Inter-Client Communication Conventions Manual
Version 2.0.xf86.1
XFree86 4.0.2
XFree86, Inc.
based on
Version 2.0
X Consortium Standard

X Version 11, Release 6.4

David Rosenthal

Sun Microsystems, Inc.

Version 2 edited by Stuart W. Marks
SunSoft, Inc.

X Window System is a trademark of X Consortium, Inc.

Copyright © 1988, 1991, 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom

the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1987, 1988, 1989, 1993, 1994 Sun Microsystems, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. Sun Microsystems makes no
representations about the suitability for any purpose of the information in this document. This documentation is pro-

vided as is without express or implied warranty.

ii

vi

Preface to Version 2.0

The goal of the ICCCM Version 2.0 effort was to add new facilities, to fix problems with earlier
drafts, and to improve readability and understandability, while maintaining compatibