboard focus at a given time, such as when the list first receives
the keyboard focus.
See Also

XmListGetKbdltemPos(l), XmListSetAddMode(l), XmList(2).

254 Motif Reference Manual

Motif Functions and Macros XmListSetPos

Name
XmListSetPos — sets the first visible item in a list.
Synopsis
#include <Xm/List.h>
void XmListSetPos (Widget widget, int position)
Inputs
widget Specifies the List widget.
position Specifies the position of the item that is made the first visible item.
Description
XmListSetPos() scrolls the List widget so that the item at the specified posi-
tion appears as the first visible item in the list. A position value of 1 indicates the
first item, a position value of 2 indicates the second item, and so on. A value of 0
(zero) specifies the last item in the list.
Usage
XmListSetPos() provides a way to make sure that an item at a particular loca-
tion is visible in a list. The routine changes the viewable portion of the list so that
the item at the specified position is displayed at the top of the viewport. Using
this routine is equivalent to setting the XmNtopltemPosition resource. Since you
are specifying the position of the item, you do not have to create a compound
string for the item. The routine does not have to search for the item, so it avoids
the linear search that is used by XmListSetltem().
Example
The following routine shows how to make sure that an item at a given position in
a list is visible:
void MakePosVisible (Widget list_w, int item_no)
{
int top, visible;
XtVaGetValues (list_w, XmNtopltemPosition, &top, XmNuvisibleltem-
Count, &visible, NULL);
if (item_no < top)
XmListSetPos (list_w, item_no);
else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);
}
See Also

XmListSetBottomltem(l), XmListSetBottomPos(l),

Motif Reference Manual 255

XmListSetPos Motif Functions and Macros

XmListSetHorizPos(1l), XmListSetltem(1l), XmList(2).

256 Motif Reference Manual

Motif Functions and Macros XmListUpdateSelectedL.ist

Name
XmListUpdateSelectedList — update the list of selected items in a list.

Synopsis
#include <Xm/List.h>
void XmListUpdateSelectedList (Widget widget)

Inputs

widget Specified the List widget.

Availability
Motif 1.2 and later.

Description
XmListUpdateSelectedList() updates the array of compound strings
specified through the XmNselectedltems resource. The routine frees the current
selected array, and then traverses the array of compound strings specified by the
XmNitems resource, adding each currently selected item to the XmNselecte-
dltems list.

Usage
XmListUpdateSelectedList() provides a way to update the list of
selected items in a list. This routine is useful if the actual items that are selected
are not synchronized with the value of the XmNselectedltems resource. This situ-
ation might arise if you are using internal list functions and modifying internal
data structures. If you are using the defined list routines, the situation should
never occur.

See Also

XmListDeselectAllltems(l), XmListDeselectltem(l),
XmListDeselectPos(1l), XmListGetSelectedPos(1),
XmListPosSelected(l), XmListSelectltem(l),
XmListSelectPos(1l), XmList(2).

Motif Reference Manual 257

XmListYToPos Motif Functions and Macros

Name

Synopsis

XmListYToPos — get the position of the item at the specified y-coordinate in a
list.

#include <Xm/List.h>
int XmListYToPos (Widget widget, Position y)

Inputs

widget Specifies the List widget.
y Specifies the y-coordinate.

Returns

The position of the item at the specified y-coordinate.

Availability

Motif 1.2 and later.

Description

Usage

See Also

258

XmListYToPos() retrieves the position of the item at the specified y-coordinate
in the list. The y-coordinate is specified in the coordinate system of the list. A
returned value of 1 indicates the first item, a value of 2 indicates the second item,
and so on. The value 0 (zero) specifies that there is no item at the specified loca-
tion.

As of Motif 1.2, a return value of 0 (zero) indicates the first item, a value of 1
indicates the second item, and so on. In Motif 1.2.3 and earlier, the value that is
returned may not be a valid position in the list, so an application should check the
value with respect to the value of XmNitemCount before using it. In Motif 1.2.4
and later, the returned position may not exceed the value of XmNitemCount.

XmListYToPos() provides a way to translate a y-coordinate into a list position.
This routine is useful if you are processing events that report a pointer position
and you need to convert the location of the event into an item position.

XmListPosToBounds(1), XmList(2).

Motif Reference Manual

Motif Functions and Macros XmMainWindowSepl

Name

Synopsis

XmMainWindowSepl, XmMainWindowSep2, XmMainWindowSep3 — get the
widget ID of a MainWindow Separator.

#include <Xm/MainW.h>

Widget XmMainWindowSepl (Widget widget)
Widget XmMainWindowSep2 (Widget widget)
Widget XmMainWindowSep3 (Widget widget)

Inputs

widget Specifies the MainWindow widget.

Returns

The widget ID of the particular MainWindow Separator.

Availability

In Motif 2.0 and later, these routines are marked as deprecated.

Description

Usage

See Also

XmMainWindowSepl() returns the widget ID of the MainWindow widget’s
first Separator, which is located directly below the MenuBar.
XmMainWindowSep2() returns the widget ID of the second Separator in the
Main Window, which is between the Command and ScrolledWindow widgets.
XmMainWindowSep3() returns the widget ID of the MainWindow’s third Sep-
arator, which is located just above the message window. The three Separator
widgets in a MainWindow are visible only when the XmNshowSeparator
resource is set to True.

XmMainWindowSepl(), XmMainWindowSep2(), and
XmMainWindowSep3() provide access to the three Separator widgets that can
be displayed by a MainWindow widget. With the widget IDs, you can change the
visual attributes of the individual Separators.

In Motif 2.0 and later, the function XtNameToWidget() is the preferred
method of obtaining the MainWindow components. You should pass widget as
the first parameter, and "Separatorl", ""Separator2", or "Separator3" as the second
parameter to this procedure.

XmMainWindowSetAreas(1l), XmMainWindow(2),
XmScrol ledWindow(2).

Motif Reference Manual 259

XmMainWindowSetAreas Motif Functions and Macros

Name
XmMainWindowSetAreas — specify the children for a MainWindow.
Synopsis
#include <Xm/MainW.h>
void XmMainWindowSetAreas (Widget widget,
Widget menu_bar,
Widget command_window,
Widget horizontal_scrollbar,
Widget vertical_scrollbar,
Widget work_region)
Inputs
widget Specifies the MainWindow widget.
menu_bar Specifies the widget ID of the MenuBar.
command_window Specifies the widget ID of the command window.
horizontal_scrollbar Specifies the widget ID of the horizontal ScrollBar.
vertical_scrollbar Specifies the widget ID of the vertical ScrollBar.
work_region Specifies the widget ID of the work window.
Availability
In Motif 2.0 and later, the procedure is marked as deprecated.
Description
XmMainWindowSetAreas() sets up the standard regions of the MainWindow
widget for an application. The MainWindow must be created before the routine is
called. XmMainWindowSetAreas() specifies the MenuBar, the work window,
the command window, and the horizontal and vertical ScrollBars for the Main-
Window. If an application does not have one of these regions, the corresponding
argument can be specified as NULL. Each region may have child widgets, and
this routine determines which of those children will be actively managed by the
MainWindow.
Usage

260

Each of the MainWindow regions is associated with a MainWindow resource;
XmMainWindowSetAreas() sets the associated resources. The associated
resources that correspond to the last five arguments to the routine are XmNmenu-
Bar, XmNcommand, XmNhorizontalScrollBar, XmNverticalScrollBar, and
XmNworkWindow. XmMainWindowSetAreas() does not provide a way to
set up the message area; this region must be set up by specifying the XmNmes-
sageWindow resource.

Motif Reference Manual

Motif Functions and Macros XmMainWindowSetAreas

Example

If an application does not call XmMainWindowSetAreas(), the widget may
still set some of the standard regions. When a MenuBar child is added to a Main-
Window, if XmNmenuBar has not been set, it is set to the MenuBar child. When
a Command child is added to a MainWindow, if XmNcommand has not been set,
it is set to the Command child. If ScrollBars are added as children, the XmNhori-
zontalScrollBar and XmNverticalScrollBar resources may be set if they have not
already been specified. Any child that is not one of these types is used for the
XmNworkWindow. If you want to be certain about which widgets are used for
the different regions, it is wise to call XmMainWindowSetAreas() explicitly.

In Motif 2.0 and later, XmMainWindowSetAreas(), is deprecated. The pro-
grammer should use XtSetValues() in order to specify the XmNcommand-
Window, XmNmenuBar, XmNworkWindow, XmNhorizontalScrollBar, and
XmNverticalScrollBar resources of the MainWindow. XmMainWindowSe—-
tAreas() does not handle the XmNmessageWindow resource in any case.

The following code fragment shows how to set some of the regions of a Main-
Window:

Widget top, main_w, menubar, command_w, text_w, scrolled_text_w;
Arg args[4];

main_w = XtVaCreateManagedWidget("main_w", xmMainWindowWidget-
Class, top, NULL);

menubar = XmCreateMenuBar (main_w, "menubar"”, NULL, 0);
XtManageChild (menubar);

XtSetArg (args[0], XmNrows, 24);

XtSetArg (args[1], XmNcolumns, 80);

XtSetArg (args[2], XmNeditable, False);

XtSetArg (args[3], XmNeditMode, XmMULTI_LINE_EDIT);
text_ w = XmCreateScrolledText (main_w, "text_w", args, 4);
XtManageChild (text_wy);

scrolled_text_w = XtParent (text_w);
command_w = XmCreateText (main_w, "command_w", (Arg *) 0, 0);
XtManageChild (command_w);

#if (XmVERSION > 1)
XtVaSetValues (main_w,

XmNmenuBar, menubar,
XmNcommandWindow, command_w,
XmNhorizontalScrollBar, NULL,
XmNverticalScrollBar, NULL,

Motif Reference Manual 261

XmMainWindowSetAreas Motif Functions and Macros

XmNworkWindow, scrolled_text_w,
0);
#else /* XmVERSION > 1 */
XmMainWindowSetAreas (main_w, menubar, command_w, NULL, NULL,
scrolled_text w);
#endif /* XmVERSION > 1 */

See Also
XmMainWindowSep(1), XmMainWindow(2), XmScrol ledWindow(2).

262 Motif Reference Manual

Motif Functions and Macros XmMapSegmentEncoding

Name
XmMapSegmentEncoding — get the compound text encoding format for a font
list element tag.

Synopsis

char * XmMapSegmentEncoding (char *fontlist_tag)

Inputs
fontlist_tag Specifies the compound string font list element tag.

Returns
A character string that contains a copy of the compound text encoding format or

NULL if the font list element tag is not found in the registry.

Availability
Motif 1.2 and later.

Description
XmMapSegmentEncoding() retrieves the compound text encoding format
associated with the specified fontlist_tag. The toolkit stores the mappings
between compound text encodings and font list elements tags in a registry.
XmMapSegmentEncoding() searches the registry for a compound text encod-
ing format associated with the specified fontlist_tag and returns a copy of the for-
mat. If fontlist_tag is not in the registry, the routine returns NULL.
XmMapSegmentEncoding() allocates storage for the returned character
string; the application is responsible for freeing the storage using XtFree().

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication.

XmCvtXmStringToCT() converts a compound string into compound text by
using the font list tag of each compound string segment to select a compound text
format from the registry for the segment. XmMapSegmentEncoding() pro-
vides a way for an application to determine the compound text format that would
be used for a particular font list element tag.

See Also
XmCvtXmStringToCT(1), XmRegisterSegmentEncoding(l).

Motif Reference Manual 263

XmMenuPosition Motif Functions and Macros

Name
XmMenuPosition — position a popup menu.

Synopsis
#include <Xm/RowColumn.h>

void XmMenuPosition (Widget menu, XButtonPressedEvent *event)

Inputs
menu Specifies the PopupMenu.

event Specifies the event that was passed to the action procedure manag-
ing the PopupMenu.

Description
XmMenuPosition() positions a popup menu, using the values of the x_root
and y_root fields from the specified event. An application must call this routine
before managing the popup menu, except when the application is positioning the
menu itself.

Usage
The event parameter for XmMenuPosition() is defined to be of type XButton-
PressedEvent *; using another type of event might lead to toolkit problems. The
x_rootand y_root fields in the event structure are used to position the menu at the
location of the mouse button press. You can modify these fields to position the
menu at another location.

In Motif 2.0 and later, a menu whose XmNpopupEnabled resource is
XmPOPUP_AUTOMATIC or XmPOPUP_AUTOMATIC_RECURSIVE has an
installed event handler which calls XmMenuPos i tion() directly without the
need for an application to intervene in posting the menu.

Example
The following routine shows the use of an event handler to post a popup menu.

void Postlt (Widget w, XtPointer client_data, XEvent *event, Boolean *dispatch)

{
Widget popup = (Widget) client_data;
XButtonPressedEvent *bevent = (XButtonPressedEvent *) event;
if ((bevent->type != ButtonPress) && (bevent->button 1= 3))

return;

XmMenuPosition (popup, bevent);
XtManageChild (popup);

}

264 Motif Reference Manual

Motif Functions and Macros XmMenuPosition

extern Widget some_widget; /* Where the menu is posted */
extern Widget my_menu; /* The menu to post */

XtAddEventHandler(some_widget, ButtonPressMask, False, Postlt, (XtPointer)
my_menu) ;

See Also
XmRowCo lumn(2), XmPopupMenu(2).

Motif Reference Manual 265

XmMessageBoxGetChild Motif Functions and Macros

Name
XmMessageBoxGetChild — get the specified child of a MessageBox widget.
Synopsis
#include <Xm/MessageB.h>
Widget XmMessageBoxGetChild (Widget widget, unsigned char child)
Inputs
widget Specifies the MessageBox widget.
child Specifies the child of the MessageBox widget. Pass one of the val-
ues from the list below.
Returns
The widget ID of the specified child of the MessageBox.
Availability

As of Motif 2.0, the toolkit abstract child fetch routines are marked for depreca-
tion. You should give preference to XtNameToWidget(), except when fetching
the MessageBox default button.

Description
XmMessageBoxGetChi 1d() returns the widget ID of the specified child of the
MessageBox widget.

Usage
The child values XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in the widget. A child value of
XmDIALOG_DEFAULT_BUTTON specifies the current default button. The
value XmDIALOG_SYMBOL_LABEL specifies the label used to display the
message symbol, while XmDIALOG_MESSAGE_LABEL specifies the mes-
sage label. XmDIALOG_SEPARATOR specifies the separator that is posi-
tioned between the message and the action buttons. For more information on the
different children of the MessageBox, see the manual page in Section 2, Motif
and Xt Widget Classes.

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON child using a public interface except
through XmMessageBoxGetChi 1d(), the routine should not be considered
truly deprecated. For consistency with the preferred new style, when fetching all
other child values, consider giving preference to the Intrinsics routine XtNam-
eToWidget(), passing one of the following names as the second parameter:

266 Motif Reference Manual

Motif Functions and Macros XmMessageBoxGetChild

“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)

Structures
The possible values for child are:

XmDIALOG_CANCEL_BUTTON XmDIALOG_OK_BUTTON
XmDIALOG_DEFAULT_BUTTON XmDIALOG_SEPARATOR
XmDIALOG_HELP_BUTTON

XmDIALOG_SYMBOL_LABEL

XmDIALOG_MESSAGE_LABEL

See Also
XmBul letinBoard(2), XmBulletinBoardDialog(2), XmErrorDialog(2),
XmInformationDialog(2), XmManager(2), XmMessageBox(2),
XmMessageDialog(2), XmQuestionDialog(2),
XmTemplateDialog(2), XmWarningDialog(2),
XmWorkingDialog(2).

Motif Reference Manual 267

XmMultiListDeselectltems Motif Functions and Macros

Name
XmMultiListDeselectltems—clear the selection state of items of a MultiList.
Synopsis
#include <Xm/MultiList.h>
void XmMultiListDeselectltems (Widget widget, XmString item, int column)
Inputs
widget Specifies the MultiList widget.
item Specifies XmString to use as selection key.
column Specifies a column number to match.
Description
XmMultiListDeselectltems() clears the selection state of the MultiList widget by
matching column entries to item.
Usage
The column specifies the column number in the MultiList starting from 0 or
XmANY_COLUMN.
See Also

XmMultiList(2).

268 Motif Reference Manual

Motif Functions and Macros XmMultiListDeselectRow

Name
XmMultiListDeselectRow — clear the selection state of a specified row of a Mul-
tiList widget.
Synopsis
#include <Xm/MultiList.h>
void XmMultiListDeselectRow (Widget widget, int row)
Inputs
widget Specifies the MultiList widget.
child Specifies a row to select.
Description
XmMultiListDeselectRow() clears the selection state of the row of a MultiList
widget.
Usage
The row specifies the row number in the MultiList starting from 0.
See Also

XmMultiList(2).

Motif Reference Manual 269

XmMultiListGetSelectedRowArray Motif Functions and Macros

Name
XmMultiListGetSelectedRowArray — returns NULL-terminated array of pointers
to selected rows of MultiL.ist.

Synopsis
#include <Xm/MultiList.h>

int * XmMultiListGetSelectRowArray (Widget widget, int *num_rows)

Inputs
widget Specifies the MultiList widget.

Outputs
num_row Returns the number of returned rows.

Returns
NULL-terminated array of pointers to selected rows of MultiList.

Description
XmMultiListGetSelectedRowArray() returns NULL_terminated array
of pointers to selected rows of MultiList. XmMul tiListGetSelectedRo-
wArray() allocated storage for the returned array; the application is responsible
for freeing this storage using XtFree().

Usage
XmMultiListGetSelectedRowArray() is a convenience routine that pro-
vides a way to obtain numbers of selected rows in a list.

See Also
XmMultiList(2).

270 Motif Reference Manual

Motif Functions and Macros XmMultiListGetSelectedRows

Name
XmMultiListGetSelectedRows — An Extended List function that returns the
rows that currently are selected.
Synopsis
#include <Xm/MultiList.h>
XmMultiListRowlnfo ** XmMultiListGetSelectedRows(Widget widget);
Inputs
widget Specifies the ID of the Extended list widget.
Outputs
Xm18Rowlnfo ** Contains a NULL terminated array of Xm18RowInfo
pointers.
Availability

Motif 2.2 and later.

Description

This function return an a NULL terminated array of Xm18RowiInfo pointers. The
calling routine is responsible for freeing the returned pointer with XtFree(). The
function will return NULL if no elements are selected.

Usage

Use this routine to find the rows that currently are selected in an extended list.

See Also
XmMultiList(2).

Motif Reference Manual 271

XmMultiListMakeRowVisible Motif Functions and Macros

Name
XmMultiListMakeRowVisible — make row of a MultiList widget visible.

Synopsis
#include <Xm/MultiList.h>

void XmMultiListMakeRowVisible (Widget widget, int row)

Inputs
widget Specifies the MultiList widget.

row Specifies a row to be made visible.

Description

XmMultiListMakeRowVisible() scrolls the MultiList to make the specified row
visible.

Usage
The row specifies the row number in the MultiList starting from 0.

See Also
XmMultiList(2).

272 Motif Reference Manual

Motif Functions and Macros XmMultiListSelectAllltems

Name
XmMultiListSelectAllltems — set the selection state on all rows of a MultiList.
Synopsis
#include <Xm/MultiList.h>
void XmMultiListSelectAllltems (Widget w, Boolean notify)
Inputs
widget Specifies the MultiList widget.
notify Specifies whether to call XmNsingleSelectionCallback for each item
in a list.
Description
XmMultiListSelectAllltems() sets the selection state of the MultiList widget on
all rows.
See Also
XmMultiList(2).

Motif Reference Manual 273

XmMultiListSelectltems Motif Functions and Macros

Name
XmMultiListSelectltems — set the selection state of items of a MultiList.

Synopsis
#include <Xm/MultiList.h>
void XmMultiListSelectltems(Widget widget, XmString item, int column,
Boolean notify)

Inputs

widget Specifies the MultiList widget.
item Specifies XmString to use as a selection key.
column Specifies a column number to match.
notify Specifies whether to call XmNsingleSelectionCallback.

Description
XmMultiListSelectltems() sets the selection state of the MultiList widget by
matching column entries to item.

Usage
The column specifies the column number in the MultiList starting from 0 or
XmANY_COLUMN.

See Also
XmMultiList(2).

274 Motif Reference Manual

Motif Functions and Macros XmMultiListSelectRow

Name
XmMultiListSelectRow —set the selection state of a specified row of a MultiList
widget.
Synopsis
#include <Xm/MultiList.h>
void XmMultiListSelectRow (Widget widget, int row, Boolean notify)
Inputs
widget Specifies the MultiList widget.
child Specifies a row to select.
notify Specifies whether to call XmNsingleSelectionCallback for the row.
Description
XmMultiListSelectRow() toggles the selection state of the row of the MultiList
widget.
Usage
The row specifies the row number in the MultiList starting from 0.
See Also

XmMultiList(2).

Motif Reference Manual 275

XmMultiListToggleRow Motif Functions and Macros

Name
XmMultiListToggleRow-toggle the selection state of a specified row of a Multi-
List widget.
Synopsis
#include <Xm/MultiList.h>
void XmMultiListToggleRow (Widget widget, short row)
Inputs
widget Specifies the MultiList widget.
child Specifies a row of the MultiList widget.
Description
XmMultiListToggleRow() returns the selection state of the MultiList widget.
Usage
The row specifies the row number in the MultiList starting from 0.
See Also

XmMultiList(2).

276 Motif Reference Manual

Motif Functions and Macros XmMultiListUnselectAllltems

Name
XmMultiListUnselectAllltems — An Extended List function that deselects all
rows of the list
Synopsis
#include <Xm/MultiList.h>
void XmMultiListUnselectAllltems(Widget widget);
Inputs
widget Specifies the ID of the Extended list widget
Availability
Motif 2.2 and later.
Description
XmMultiListUnselectAllltems() unhightlights all of the selected items in the
specified widget.
Usage
XmMultiListUnselectAllltems() is a convience routine that allows you to dese-
lect all items in a list.
See Also

XmMultiList(2).

Motif Reference Manual 277

XmMultiListUnselectltem Motif Functions and Macros

Name
XmMultiListUnselectltem — An Extended List function that deselects the speci-
fied item of the list.

Synopsis
#include <Xm/MultiList.h>

void XmMultiListUnselectltem(Widget widget, Xm18RowInfo *row_info);

Inputs
widget Specifies the ID of the Extended list widget

row_info Specifies the pointer to the row which is to be unselected.

Availability
Motif 2.2 and later.

Description

XmMultiListUnselectltem unselects the row designated by row_info of the
passed extended list widget.

Usage
XmMultiListUnselectltem() is a convience routine that allows you to deselect an
item in a list.

See Also
XmMultiList(2)

278 Motif Reference Manual

Motif Functions and Macros XmNotebookGetPagelnfo

Name
XmNotebookGetPagelnfo — return information about a Notebook page.
Synopsis
#include <Xm/Notebook.h>
XmNotebookPageStatus XmNotebookGetPagelnfo (Widget
widget,
int
page_number,
XmNotebookPagelnfo
*page_info)
Inputs
widget Specifies the Notebook widget.
page_number Specifies a logical page number.
Outputs
page_info Returns a structure into which the requested page information is
placed.
Returns
The status of the search for the requested information.
Availability
Motif 2.0 and later.
Description

XmNotebookGetPage I nfo() returns information associated with a logical
page of the Notebook.

The Notebook searches through the list of its children, looking for those which
are associated with the logical page number specified by page_number. The
Notebook principally searches for page children, but collects data in passing on
any status area child with a matching logical number, or major and minor tab
children whose logical page number does not exceed page_number. The function
returns within the page_info structure the data collected for each of the child
widget types.

If the requested page_number is greater than the value of the Notebook XmNlast-
PageNumber resource, or less than the Notebook XmNfirstPageNumber value,
the function returns XmPAGE_INVALID.

Otherwise, if exactly one matching page child is found, the function returns
XmPAGE_FOUND. If more than one matching page child is found, the routine
returns XmPAGE_DUPLICATED. For no matching page child, the return value
is XmPAGE_EMPTY.

Motif Reference Manual 279

XmNotebookGetPagelnfo Motif Functions and Macros

Usage

Structures

See Also

280

XmNotebookGetPagelnfo performs a linear search through the children of the
Notebook for widgets whose XmNpageNumber constraint resource matches the
requested page_number. If a matching child is found with the XmNnotebook-
ChildType resource set to XmPAGE, the widget ID is stored within the
page_widget element of the page_info structure. If a matching child is of type
XmSTATUS_AREA, the widget ID is placed in the status_area_widget element.
If during the search a child widget is found which is of type XmMAJOR_TAB,
and the logical page number of the child does not exceed page_number, the
widget ID is stored within the major_tab_widget element. Again, if a child
widget is found of type XmMINOR_TAB, and the logical page number of the
child does not exceed page_number, the widget ID is stored within the
minor_tab_widget element of page_info.

The page_widget, status_area_widget, major_tab_widget, and
minor_tab_widget elements of the page_info structure are set during the search
as each Notebook child is compared, even if no XmPAGE child is found, or if
page_number exceeds the Notebook first and last page resources. An element of
the page_info structure can be NULL if no child of the associated type is found
with a logical page number which meets the matching criteria.

The Notebook automatically sorts children into ascending logical page order, and
the search is terminated as soon as any child has a logical page number which
exceeds the requested page_number.

XmNotebookPagelnfo is defined as follows:
typedef struct {
int page_number; I* the requested page number ~ */
Widget page_widget; [* any matching page widget ~ */
Widget status_area_widget; [* any matching status area widget */
Widget major_tab_widget; I* the nearest major tab widget */
Widget minor_tab_widget; /* the nearest minor tab widget */

} XmNotebookPagelnfo;

A XmNotebookPageStatus can have one of the following values:

XmPAGE_FOUND XmPAGE_INVALID
XmPAGE_EMPTY XmPAGE_DUPLICATED
XmNotebook(2).

Motif Reference Manual

Motif Functions and Macros XmObjectAtPoint

Name
XmObjectAtPoint — determine the child nearest to a point.

Synopsis
#include <Xm/Xm.h>
Widget XmObjectAtPoint (Widget widget, Position x, Position y)

Inputs
widget Specifies a composite widget.
X Specifies an X coordinate relative to the widget left side.
y Specifies an Y coordinate relative to the widget top side.
Returns

The widget most closely associated with the coordinate X, v.

Availability
Motif 2.0 or later.

Description
XmObjectAtPoint() searches the list of children of widget, and returns the
widget ID of the child associated with the x, y coordinate. x andy are interpreted
as pixel values, relative to the top left of the Manager widget.

Usage
XmOb jectAtPoint() calls the object_at_point method associated with a Man-
ager widget, in order to determine the child of the Manager most closely associ-
ated with the coordinate specified by x and y. Each widget class may override the
object_at_point method inherited from Manager, to redefine what is meant by
"associated".
The default Manager class method returns the last managed gadget which con-
tains the coordinate.
The DrawingArea overrides the default method, and performs a simple linear
search for the first managed child, widget or gadget, which contains the coordi-
nate.
The Container overrides the object_at_point method, by searching through the
list of logical child nodes, using any XmQTpointin trait held by each child to
determine a logical match with the coordinate. If no XmQTpointln is held by the
child, the Container simply checks whether the coordinate is within the child
dimensions. The IconGadget holds the XmQTpointlIn trait, although neither this
fact nor the trait itself is otherwise documented.

See Also

XmContainer(2), XmDrawingArea(2), XmGadget(2),

Motif Reference Manual 281

XmObjectAtPoint Motif Functions and Macros

XmlconGadget(2), XmManager(2).

282 Motif Reference Manual

Motif Functions and Macros XmOptionButtonGadget

Name

XmOptionButtonGadget — get the CascadeButtonGadget in an option menu
Synopsis

#include <Xm/RowColumn.h>

Widget XmOptionButtonGadget (Widget option_menu)

Inputs
option_menu Specifies the option menu.

Returns
The widget ID of the internal CascadeButtonGadget.

Description

XmOptionButtonGadget() returns the widget ID for the internal Cascade-
ButtonGadget that is created when the specified option_menu widget is created.
An option menu is a RowColumn widget containing two gadgets: a CascadeBut-
tonGadget that displays the current selection and posts the submenu and a Label-

Gadget that displays the XmNlabelString resource.

Usage
XmOptionButtonGadget() provides a way for an application to access the
internal CascadeButtonGadget that is part of an option menu. Once you have
retrieved the gadget, you can alter its appearance. In Motif 1.2, you can also
specify resources for the gadget using the widget name OptionButton.

See Also

XmOptionLabelGadget(l), XmCascadeButtonGadget(2),
XmLabe lGadget(2), XmOptionMenu(2), XmRowCo lumn(2).

Motif Reference Manual

283

XmOptionLabelGadget Motif Functions and Macros

Name
XmOptionLabelGadget — get the LabelGadget in an option menu.

Synopsis
#include <Xm/RowColumn.h>

Widget XmOptionLabelGadget (Widget option_menu)

Inputs
option_menu Specifies the option menu.

Description
XmOptionLabelGadget() returns the widget ID for the internal LabelGadget
that is created when the specified option_menu widget is created. An option
menu is a RowColumn widget containing two gadgets: a LabelGadget that dis-
plays the XmNIlabelString resource, and a CascadeButtonGadget that displays
the current selection and posts the submenu.

Usage
XmOptionLabelGadget() provides a way for an application to access the
internal LabelGadget that is part of an option menu. Once you have retrieved the
gadget, you can alter its appearance. In Motif 1.2, you can also specify resources
for the gadget using the widget name OptionLabel.

See Also
XmOptionButtonGadget(l), XmCascadeButtonGadget(2),
XmLabe lGadget(2), XmOptionMenu(2), XmRowCo lumn(2).

284 Motif Reference Manual

Motif Functions and Macros XmPanedGetPanes

Name
XmPanedGetPanes — A Paned function that retrieves the panes in the widget.

Synopsis
#include <Xm/Paned.h>

void XmPanedGetPanes (Widget widget, WidgetList *panes_returned, int
*num_panes_returned)

Inputs
widget Specifies the widget ID of the Paned window.

panes_returned Specifies the list of panes in the Paned window widget.
num_panes_returnedSpecifies the number of panes in the Paned window widget.

Description
XmPanedGetPanes() retrieves the panes in the widget. Because the Paned
widget adds children other than the panes, these values are not the same as those
retrieved with the XmNchildren and XmNnumChildren resources.

Usage
XmPanedGetPanes() is a convenience routine that retrieves the panes in the
widget.

See Also
XmPaned(2).

Motif Reference Manual 285

XmParseMappingCreate Motif Functions and Macros

Name
XmParseMappingCreate — create a parse mapping.

Synopsis

XmParseMapping XmParseMappingCreate (Arg *arg_list, Cardinal arg_count)

Inputs
arg_list Specifies an argument list, consisting of resource name/value pairs.

arg_count Specifies the number of arguments in arg_list.

Returns
An allocated parse mapping.

Availability
Motif 2.0 and later.

Description
XmParseMappingCreate() creates a parse mapping, which is an entry in a
parse table. A parse mapping consists minimally of a match pattern, and a substi-
tution pattern or procedure, which can be used by string parsing functions in
order to compare against and subsequently transform text. A parse mapping is
created through a resource style argument list, where arg_list is an array of
resource name/value pairs, and arg_count is the number of such pairs.

Usage
A parse table is an array of parse mappings. XmParseMappingCreate() cre-
ates a parse mapping using a resource style parameter list. The parse table can
subsequently be passed to XmStringParseText() in order to filter or modify
an input string.

XmParseMappingCreate() allocates storage associated with the returned
parse mapping object. It is the responsibility of the programmer to free the allo-
cated memory by a call to XmParseMappingFree() at the appropriate
moment.

Example
The following code fragment creates a parse mapping which performs a simple
swap of occurrences of two characters within an input string:

char *swapover (char *input, /* input string */

char *a, /* only first character in array used */
char *Db) /* only first character in array used */
{
XmString tmp;

XmParseMapping parse_mapping;

286 Motif Reference Manual

Motif Functions and Macros XmParseMappingCreate

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));

Cardinal parse_table_index = 0;

Arg argv[4];

Cardinal argc =0;

char *output = (char *) 0;

/* create a XmParseMapping object to swap *a with *b */

argc = 0;

tmp = XmStringCreatelLocalized (a);

XtSetArg (argv[argc], XmNincludeStatus, XmMINSERT);
argct++;

XtSetArg (argv[argc], XmNsubstitute, tmp);

argct++;

XtSetArg (argv[argc], XmNpattern, b);

argc++;

XtSetArg (argv[argc], XmNpatternType, XmMCHARSET_TEXT);
argct++;

parse_mapping = XmParseMappingCreate (argv, argc);
parse_table[parse_table_index++] = parse_mapping;
XmsStringFree (tmp);

/* create a XmParseMapping object to swap *b with *a */
argc =0;

tmp = XmStringCreatelLocalized (b);

XtSetArg (argv[argc], XmNincludeStatus, XmMINSERT);
argct++;

XtSetArg (argv[argc], XmNsubstitute, tmp);

argct++;

XtSetArg (argv[argc], XmNpattern, a);

argct++;

XtSetArg (argv[argc], XmNpatternType, XMCHARSET_TEXT);
argct++;

parse_mapping = XmParseMappingCreate (argv, argc);
parse_table[parse_table_index++] = parse_mapping;
XmsStringFree (tmp);

/* substitute using the XmParseMapping. */

tmp = XmStringParseText ((XtPointer) input, NULL, NULL,
XmMCHARSET_TEXT,
parse_table, parse_table_index, NULL);
XmParseTableFree (parse_table, parse_table_index);

Motif Reference Manual 287

XmParseMappingCreate Motif Functions and Macros

/* convert XmString to String */
if (tmp = (XmString) 0) {
output = (char *) XmStringUnparse (tmp, NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT, NULL,

0, XmOUTPUT_ALL);!
XmsStringFree (tmp);

}

return output;

See Also
XmParseMappingFree(1), XmParseMappingGetValues(1),
XmParseMappingSetValues(1l), XmParseTableFree(l),
XmStringParseText(1l), XmStringUnparse(l),
XmParseMapping(2) .

1.The code sample in the 2nd edition used XmSEtringGetLtoR() to convert the compound string. Xm-—
StringGetLtoR() is deprecated as of Motif 2.0.

288 Motif Reference Manual

Motif Functions and Macros XmParseMappingFree

Name
XmParseMappingFree — free the memory used by a parse mapping.
Synopsis
void XmParseMappingFree (XmParseMapping parse_mapping)
Inputs
parse_mapping Specifies a parse mapping.
Availability
Motif 2.0 and later.
Description

XmParseMappingFree() deallocates storage used by the specified parse
mapping object.

Usage

The XmParseMapping type is opaque, and represents an entry in a parse table,

which can be used for transforming text. A parse mapping is created by

XmParseMappingCreate(), which allocates storage for the object repre-

sented by the type, and it is the responsibility of the programmer to reclaim the

memory when the parse mapping is no longer required.

It is important to call XmParseMappingFree() rather than XtFree() upon
redundant parse mappings, otherwise compound strings internally referenced by

the object are not deallocated.

See Also

XmParseMappingCreate(l), XmParseMappingGetValues(1),
XmParseMappingSetValues(l), XmParseTableFree(l),
XmStringParseText(l), XmParseMapping(2).

Motif Reference Manual

289

XmParseMappingGetValues Motif Functions and Macros

Name
XmParseMappingGetValues — fetch resources from a parse mapping object.
Synopsis
void XmParseMappingGetValues (XmParseMapping parse_mapping,
Arg *arg_list,
Cardinal arg_count)
Inputs
parse_mapping Specifies a parse mapping object.
arg_count Specifies the number of arguments in the list arg_list.
Outputs
arg_list Specifies the argument list of name/value pairs that contain the
resource names and addresses into which the resource values
are to be stored.
Availability
Motif 2.0 and later.
Description
XmParseMappingGetValues() fetches selected attributes from
parse_mapping. The set of attributes retrieved is specified through the resource
list arg_list, each element of the list being a structure containing a name/value
pair. The number of elements within the list is given by arg_count.
Usage
If the XmNsubstitute attribute of the parse mapping is retrieved, the procedure
returns a copy of the internal value. It is the responsibility of the programmer to
recover the allocated space at a suitable point by calling XmStringFree().
Example
The following code illustrates fetching the values from an XmParseMapping:
XtPointer pattern;
XmTextType pattern_type;
XmString substitute;
XmParseProc parse_proc;
XtPointer client_data;
XmincludeStatus include_status;
Arg argv[6];
Cardinal argc = 0;
/* construct a resource-style argument list for all XmParseMapping values */
XtSetArg (argv[argc], XmNpattern, &pattern); argc++;
XtSetArg (argv[argc], XmNpatternType, &pattern_type); argc++;
290 Motif Reference Manual

Motif Functions and Macros XmParseMappingGetValues

XtSetArg (argv[argc], XmNsubstitute, &substitute); argc++;
XtSetArg (argv[argc], XmNinvokeParseProc, &parse_proc); argc++;
XtSetArg (argv[argc], XmNclientData, &client_data); argc++;
XtSetArg (argv[argc], XmNincludeStatus, &include_status); argc++;

/* fetch the values. parse_mapping here is an unspecified XmParseMapping */
XmParseMappingGetValues (parse_mapping, argv, argc);

/* XmParseMappingGetValues returns a copy of the XmNsubstitute value */
/* which must be freed when no longer required by the application */
XmsStringFree (substitute);

See Also
XmParseMappingCreate(1), XmParseMappingFree(l),
XmParseMappingSetValues(l), XmParseTableFree(l),
XmParseMapping(2).

Motif Reference Manual 291

XmParseMappingSetValues Motif Functions and Macros

Name
XmParseMappingSetValues — sets resources for a parse mapping object.
Synopsis
void XmParseMappingSetValues (XmParseMapping parse_mapping,
Arg *arg_list,
Cardinal arg_count)
Inputs
parse_mapping Specifies a parse mapping object.
arg_list Specifies the list of name/value pairs containing resources to
be modified.
arg_count Specifies the number of arguments in the list arg_list.
Availability
Motif 2.0 and later.
Description
XmParseMappingSetValues() sets selected attributes within
parse_mapping. The set of attributes which is modified is specified through the
resource list arg_list, each element of the list being a structure containing a
name/value pair. The number of elements within the list is given by arg_count.
Usage

If the XmNsubstitute attribute of the parse mapping is set, the procedure inter-
nally takes a copy of the supplied value. It is the responsibility of the programmer
to recover the allocated space at a suitable point by calling XmStringFree().

Example
The following skeleton code illustrates changing the values of a parse mapping:

XmincludeStatus map_tab (XtPointer *in_out,
XtPointer text_end, /* unused
*
/ XmTextType type, /* unused
*
: XmStringTag tag, /* unused
*
: XmParseMapping entry, /* unused
*
/ int pattern_length, /* unused
*
/ XmString *str_out,

292 Motif Reference Manual

Motif Functions and Macros

See Also

*/

}

XmParseMappingSetValues

XtPointer call_data) /* unused

/* Insert an XmString Tab component into the output stream */
*str_out = XmStringComponentCreate
(XmSTRING_COMPONENT_TAB, 0, NULL);

*in_out = (*in_out + 1);

return XmINSERT;

/* change a parse mapping to invoke the above parse procedure */
void set_parse_tab_mapping (XmParseMapping parse_mapping)

{

Arg argv[4];
Cardinal argc =0;

/* construct resource-style argument list for XmParseMapping values */

XtSetArg (argv[argc], XmNpattern, "“\t");

argc++;

XtSetArg (argv[argc], XmNpatternType, XMCHARSET_TEXT);
argc++;

XtSetArg (argv[argc], XmNincludeStatus, XmMINVOKE);

argc++;

XtSetArg (argv[argc], XmNinvokeParseProc, map_tab);
argc++;

/* change the values */
XmParseMappingSetValues (parse_mapping, argv, argc);

XmParseMappingCreate(l), XmParseMappingFree(l),
XmParseMappingGetValues(l), XmParseTableFree(l),
XmParseMapping(2),

Motif Reference Manual 293

XmParseTableFree Motif Functions and Macros

Name
XmParseTableFree — free the memory used by a parse table.
Synopsis
void XmParseTableFree (XmParseTable parse_table, Cardinal parse_count)
Inputs
parse_table Specifies a parse table.
parse_count Specifies the number of entries in the parse table.
Availability
Motif 2.0 and later.
Description
XmParseTableFree() deallocates storage used by the specified parse_table.
In addition, the function deallocates storage used by any parse mapping elements
of the table. parse_count indicates the number of mapping elements within the
table.
Usage
A parse table is an array of XmParseMapping objects. The XmParseMapping is
an opaque type, which is used when transforming text. Each parse mapping
object allocates memory in addition to any memory allocated by the parse table
array. It is important to call XmParseTableFree() rather than XtFree()
when deallocating storage associated with a parse table, otherwise objects con-
stituent within the array, and compound strings internally referenced by the parse
mapping objects, are not deallocated. The function should be called when a parse
table is no longer needed.
Example
/* Allocate a parse table */
XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
Cardinal parse_table_index = 0;
XmParseMapping parse_mapping;
Arg argv[MAX_ARGS];
Cardinal argc =0;

/* Create a XmParseMapping object */
argc =0;

parse_mapping = XmParseMappingCreate (argv, argc);

/* Insert into parse table */
parse_table[parse_table_index++] = parse_mapping;

294 Motif Reference Manual

Motif Functions and Macros XmParseTableFree

See Also

/* Create another XmParseMapping object */
argc =0;

parse_mapping = XmParseMappingCreate (argv, argc);

/* Insert into parse table */
parse_table[parse_table_index++] = parse_mapping;

/* Use the XmParseTable. */

tmp = XmStringParseText ((XtPointer) input, NULL, NULL,
XMCHARSET_TEXT, parse_table,
parse_table_index, NULL);

/* Free the parse table: this also frees the parse mappings */
XmParseTableFree (parse_table, parse_table_index);

XmParseMappingCreate(l), XmParseMappingFree(l),
XmParseMappingGetValues(l), XmParseMappingSetValues(1),
XmParseMapping(2).

Motif Reference Manual

295

XmPrintPopupPDM Motif Functions and Macros

Name
XmPrintPopupPDM - notify the Print Display Manager.
Synopsis
#include <Xm/Print.h>
XtEnum XmPrintPopupPDM (Widget print_shell, Widget video_shell)
Inputs
print_shell Specifies a PrintShell widget.
video_shell Specifies the widget on whose behalf the PDM dialog is
required.
Returns

Returns XmPDM_NOTIFY_SUCCESS if the PDM was notified,
XmPDM_NOTIFY_FAIL otherwise.

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the XmPrintShell within
the native Motif toolkit.!

Description
XmPrintPopupPDM() sends a notification to start a Print Display Manager for
the application. The notification is issued to either the display associated with
print_shell, or the display of video_shell, depending upon the value of the envi-
ronment variable XPDMDISPLAY. XPDMDISPLAY can only be set to "print"
or "video". If the value is "print", the notification is sent to the display of
print_shell, and similarly the value "video" sends the notification to the display
of video_shell. If the notification could be sent, the function returns
XmPDM_NOTIFY_SUCCESS, otherwise the return value is
XmPDM_NOTIFY_FAIL.

Usage
XmPrintPopupPDM() is a convenience function which issues a notification
through the X selection mechanisms in order to start a Print Dialog Manager. The
notification is issued asynchronously: the return value
XmPDM_NOTIFY_SUCCESS indicates that the message has successfully been
issued, not that any PDM is now initialized. In order to track the status of the
PDM, the programmer registers an XmNpdmNotificationCallback with the
widget print_shell, which must be an instance of the PrintShell widget class. To
ensure that the contents of the video_shell is not modified whilst the PDM is ini-

1.Sun Solaris being a case in point.

296 Motif Reference Manual

Motif Functions and Macros XmPrintPopupPDM

tializing, XmPrintPopupPDM() creates an input-only window over the top of
video_shell, and the window is only removed when the PDM indicates that it is
present, or if the selection XmIPDM_START times out. The timeout period is set
at two minutes.

See Also
XmPrintSetup(l), XmPrintToFile(l), XmRedisplayWidget(l),
XmPrintShell(2).

Motif Reference Manual 297

XmPrintSetup Motif Functions and Macros

Name
XmPrintSetup — create a Print Shell widget.
Synopsis
#include <Xm/Print.h>
Widget XmPrintSetup (Widget video_widget,
Screen *print_screen,
String name
ArgList arg_list,
Cardinal arg_count)
Inputs
video_widget Specifies a widget from which video application data is
fetched.
print_screen Specifies the screen on which the PrintShell is created.
name Specifies the name of the created PrintShell.
arg_list Specifies an argument list of name/value pairs that contain
resources for the PrintShell.
arg_count Specifies the number of arguments in the list arg_list.
Returns
The created PrintShell, or NULL if no ApplicationShell can be found from
video_widget,
Availability

Motif 2.1 and later.

Note that not all operating system vendors incorporate the PrintShell in their
native toolkit.!

Description
XmPrintSetup() creates a PrintShell widget with the given name on the
screen print_screen. The new PrintShell is returned to the application. Resources
which configure the new print shell are supplied through an array of structures
which contain name/value pairs. The array of resources is arg_list, and the
number of items in the array is arg_count.

Usage
XmPrintSetup() creates a new ApplicationShell on the screen specified by
print_screen, and thereafter creates a PrintShell as a popup child. The new Appli-
cationShell is created with the same name and class as the ApplicationShell from
which video_widget is descended. The XmNmappedWhenManaged resource of

1.For example, Sun Solaris includes the headers, but does not compile the widget into the Motif library.

298 Motif Reference Manual

Motif Functions and Macros XmPrintSetup

the PrintShell is set to False under the assumption that subsequent notification of
the start of a job or page is the correct time to map the widget. The print shell is
finally realized, and returned.

See Also
XmPrintPopupPDM(1), XmPrintToFile(l), XmRedisplayWidget(1),
XmPrintShell(2).

Motif Reference Manual 299

XmPrintToFile Motif Functions and Macros

Name
XmPrintToFile — save X Print Server data to file.
Synopsis
#include <Xm/Print.h>
XtEnum XmPrintToFile (Display *display,
String file_name,
XPFinishProc finish_proc,
XPointer client_data)
Inputs
display Specifies the print connection to the X server.
file_name Specifies the name of the file to contain the print output.
finish_proc Specifies a procedure called when printing is finished.
client_data Specifies application data to be passed to finish_proc.
Returns
True if printing can be initiated, otherwise False.
Availability

Motif 2.1 and later.

Note that not all operating system vendors incorporate the XmPrintShell in their
native toolkits.

Description
XmPrintToFile() is a convenience function which provides a simple inter-
face onto the X Print mechanisms, in order to save print data to the file
file_name. Printing takes place asynchronously, and the programmer receives
notification of the status of the printing task by supplying finish_proc, which is
called when the task is finished. The display parameter is the print connection to
the X server, and is used to deduce an application name and class.

Usage
If XmPrintToFile() cannot open the file file_name for writing, create a pipe,
or fork off a child process, the procedure returns False. An application name and
class is deduced using the display parameter, and these are used by the child
process, which creates a new application context, and opens a new display con-
nection using the same name and class as the application process. Data is
retrieved from the X server through a call to XpGetDocumentData(). The
parent process does not wait for the child to complete, but returns immediately

1.For example, Sun Solaris supply the widget headers, but do not compile the component into the Motif library.

300 Motif Reference Manual

Motif Functions and Macros XmPrintToFile

after initiating the child process. The return value True therefore does not mean
that the print task is complete, merely that the task is initiated.

The application is notified of task completion by supplying an XPFinishProc.
The status parameter passed to the finish procedure when the task is completed is
set to XPGetDocFinished on successful completion. If for any reason the child
process fails to print the data, the file file_name is both closed and removed. The
file is closed in any case prior to calling the XPFinishProc.

XpStartJob() must be called by the application before XmPrintToFile()

can be called.
Structures
An XPFinishProc is specified as follows:
typedef void (*XPFinishProc)(Display *display,
XPContext context,
XPGetDocStatus status,
XPointer client_data);

If status is XPGetDocFinished, the print task has completed successfully.

See Also

XmPrintPopupPDM(1), XmPrintSetup(l), XmRedisplayWidget(l),
XmPrintShell(2).

Motif Reference Manual 301

XmProcessTraversal Motif Functions and Macros

Name

Synopsis

XmProcessTraversal — set the widget that has the keyboard focus.

Boolean XmProcessTraversal (Widget widget, XmTraversalDirection direction)

Inputs

widget Specifies the widget whose hierarchy is to be traversed.
direction Specifies the direction in which to traverse the hierarchy. Pass one
of the values from the list below.

Returns

True on success or False otherwise.

Description

Usage

302

XmProcessTraversal() causes the input focus to change to another widget
under application control, rather than as a result of keyboard traversal events
from a user. widget specifies the widget whose hierarchy is traversed up to the
shell widget. If that shell has the keyboard focus, XmProcessTraversal()
changes the keyboard focus immediately. If that shell does not have the focus,
the routine does not have an effect until the shell receives the focus.

The direction argument specifies the nature of the traversal to be made. In each
case, the routine locates the hierarchy that contains the specified widget and then
performs the action that is particular to the direction. If the new setting succeeds,
XmProcessTraversal() returns True. The routine returns False if the key-
board focus policy is not XmEXPLICIT, if no traversable items exist, or if the
arguments are invalid.

For XmTRAVERSE_CURRENT, if the tab group that contains widget is inac-
tive, it is made the active tab group. If widget is in the active tab group, it is given
the keyboard focus; if widget is the active tab group, the first traversable item in
it is given the keyboard focus. For XmTRAVERSE_UP,
XmMTRAVERSE_DOWN, XmTRAVERSE_LEFT, and
XmMTRAVERSE_RIGHT, in the hierarchy that contains widget, the item in the
specified direction from the active item is given the keyboard focus. For
XMTRAVERSE_NEXT and XmTRAVERSE_PREYV, in the hierarchy that con-
tains widget, the next and previous items in child order from the active item are
given keyboard focus. For XmTRAVERSE_HOME, in the hierarchy that con-
tains widget, the first traversable item is given the keyboard focus. For
XmMTRAVERSE_NEXT_TAB_GROUP and
XMTRAVERSE_PREV_TAB_GROUP, in the hierarchy that contains widget,

Motif Reference Manual

Motif Functions and Macros XmProcessTraversal

Example

the next and previous tab groups from the active tab group are given the key-
board focus.

In Motif 2.0 and later, new XmTraversalDirection values
XmMTRAVERSE_GLOBALLY_FORWARD and
XMTRAVERSE_GLOBALLY_BACKWARD are provided in order to imple-
ment the XmDisplay resource XmNenableButtonTab. If enabled, for
XMTRAVERSE_GLOBALLY_FORWARD navigation proceeds to the next (or
downwards, depending upon orientation) item within the current tab group,
unless the current location is the last item in the group, when navigation is into
the next tab group. Similarly, for XmTRAVERSE_GLOBALLY_BACKWARD
navigation proceeds to the previous (or upwards) item in the current tab group,
unless the current location is the first item in the group, when navigation is into
the previous tab group. The interpretation of the direction values
XmMTRAVERSE_GLOBALLY_FORWARD and
XMTRAVERSE_GLOBALLY_BACKWARD is reversed where XmNIlayoutDi-
rection is XmRIGHT_TO_LEFT.

XmProcessTraversal() does not allow traversal to widgets in different
shells or widgets that are not mapped. Calling XmProcessTraversal()
inside a XmNfocusCallback causes a segmentation fault.

The following code fragments shows the use of XmProcessTraversal() asa
callback routine for a text widget. When the user presses the Return key, the key-
board focus is advanced to the next input area:

Widget form, label, text;

form = XtVaCreateWidget ("form", xmFormWidgetClass, parent,
XmNorientation, XmHORIZONTAL,
NULL);

label = XtVaCreateManagedWidget ("label”, xmLabelGadgetClass, form,
XmNleftAttachment,
XmATTACH_FORM,
XmNtopAttachment,
XmATTACH_FORM,
XmNbottomAttachment,
XmATTACH_FORM,
NULL);

text = XtVVaCreateManagedWidget ("text", xmTextWidgetClass, form,
XmNleftAttachment,
XmATTACH_WIDGET,
XmNIleftWidget, label,

Motif Reference Manual 303

XmProcessTraversal Motif Functions and Macros

XmNtopAttachment,
XmATTACH_FORM,
XmNrightAttachment,
XmATTACH_FORM,
XmNbottomAttachment,
XmATTACH_FORM,
NULL);

XtAddCallback (text, XmNactivateCallback,
XmProcessTraversal, (XtPointer)
XmMTRAVERSE_NEXT_TAB_GROUP);

XtManageChild (form);

Structures
The possible values for direction are:

XmMTRAVERSE_CURRENT XMTRAVERSE_NEXT
XmTRAVERSE_UP XmMTRAVERSE_PREV
XmTRAVERSE_DOWN XmMTRAVERSE_HOME
XMTRAVERSE_LEFT

XMTRAVERSE_NEXT_TAB_GROUP

XmMTRAVERSE_RIGHT

XmTRAVERSE_PREV_TAB_GROUP
XMTRAVERSE_GLOBALLY_FORWARD
XMTRAVERSE_GLOBALLY_BACKWARD

See Also
XmGetFocusWidget(l), XmGetTabGroup(l), XmGetVisibility(l),
XmlsTraversable(l).

304 Motif Reference Manual

Motif Functions and Macros XmRedisplayWidget

Name

XmRedisplayWidget — force widget exposure for printing.
Synopsis

#include <Xm/Print.h>

void XmRedisplayWidget (Widget widget)

Inputs

widget Specifies the widget to redisplay.

Availability

Motif 2.1 and later.

Note that not all operating system vendors compile the XmPrintShell into their
native Motif toolkits.t

Description
XmRedisplayWidget() forces widget to redisplay itself by invoking the
expose method of the widget. The routine is a convenience function which hides
the internals of the X11R6 Xp mechanisms, which use widget exposure in order
to implement printing.

Usage
XmRedisplayWidget() constructs a region which corresponds precisely to
the location and area occupied by a widget. The expose method of the widget is
called directly using the region in order to redisplay the widget. XmRedis-
playWidget() is synchronous in effect. Asynchronous printing is performed
by creating a PrintShell, and specifying XmNstartJobCallback, XmNendJobCall-
back, and XmNpageSetupCallback procedures which are invoked in response to
X Print events as they arrive.

XmRedisplayWidget() is not multi-thread safe, nor is the widget parameter
fully validated: it is implicitly assumed to be the descendant of a PrintShell.

1.Sun Solaris supplied the widget headers, but the widget itself is compiled out of the Motif library.

Motif Reference Manual 305

XmRedisplayWidget Motif Functions and Macros

Example
The following code synchronously prints the contents of a text widget:

Widget app_shell, app_text;

Screen print_screen;

Display print_display;

Widget print_shell, print_form, print_text;

short rows;
int lines, pages, page;
char *data;

/* create a connection to the X Print server */
print_shell = XmPrintSetup (app_shell, print_screen, "PrintShell", NULL, 0);

/* create a suitable print hierarchy */
print_form = XmCreateForm (print_shell,...);
print_text = XmCreateText (print_form,...);

/* configure and manage the print hierarchy */

/* copy the video text to the print text */
/* what is copied depends upon whether it is */
/* contents and/or visuals that are printed */

data = XmTextGetString (app_text);
XmTextSetString (print_text, data);
XtFree (data);

[* start a print job */

print_display = XtDisplay (print_shell);

XpStartJob (print_display, XPSpool);

/* deduce number of logical pages in the print text widget */
XtVaGetValues (print_text, XmNrows, &rows, XmNtotalLines, &lines, 0);

for (page = 0, pages = lines / rows; page < pages; page++) {
/* start of page notification */
XpStartPage (print_display, XtWindow (print_shell), False);

[* force the print text to expose itself */
XmRedisplayWidget (print_text);

/* end of page notification */
XpEndPage (print_display);

/* scroll to next page */

306 Motif Reference Manual

Motif Functions and Macros XmRedisplayWidget

XmTextScroll (print_text, rows);

}

/* end of print job notification */
XpEndJob (print_display);

See Also
XmPrintPopupPDM(1), XmPrintSetup(l), XmPrintToFile(1),
XmPrintShell(2).

Motif Reference Manual 307

XmRegisterSegmentEncoding Motif Functions and Macros

Name

Synopsis

XmRegisterSegmentEncoding — register a compound text encoding format for a
font list element tag.

char *XmRegisterSegmentEncoding (char *fontlist_tag, char *ct_encoding)

Inputs

fontlist_tag Specifies the compound string font list element tag.
ct_encoding Specifies the compound text character set.

Returns

The old compound text encoding format for a previously-registered font list ele-
ment tag or NULL for a new font list element tag.

Availability

Motif 1.2 and later.

Description

Usage

See Also

308

XmRegisterSegmentEncoding() registers the specified compound text
encoding format ct_encoding for the specified fontlist_tag. Both fontlist_tag and
ct_encoding must be NULL-terminated 1SO8859-1 strings. If the font list tag is
already associated with a compound text encoding format, registering the font list
tag again overwrites the previous entry and the routine returns the previous com-
pound text format. If the font list tag is has not been registered before, the routine
returns NULL. If ct_encoding is NULL, the font list tag is unregistered. If
ct_encoding is the reserved value XmFONTLIST_DEFAULT_TAG, the font list
tag is mapped to the code set of the current locale. XmRegisterSegmentEn-
coding() allocates storage if the routine returns a character string; the applica-
tion is responsible for freeing the storage using XtFree().

Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication.

XmCvtXmStringToCT() converts a compound string into compound text. The
routine uses the font list tag of each compound string segment to select a com-
pound text format for the segment. A mapping between font list tags and com-
pound text encoding formats is stored in a registry.
XmRegisterSegmentEncoding() provides a way for an application to map
particular font list element tags to compound text encoding formats.

Motif Reference Manual

Motif Functions and Macros XmRegisterSegmentEncoding

XmCvtXmStringToCT(1), XmMapSegmentEncoding(l).

Motif Reference Manual 309

XmRemoveFromPostFromList Motif Functions and Macros

Name

XmRemoveFromPostFromList — make a menu inaccessible from a widget.
Synopsis

#include <Xm/RowColumn.h>

void XmRemoveFromPostFromList (Widget menu, Widget widget)

Inputs

menu Specifies a menu widget

widget Specifies the widget which no longer posts menu.
Availability

In Motif 2.0 and later, the functional prototype is removed from RowColumn.h,
although there is otherwise no indication that the procedure is obsolete. *

Description
XmRemoveFromPostFromList() is the inverse of the procedure XmAddTo-
PostFromWidget(). The menu hierarchy associated with menu is made inac-
cessible from widget.

Usage
If the type of menu is XmMENU_PULLDOWN, the XmNsubMenuld resource
of widget is set to NULL. If the type of menu is XmMENU_POPUP, event han-
dlers presumably added to widget by XmAddToPostFromWidget() in order to
post the menu are removed.

No check is made to ensure that the XmNsubMenuld resource of widget is origi-
nally set to menu before clearing the value. Passing the wrong menu into the pro-
cedure can therefore have unwanted effects. There are implicit assumptions that
widget is a CascadeButton or CascadeButtonGadget when menu is
XmMENU_PULLDOWN, and that widget is not a Gadget when menu is
XmMENU_POPUP. These are not checked by the procedure.

See Also
XmAddToPostFromList(l), XmGetPostedFromWidget(l),
XmPopupMenu(2), XmPul IdownMenu(2), XmRowCo lumn(2).

1.This is true of Motif 2.1.10, although the header reference is restored in the OpenMotif 2.1.30.

310 Motif Reference Manual

Motif Functions and Macros XmRemoveProtocolCallback

Name

Synopsis

XmRemoveProtocolCallback — remove client callback from a protocol.

#include <Xm/Protocols.h>

void XmRemoveProtocolCallback (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs

shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.

callback Specifies the procedure that is to be removed.

closure Specifies any client data that is passed to the callback.

Description

Usage

See Also

XmRemoveProtocolCal Iback() removes the specified callback from the
list of callback procedures that are invoked when the client message correspond-
ing to protocol is received.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-
ciated protocol callback routine. XmRemoveProtocolCal Iback() allows
you to unregister one of these callback routines. The inverse routine is XmAd-
dProtocolCal Iback().

XmAddProtocolCal lback(l), XmInternAtom(l),
XmRemoveWMProtocolCal lback(l), VendorShel 1(2).

Motif Reference Manual 311

XmRemoveProtocols Motif Functions and Macros

Name
XmRemoveProtocols — remove protocols from the protocol manager.

Synopsis
#include <Xm/Protocols.h>

void XmRemoveProtocols (Widget shell, Atom property, Atom *protocols, Car-
dinal num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmRemoveProtocols() removes the specified protocols from the protocol
manager and deallocates the internal tables for the protocols. If the specified shell
is realized and at least one of the protocols is active, the routine also updates the
handlers and the property. The inverse routine is XmAddProtocols().

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmRemoveProtocols() allows you eliminate protocols that can be under-
stood by your application. The inverse routine is XmAddProtocols().

See Also
XmAddProtocols(1), XmInternAtom(1l), XmRemoveWMProtocols(1),
VendorShel 1(2).

312 Motif Reference Manual

Motif Functions and Macros XmRemoveTabGroup

Name
XmRemoveTabGroup — remove a widget from a list of tab groups.

Synopsis

void XmRemoveTabGroup (Widget tab_group)

Inputs
tab_group Specifies the widget to be removed.

Availability
In Motif 1.1, XmRemoveTabGroup() is obsolete. It has been superseded by set-
ting XmNnavigationType to XmNONE.

Description
XmRemoveTabGroup() removes the specified tab_group widget from the list
of tab groups associated with the widget hierarchy. This routine is retained for
compatibility with Motif 1.0 and should not be used in newer applications. If
traversal behavior needs to be changed, this should be done by setting the XmN-
navigationType resource directly.

Usage
A tab group is a group of widgets that can be traversed using the keyboard rather
than the mouse. Users move from widget to widget within a single tab group by
pressing the arrow keys. Users move between different tab groups by pressing
the Tab or Shift-Tab keys. The inverse routine is XmAddTabGroup().

See Also
XmAddTabGroup(1), XmGetTabGroup(1l), XmManager(2),
XmPrimitive(2).

Motif Reference Manual 313

XmRemoveWMProtocolCallback Motif Functions and Macros

Name

Synopsis

XmRemoveWMProtocolCallback — remove client callbacks from a
XA_WM_PROTOCOLS protocol.

#include <Xm/Protocols.h>

void XmRemoveWMProtocolCallback (Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs

shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.

callback Specifies the procedure that is to be removed.

closure Specifies any client data that is passed to the callback.

Description

Usage

See Also

314

XmRemoveWMProtocolCal Iback() is a convenience routine that calls
XmRemoveProtocolCal Iback() with property set to
XA WM_PROTOCOL, the window manager protocol property.

The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a pro-
tocol, a client sends a ClientMessage event containing a property and protocol,
and the receiving client responds by calling the associated protocol callback rou-
tine. XmRemoveWMProtocolCal Iback() allows you to unregister one of
these callback routines with the window manager protocol property. The inverse
routine is XmAddWMProtocolCal Iback().

XmAddProtocolCal lback(l), XmAddWMProtocolCal Iback(l),
XmInternAtom(1l), XmRemoveProtocolCal Iback(l),
VendorShel1(2).

Motif Reference Manual

Motif Functions and Macros XmRemoveWMProtocols

Name
XmRemoveWMProtocols — remove the XA_WM_PROTOCOLS protocols from
the protocol manager.

Synopsis
#include <Xm/Protocols.h>

void XmRemoveWMProtocols (Widget shell, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmRemoveWMProtocols() is a convenience routine that calls XmRemove-
Protocols() with property set to XA_WM_PROTOCOL, the window man-
ager protocol property. The inverse routine is XmAddWMProtocols().

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. XmRemoveWMProto-
cols() allows you to remove this protocol so that it is no longer understood by
your application. The inverse routine is XmAddWMProtocols().

See Also
XmAddProtocols(1), XmAddWMProtocols(1), XmInternAtom(l),
XmRemoveProtocols(1), VendorShel 1(2).

Motif Reference Manual 315

XmRenderTableAddRenditions Motif Functions and Macros

Name
XmRenderTableAddRenditions — add renditions to a render table.
Synopsis
XmRenderTable XmRenderTableAddRenditions (XmRenderTable
old_table,
XmRendition
*new_renditions,
Cardinal
new_rendition_count,
XmMergeMode
merge_mode)
Inputs
old_table Specifies a render table.
new_renditions Specifies an array of renditions to merge with the
render table.
new_rendition_count Specifies the number of renditions in the array.
merge_mode Specifies the action to take if entries have the same
tag.
Returns
The newly allocated merged render table.
Availability
Motif 2.0 and later.
Description

316

A render table is a set of renditions which can be used to specify the way in
which XmStrings are drawn. XmRenderTableAddRenditions() creates a
new render table by merging the list of renditions specified by new_renditions
into the renditions contained within old_table. If a rendition with the same tag is
found in both old_table and new_renditions, merge_mode is used to give prece-
dence. The new render table is returned.

If old_table is NULL, a new render table is allocated which contains only the
renditions of new_renditions. If new_renditions is NULL or
new_rendition_count is zero, the old_table is returned unmodified. If a rendition
within old_table has the same tag as one within new_renditions, merge_mode
determines how to resolve the conflict. If merge_mode is
XmMERGE_REPLACE, the rendition within old_table is ignored, and the rendi-
tion within new_renditions is added to the new table. If the mode is
XmMMERGE_SKIP, the new table contains the rendition from old_table, and that
from new_renditions is ignored. If the mode is XmMMERGE_NEW, the rendition

Motif Reference Manual

Motif Functions and Macros XmRenderTableAddRenditions

within new_renditions is used, except that where any resources of the rendition
are unspecified, the value is copied from the matching rendition from the
old_table. A resource is unspecified if the value is XmAS_IS or NULL. Lastly, if
the mode is XmMMERGE_OLD, it is the old_table rendition which is added to the
new table, and any unspecified resources are taken from the new rendition.

Usage
The reference count for the original table is decremented and deallocated where
necessary, and a newly allocated render table containing the merged data is
returned. It is the responsibility of the programmer to reclaim the allocated mem-
ory for the returned render table by calling XmRenderTableFree() at a suita-
ble point.

Example

The following specimen code creates a set of renditions and merges them into an
unspecified render table:

XmRendition new_renditions[2];

XmRenderTable new_table;

Arg argv[4];

Cardinal argc = 0;

Pixel fg=.

Pixel bg =...;

XtSetArg (argv[argc], XmNfontName, "fixed");

argc++;

XtSetArg (argv[argc], XmNfontType, XmMFONT_IS_FONT);
argc++;

XtSetArg (argv[argc], XmNloadModel, XmLOAD_DEFERRED);
argc++;

new_renditions[0] = XmRenditionCreate (widget,
XmFONTLIST_DEFAULT_TAG, argv, argc);

argc =0;

XtSetArg (argv[argc], XmNrenditionBackground, bg); argc++;

XtSetArg (argv[argc], XmNrenditionForeground, fg); argc++;
new_renditions[1] = XmRenditionCreate (widget, "colors", argv, argc);
new_table = XmRenderTableAddRenditions (old_table, new_renditions, 2,
XmMMERGE_REPLACE);)

Motif Reference Manual 317

XmRenderTableAddRenditions Motif Functions and Macros

See Also
XmRenderTableCopy(1), XmRenderTableFree(1),
XmRenderTableGetRendition(l),
XmRenderTableGetRenditions(l), XmRenderTableGetTags(1),
XmRenderTableRemoveRenditions(l), XmRenditionCreate(l),
XmRenditionFree(l), XmRenditionRetrieve(l),
XmRenditionUpdate(l), XmRendition(2).

318 Motif Reference Manual

Motif Functions and Macros XmRenderTableCopy

Name

Synopsis

XmRenderTableCopy — copy a render table.

XmRenderTable XmRenderTableCopy (XmRenderTable old_table, XmString-
Tag *tags, int tag_count)

Inputs

old_table Specifies the table containing the renditions to be copied.
tags Specifies an array of tags. Renditions with matching tags are
copied.

tag_count Specifies the number of items within the tags array.

Returns

A new render table containing renditions with matching tags, or NULL.

Availability

Motif 2.0 and later.

Description

Usage

See Also

An XmRenderTable is an array of XmRendition objects, which are used to
render compound strings. XmRenderTableCopy() creates a newly allocated
render table by copying renditions from an existing table, old_table. An array of
tags can be supplied which acts as a filter: only those renditions from old_table
which have a matching XmNtag resource are copied. The number of items within
any tags array is specified through tag_count. If tags is NULL, all of the rendi-
tions within old_table are copied. If old_table is NULL, the function returns
NULL.

The function allocates storage for the returned render table, including storage for
each of the newly copied renditions. It is the responsibility of the programmer to
reclaim the memory at an appropriate point by calling XmRenderTable-
Free().

In Motif 2.0 and later, the XmRenderTable supersedes the XmFontList, which is
now considered obsolete. For backwards compatibility, the XmFontList opaque
type is implemented through the render table.

XmRenderTableAddRenditions(l), XmRenderTableFree(l),
XmRenderTableGetRendition(l),
XmRenderTableGetRenditions(l), XmRenderTableGetTags(l),
XmRenderTableRemoveRenditions(l), XmRenditionCreate(l),
XmRenditionFree(l), XmRenditionRetrieve(l),

Motif Reference Manual 319

XmRenderTableCopy Motif Functions and Macros

XmRenditionUpdate(l), XmRendition(2).

320 Motif Reference Manual

Motif Functions and Macros XmRenderTableCvtFromProp

Name
XmRenderTableCvtFromProp — convert from a string representation into a
render table.

Synopsis

XmRenderTable XmRenderTableCvtFromProp (Widget widget, char *property,
unsigned int length)
Inputs
widget Specifies a destination widget in a data transfer.
property Specifies the render table in string representation format.
length Specifies the number of bytes in the property string.

Returns
The converted render table.

Availability
Motif 2.0 and later.

Description
XmRenderTableCvtFromProp() converts a string representation of a render
table into an XmRenderTable. The string representation to be converted is given
by property, and the size of the string in bytes is length.

Usage
Typically, the procedure is used within the destination callback of widget when it
is the target of a data transfer. The inverse function XmRenderTableCvtTo-
Prop() is called by the convert procedures of the source of the data transfer.
XmRenderTableCvtFromProp() returns allocated memory, and it is the
responsibility of the programmer to reclaim the space at a suitable point by call-
ing XmRenderTableFree().

See Also

XmRenderTableCvtToProp(l), XmRenderTableFree(l),
XmRendition(2).

Motif Reference Manual 321

XmRenderTableCvtToProp Motif Functions and Macros

Name
XmRenderTableCvtToProp — convert a render table into a string representation.
Synopsis
unsigned int XmRenderTableCvtToProp (Widget widget,
XmRenderTable render_table,
char
**property_return)
Inputs
widget Specifies a source widget for the render table.
render_table Specifies the render table to convert.
Outputs
property_return Returns the string representation of the converted render
table.
Returns
The number of bytes in the converted string representation.
Availability
Motif 2.0 and later.
Description
XmRenderTableCvtToProp() converts an XmRenderTable render_table
into a string representation at the address specified by property_return. The
length of the converted string is returned.
Usage
Typically, the procedure is used within the convert callback of widget when it is
the source of a data transfer. The procedure returns allocated memory within
property_return, and it is the responsibility of the programmer to reclaim the
space at a suitable point by calling XtFree().
The standard built-in conversion routines within the Uniform Transfer Model
internally call XmRenderTableCvtToProp() when asked to convert the
_MOTIF_RENDER_TABLE selection.
See Also

XmRenderTableCvtFromProp(l), XmRendition(2).

322 Motif Reference Manual

Motif Functions and Macros XmRenderTableFree

Name
XmRenderTableFree — free the memory used by a render table.

Synopsis
void XmRenderTableFree (XmRenderTable table)

Inputs

table Specifies the render table to free.

Availability
Motif 2.0 and later.

Description
XmRenderTableFree() is a convenience function which deallocates space
used by the render table table.

Usage
Render tables, and the renditions which they contain, are reference counted. It is
important to call XmRenderTableFree() on a render table rather than
XtFree() so that each rendition in the table is properly deallocated. Motif
caches and shares render tables and the renditions which they contain, and so an
improper XtFree() would not respect any sharing currently in place.
XmRenderTableFree() does not actually free the render table until the refer-
ence count is zero.

See Also

XmRenderTableAddRenditions(l), XmRenderTableCopy(1),
XmRenderTableRemoveRenditions(l), XmRenditionCreate(l),
XmRenditionFree(l), XmRendition(2).

Motif Reference Manual 323

XmRenderTableGetRendition Motif Functions and Macros

Name
XmRenderTableGetRendition — search a render table for a matching rendition.

Synopsis

XmRendition XmRenderTableGetRendition (XmRenderTable table, XmString-
Tag tag)
Inputs
table Specifies the render table to search.
tag Specifies the tag with which to find a rendition.

Returns
A Rendition which matches tag, otherwise NULL.

Availability
Motif 2.0 and later.

Description
XmRenderTableGetRendition() is a convenience function which searches
table, and returns the rendition which matches tag.

Usage
XmRenderTableGetRendition() performs a linear search through the ren-
ditions contained within table, comparing the XmNtag resource value with the

search string given by tag. If no match is found, any XmNnoRenditionCallback®
callbacks registered with the XmDisplay object are invoked, supplying the table
as the render_table element of the XmDisplayCallbackStruct passed to the call-
backs. If the callbacks modify the render_table element, the linear search is
restarted. A copy of any matching rendition is returned, otherwise NULL.

XmRenderTableGetRendition() allocates space for the returned rendition,
and it is the responsibility of the programmer to reclaim the space at a suitable
point by calling XmRenditionFree().

See Also
XmRenderTableAddRenditions(l),
XmRenderTableGetRenditions(l),
XmRenderTableRemoveRenditions(l), XmRenditionFree(l),
XmRendition(2).

1.Erroneously given as XmNnoRendition in 2nd edition.

324 Motif Reference Manual

Motif Functions and Macros XmRenderTableGetRenditions

Name
XmRenderTableGetRenditions — search a render table for matching renditions.
Synopsis
XmRendition *XmRenderTableGetRenditions (XmRenderTable table,
XmStringTag *tags,
Cardinal tag_count)
Inputs
table Specifies the render table to search.
tags Specifies an array of tags for which matching renditions are
required.
tag_count Specifies the number of items in tags.
Returns
The array of renditions which have matching tags.
Availability
Motif 2.0 and later.
Description
XmRenderTableGetRenditions() searches table for all renditions which
have a tag that matches an entry within the list tags. If the table is NULL, or if
tags is NULL, or if tag_count is zero, the function returns NULL. Otherwise,
the function returns an allocated array of matching rendition objects.
Usage

XmRenderTableGetRenditions() iterates through a set of tags, compar-
ing in turn each tag with the group of renditions contained within a render table.

If no match is found when comparing a tag, any XmNnoRenditionCallback? call-
backs registered with the XmDisplay object are invoked, supplying the table as
the render_table element of the XmDisplayCallbackStruct passed to the call-
backs. If the callbacks modify the render_table element, the linear search is
restarted for that tag.

The documentation states that the function returns an allocated array, renditions
being copied into the array at the same index of the matching tag within the tags
array. For example, if the third tag in tags matches a rendition, that rendition is

copied into the third element of the returned array. If any tag in the tags list does
not match any rendition in the table, that slot in the returned array is set to NULL.

The sources, however, do not match the documentation: renditions are copied
into the array in the order which they are matched, ignoring any slots which do

1.Erroneously given as XmNnoRendition in 2nd edition.

Motif Reference Manual 325

XmRenderTableGetRenditions Motif Functions and Macros

Example

See Also

not match. Thus if the first tag in tags results in a NULL match, any rendition
found from the second tag is placed into the first slot. If the number of matched
renditions is less than the number of supplied tags, then memory for the returned
array is reallocated to match the number of found renditions. In the absence of a
XmNnoRenditionCallback callback, it is not possible to deduce the size of the
returned rendition array.

The function allocates space for both the returned rendition array and the constit-
uent renditions, and it is the responsibility of the programmer to reclaim the
space at a suitable point by calling XmRenditionFree() on each of the ele-
ments in the returned array, and subsequently XtFree() on the array itself.

The following specimen code illustrates the basic outline of a call to
XmRenderTableGetRenditions():

XmRendition *match_renditions;
XmStringTag tags[MAX_TAGS];
int i;

tags[0] = XmFONTLIST_DEFAULT_TAG;
tags[1] = XmS; /* """ */

/* search an unspecified render table */
match_renditions = XmRenderTableGetRenditions (render_table, tags,
MAX_TAGS);

/* use the matched set of renditions */

/* free the returned space */

if (match_renditions = NULL) {
/* ASSUMPTION: XtNumber (match_renditions) == MAX_TAGS */
/* Not a valid assumption if a tag does not match ~ */

for (i=0; i < MAX_TAGS; i++) {
XmRenditionFree (match_renditions]i]);

}

XtFree (match_renditions);

}

XmRenderTableAddRenditions(l), XmRenderTableGetRendition(l),
XmRenderTableRemoveRenditions(l), XmRenditionFree(l),
XmRendition(2).

326

Motif Reference Manual

Motif Functions and Macros XmRenderTableGetTags

Name
XmRenderTableGetTags — fetch the list of rendition tags from a render table.
Synopsis
int XmRenderTableGetTags (XmRenderTable table, XmStringTag **tag_list)
Inputs
table Specifies the render table.
Outputs
tag_list Returns the list of rendition tags.
Returns
The number of tags within the returned tag_list.
Availability
Motif 2.0 and later.
Description
XmRenderTableGetTags() is a convenience function which iterates through
a render table, collecting all the tags from the individual renditions within the
table, and returning them to the programmer. The number of tags placed at the
address tag_list by the function is returned.
Usage
XmRenderTableGetTags() allocates an array, and places in the array a copy
of the XmNtag resource for each rendition within the table. The array is returned
at the address specified by the tag_list parameter. If the table is NULL, tag_list is
initialized to NULL, and the function returns zero. It is the responsibility of the
programmer to reclaim the space by calling XtFree() on each of the items
within the allocated array, and then subsequently calling XtFree() on the array
itself.
Example

The following specimen code illustrates the basic outline of a call to
XmRenderTableGetTags():

XmStringTag *tags;
int count, i;

[* fetch the tags from an unspecified render table */
count = XmRenderTableGetTags (render_table, &tags);
/* use the tags */

/* free the returned space */

Motif Reference Manual 327

XmRenderTableGetTags Motif Functions and Macros

if (tags '= (XmStringTag *) 0) {
for (i=0; i <count; i++) {
XtFree (tags[i]);
}

XtFree (tags);

See Also
XmRenditionFree(l), XmRendition(2).

328 Motif Reference Manual

Motif Functions and Macros XmRenderTableRemoveRenditions

Name

Synopsis

XmRenderTableRemoveRenditions — copy a render table, excluding specified
renditions.

XmRenderTable XmRenderTableRemoveRenditions (XmRenderTable
old_table,
XmsStringTag *tags,
int
tag_count)

Inputs

old_table Specifies a render table.

tags Specifies an array of rendition tags. Any rendition which
matches an item in the array is not copied from old_table.

tag_count Specifies the number of items in the tags array.

Returns

A new render table with matching renditions removed.

Availability

Motif 2.0 and later.

Description

Usage

See Also

XmRenderTableRemoveRenditions() creates a new render table by copy-
ing from old_table only those renditions which do not have a tag matching items
within the array tags. If tags is NULL, or if tag_count is zero, or if no renditions
are removed, the function returns the old_table unmodified. Otherwise, old_table
is deallocated, and the reference counts for any excluded renditions are decre-
mented, before the function returns the newly allocated render table.

A rendition is not copied into the returned table if it has a XmNtag resource value
the same as any item within the tags list. When the returned render table differs
from the original old_table parameter, the function allocates space for the new
table, and it is the responsibility of the programmer to reclaim the space by call-
ing XmRenderTableFree().

XmRenderTableAddRenditions(l), XmRenderTableFree(l),
XmRendition(2).

Motif Reference Manual 329

XmRenditionCreate Motif Functions and Macros

Name

Synopsis

XmRenditionCreate — create a rendition object.

XmRendition XmRenditionCreate (Widget widget, XmStringTag tag, Arg
*arglist, Cardinal argcount)

Inputs

widget Specifies a widget.

tag Specifies a tag for the rendition object.

arglist Specifies an argument list, consisting of resource name/value pairs.
argcount Specifies the number of arguments in arglist.

Returns

The new rendition object.

Availability

Motif 2.0 and later.

Description

Usage

Example

330

XmRenditionCreate() creates a new rendition object, which can be used as
an entry in a render table used for rendering XmStrings. widget is used to find a
connection to the X server and an application context. tag is used as the XmNtag
resource of the new rendition object. Resources for the new object are supplied in
the arglist array.

The implementation of XmRendition is through a pseudo widget: although not a
true widget, the object has resources and a resource style interface for setting and
fetching values of the rendition. Typically, a rendition is merged into an existing
render table through the function XmRenderTableAddRenditions(). Com-
pound strings are rendered by successively matching tags within the compound
string with the XmNtag resources of renditions in the table, and then using the
resources of matched renditions to display the string components.

XmRenditionCreate() allocates storage for the returned rendition object. It
is the responsibility of the programmer to reclaim the storage at a suitable point
by calling XmRenditionFree(). Renditions are reference counted, and it is
important to call XmRend i tionFree() rather than XtFree() in order to main-
tain the references.

The following specimen code creates a pair of renditions and merges them into
an unspecified render table:

XmRendition new_renditions[2];

Motif Reference Manual

Motif Functions and Macros XmRenditionCreate

See Also

XmRenderTable new_table;

Arg argv[4];

Cardinal argc =0;

Pixel fg=.;

Pixel bg =..;

/* create a rendition with fonts specified */

argc = 0;

XtSetArg (argv[argc], XmNfontName, "fixed");

argc++;

XtSetArg (argv[argc], XmNfontType, XmMFONT_IS_FONT);
argc++;

XtSetArg (argv[argc], XmNIloadModel, XmLOAD_DEFERRED);
argct++;

new_renditions[0] = XmRenditionCreate (widget,
XmFONTLIST_DEFAULT_TAG, argv, argc);

/* create a rendition with line style specified */

argc =0;

XtSetArg (argv[argc], XmNrenditionBackground, bg);

argct++;

XtSetArg (argv[argc], XmNrenditionForeground, fq);

argc++;

XtSetArg (argv[argc], XmNunderlineType, XmMSINGLE_LINE);
argct++;

XtSetArg (argv[argc], XmNstrikethruType, XmMSINGLE_LINE);
argct++;

new_renditions[1] = XmRenditionCreate (widget, "lineStyle", argv, argc);

/* merge into an unspecified render table */
new_table = XmRenderTableAddRenditions (old_table, new_renditions, 2,
XmMMERGE_REPLACE);

XmRenderTableAddRenditions(l), XmRenditionFree(l),
XmRenditionRetrieve(l), XmRenditionUpdate(l),
XmRendition(2).

Motif Reference Manual

331

XmRenditionFree Motif Functions and Macros

Name
XmRenditionFree — free the memory used by a rendition.

Synopsis
void XmRenditionFree (XmRendition rendition)

Inputs

rendition Specifies the rendition that is to be freed.

Availability
Motif 2.0 and later.

Description
XmRenditionFree() deallocates storage used by the specified rendition. The
routine does not free any XFontSet or XFontStruct data structures associated
with the rendition object.

Usage
XmRenditionFree() frees the storage used by the rendition object, but does
not free font data structures associated with the XmNfont resource of the object.
It is important to call XmRenditionFree() rather than XtFree() because
Motif reference counts rendition objects. XmRend i tionFree() decrements the
reference count for the rendition; the rendition is not actually freed until the refer-
ence count reaches 0 (zero).

See Also

XmRenditionCreate(l), XmRendition(2).

332 Motif Reference Manual

Motif Functions and Macros XmRenditionRetrieve

Name

Synopsis

XmRenditionRetrieve — fetch rendition object resources.

void XmRenditionRetrieve (XmRendition rendition, Arg *arg_list, Cardinal
arg_count)

Inputs

rendition Specifies the rendition whose resources are fetched.
arg_count Specifies the number of arguments in arg_list.

Outputs

arg_list Specifies an argument list, consisting of resource name/value pairs.

Availability

Motif 2.0 and later.

Description

Usage

Example

XmRenditionRetrieve() fetches selective resource values of a rendition
object. The set of resources retrieved is specified through the resource list
arg_list, each element of the list being a structure containing a name/value pair.
The number of elements within the list is given by arg_count.

XmRenditionRetrieve() directly returns the values of the rendition
resources, and not copies of them. The programmer should not inadvertently
modify a returned value, but should take a copy of any pointer-valued resource
which is to be changed. For example, the XmNtag and XmNfontName resources
should be copied into a separate address space before modifying or manipulating
the values.

If the XmNIloadModel of the rendition object is XmLOAD_DEFERRED, and the
font specified by the XmNfont resource is NULL, but the XmNfontName value
is not NULL, and if the programmer has specified that the font is to be retrieved
within arg_list, then XmRenditionRetrieve() automatically changes the
load model to XmLOAD_IMMEDIATE and directly calls a procedure to load
the font indicated by XmNfontName before returning the requested resource val-
ues.

The following specimen code illustrates fetching resources from an unspecified
rendition object:

Pixel bg;
Pixel fg;
XtPointer font;

Motif Reference Manual 333

XmRenditionRetrieve Motif Functions and Macros

String font_name;
XmFontType font_type;
unsigned char load_model;
unsigned char strike_type;
XmTabList tab_list;
XmStringTag tag;
unsigned char ul_type;

Arg av[10];

Cardinal ac =0;

XtSetArg (av[ac], XmNrenditionForeground, &fg); ac++;
XtSetArg (av[ac], XmNrenditionBackground, &bg); ac++;
XtSetArg (av[ac], XmNfont, &font); ac++;
XtSetArg (av[ac], XmNfontName, &font_name); ac++;
XtSetArg (av[ac], XmNfontType, &font_type); ac++;
XtSetArg (av[ac], XmNloadModel, &load_model); ac++;
XtSetArg (av[ac], XmNstrikethruType, &strike_type); act+;
XtSetArg (av[ac], XmNtabL.ist, &tab_list); ac++;
XtSetArg (av[ac], XmNtag, &tag); ac++;
XtSetArg (av[ac], XmNunderlineType, &ul_type); ac++;

XmRenditionRetrieve (rendition, av, ac);

See Also
XmRenditionCreate(l), XmRenditionFree(l),
XmRenditionUpdate(l), XmRendition(2).

334 Motif Reference Manual

Motif Functions and Macros XmRenditionRetrieve

Name
XmRenditionUpdate — set rendition object resources.

Synopsis

void XmRenditionUpdate (XmRendition rendition, Arg *arg_list, Cardinal
arg_count)

Inputs
rendition Specifies the rendition whose resources are to be changed.
arg_list Specifies an argument list, consisting of resource name/value pairs.
arg_count Specifies the number of arguments within arg_list.

Availability
Motif 2.0 and later.

Description
XmRenditionUpdate() is a convenience function which sets the resources
for a rendition object. The attributes to change are specified through an array of
name/value pairs, similar to the resource-style interface of XtSetvValues().

Usage
Modifying the value of the XmNfontName resource initially resets the XmNfont
resource to NULL, irrespective of whether the load model for the new font is
XmLOAD_IMMEDIATE or XmLOAD_DEFERRED.

Example
The following specimen code illustrates setting resources for an unspecified ren-
dition object:

Pixel bg =..,;

Pixel fg=.;

Arg av[10];

Cardinal ac =0;

XtSetArg (av[ac], XmNrenditionForeground, fg);

ac++;

XtSetArg (av[ac], XmNrenditionBackground, bg);

ac++;

XtSetArg (av[ac], XmNfontType, XMFONT_IS_FONT);
ac++;

XtSetArg (av[ac], XmNfontName, "fixed");

ac++;

XtSetArg (av[ac], XmNloadModel, XmLOAD_DEFERRED);
ac++;

Motif Reference Manual 335

XmRenditionRetrieve Motif Functions and Macros

See Also

336

XtSetArg (av[ac], XmNstrikethruType, XmSINGLE_LINE);
ac++;
XtSetArg (av[ac], XmNunderlineType, XmSINGLE_LINE);
ac++;

XmRenditionUpdate (rendition, av, ac);

XmRenditionCreate(l), XmRenditionFree(l),
XmRenditionRetrieve(l), XmRendition(2).

Motif Reference Manual

Motif Functions and Macros XmRepTypeAddReverse

Name
XmRepTypeAddReverse — install the reverse converter for a representation type.

Synopsis
#include <Xm/RepType.h>

void XmRepTypeAddReverse (XmRepTypeld rep_type_id)

Inputs
rep_type_id Specifies the ID number of the representation type.

Availability
Motif 1.2 and later.

Description
XmRepTypeAddReverse() installs a reverse converter for a previously regis-
tered representation type. The reverse converter converts numerical representa-
tion type values to string values. The rep_type_id argument specifies the ID
number of the representation type. If the representation type contains duplicate
values, the reverse converter uses the first name in the value_names list that
matches the specified numeric value.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeAddReverse() provides a way for an application to install a converter
that converts numeric values to their string values.

See Also
XmRepTypeGetld(l), XmRepTypeRegister(l).

Motif Reference Manual 337

XmRepTypeGetld Motif Functions and Macros

Name

Synopsis

XmRepTypeGetld — get the ID number of a representation type.

#include <Xm/RepType.h>
XmRepTypeld XmRepTypeGetld (String rep_type)

Inputs

rep_type Specifies the string name of a representation type.

Returns

The ID number of the representation type or XmREP_TYPE_INVALID if the
representation type is not registered.

Availability

Motif 1.2 and later.

Description

Usage

See Also

338

XmRepTypeGetld() retrieves the ID number of the specified representation
type rep_type from the representation type manager. The rep_type string is the
string name of a representation type that has been registered with XmRepTy-
peRegister(). XmRepTypeGetld() returns the ID number if the represen-
tation type has been registered. This value is used in other representation type
manager routines to identify a particular type. Otherwise, the routine returns
XmREP_TYPE_INVALID.

In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetld() provides a way for an application get the ID of a representation
type, which can be used to identify the type to other representation manager rou-
tine.

XmRepTypeGetNameList(l), XmRepTypeGetRecord(l),
XmRepTypeGetRegistered(l), XmRepTypeRegister(l).

Motif Reference Manual

Motif Functions and Macros XmRepTypeGetNameL.ist

Name

Synopsis

XmRepTypeGetNameL.ist — get the list of value names for a representation type.

#include <Xm/RepType.h>

String * XmRepTypeGetNameList (XmRepTypeld rep_type_id, Boolean
use_uppercase_format)

Inputs

rep_type_id Specifies the ID number of the representation type.
use_uppercase_format Specifies whether or not the names are in uppercase
characters.

Returns

A pointer to an array of value names.

Availability

Motif 1.2 and later.

Description

Usage

See Also

XmRepTypeGetNameL ist() retrieves the list of value names associated with
the specified rep_type_id. The routine returns a pointer to a NULL-terminated
list of value names for the representation type, where each value name is a
NULL-terminated string. If use_uppercase_format is True, the value names are
in uppercase characters with Xm prefixes. Otherwise, the value names are in low-
ercase characters without Xm prefixes. XmRepTypeGetNameList() allocates
storage for the returned data. The application is responsible for freeing the stor-
age using XtFree() on each of the elements in the returned array, and subse-
quently upon the array pointer itself.

In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetNameL i st() provides a way for an application to get the named
values for a particular representation type.

XmRepTypeGetld(l), XmRepTypeGetRecord(l),
XmRepTypeGetRegistered(l), XmRepTypeRegister(l).

Motif Reference Manual 339

XmRepTypeGetRecord Motif Functions and Macros

Name

Synopsis

XmRepTypeGetRecord — get information about a representation type.

#include <Xm/RepType.h>
XmRepTypeEntry XmRepTypeGetRecord (XmRepTypeld rep_type_id)

Inputs

rep_type_id Specifies the ID number of the representation type.

Returns

A pointer to a representation type entry structure.

Availability

Motif 1.2 and later.

Description

Usage

Structures

340

XmRepTypeGetRecord() retrieves information about the representation type
specified by rep_type_id. The routine returns a XmRepTypeEntry, which is a
pointer to a representation type entry structure. This structure contains informa-
tion about the value names and values for the enumerated type. XmRep-
TypeGetRecord() allocates storage for the returned data. The application is
responsible for freeing the storage using XtFree().

In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetRecord() provides a way for an application to retrieve information
about a particular representation type.

The XmRepTypeEntry is defined as follows:

typedef struct {
String rep_type_name; /* name of representation type ~ */
String *value_names; [* array of value names */
unsigned char ~ *values; [* array of numeric values */
unsigned char ~ num_values; * number of values */
Boolean reverse_installed; /* reverse converter installed flag */
XmRepTypeld rep_type_id,; I* representation type 1D */

Motif Reference Manual

Motif Functions and Macros XmRepTypeGetRecord

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec, *XmRep-
TypeList;

See Also

XmRepTypeGetld(1l), XmRepTypeGetNameList(l),
XmRepTypeGetRegistered(1l), XmRepTypeRegister(l).

Motif Reference Manual 341

XmRepTypeGetRegistered Motif Functions and Macros

Name
XmRepTypeGetRegistered — get the registered representation types.

Synopsis
#include <Xm/RepType.h>
XmRepTypeList XmRepTypeGetRegistered (void)

Returns

A pointer to the registration list of representation types.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetRegistered() retrieves the whole registration list for the
representation type manager. The routine returns a copy of the registration list,
which contains information about all of the registered representation types. The
registration list is an array of XmRepTypeL.ist structures, where each structure
contains information about the value names and values for a single representation
type. The end of the registration list is indicated by a NULL pointer in the
rep_type_name field. XmRepTypeGetRegistered allocates storage for the
returned data. The application is responsible for freeing this storage using
XtFree(). The list of value names (the value of the value_names field), the list
of values (the value of the values field), and the array of structures all need to be
freed.

Usage

In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetRegistered() provides a way for an application to get information
about all of the registered representation types.

Example
The following code fragment shows the use of XmRepTypeGetRegis-
tered() to print the value names and values of all of the registered representa-
tion types:

XmRepTypeList replist; int i;
replist = XmRepTypeGetRegistered();

342 Motif Reference Manual

Motif Functions and Macros XmRepTypeGetRegistered

while (replist->rep_type_name != NULL) {
printf ("Representation type name: %s\n", replist->rep_type_name);
printf (*"Value names and associated values: \n");

for (i = 0; i < replist->num_values; i++) {
printf ("%s: ", replist->value_names[i]);
printf ("%d\n", replist->values[i]);

}

replist++;

XtFree ((char *)replist->values);

XtFree ((char *)replist->value_names);

}
XtFree ((char *)replist);
Structures

The XmRepTypeList is defined as follows:

typedef struct {
String rep_type_name; /* name of representation type
*/
String *value_names; [* array of value names */
unsigned char *values; /* array of numeric values */
unsigned char num_values; /* number of values */
Boolean reverse_installed; I* reverse converter installed flag
*/
XmRepTypeld rep_type_id; /* representation type 1D */

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec, *XmRep-

TypeList;

See Also
XmRepTypeGetRecord(l), XmRepTypeGetNameList(l),
XmRepTypeRegister(l).

Motif Reference Manual 343

XmRepTypelnstall TearOffModelConverter Motif Functions and Macros

Name
XmRepTypelnstall TearOffModelConverter — install the resource converter for
the RowColumn XmNtearOffModel resource.

Synopsis
#include <Xm/RepType.h>

void XmRepTypelnstall TearOffModelConverter (void)

Availability
Motif 1.2 and later. In Motif 2.0 and later, the converter for the XmNtearOff-
Model resource is internally installed, and this function is obsolete.

Description
XmRepTypelnstal ITearOffMode IConverter() installs the resource
converter for the RowColumn XmNtearOffModel resource. This resource con-
trols whether or not PulldownMenus and PopupMenus in an application can be
torn off. Once the converter is installed, the value of XmNtearOffModel can be
specified in a resource file.

Usage
In Motif 1.2, a RowColumn that is configured as a PopupMenu or a Pulldown-
Menu supports tear-off menus. When a menu is torn off, it remains on the screen
after a selection is made so that additional selections can be made. A menu pane
that can be torn off contains a tear-off button at the top of the menu. The
XmNtearOffModel resource controls whether or not tear-off functionality is
available for a menu. This resource can take the values
XmTEAR_OFF_ENABLED or XmTEAR_OFF_DISABLED.

In Motif 1.2, the resource converter for XmNtearOffModel is not installed by
default. Some existing applications depend on receiving a callback when a menu
is mapped; since torn-off menus are always mapped, these applications might fail
if a user is allowed to enable tear-off menus from a resource file. XmRepTy-
pelnstallTearOffModelConverter() registers the converter that allows
the resource to be set from a resource file.

See Also
XmRowCo lumn(2).

344 Motif Reference Manual

Motif Functions and Macros XmRepTypeRegister

Name
XmRepTypeRegister — register a representation type resource.
Synopsis
#include <Xm/RepType.h>
XmRepTypeld XmRepTypeRegister (String rep_type,
String *value_names,
unsigned char *values,
unsigned char ~ num_values)
Inputs
rep_type Specifies the string name for the representation type.
value_names Specifies an array of value names for the representation type.
IP values 1i Specifies an array of values for the representa-
tion type.
num_values Specifies the number of items in value_names and values.
Returns
The ID number of the representation type.
Availability
Motif 1.2 and later.
Description

XmRepTypeRegister() registers a representation type with the representation
type manager. The representation t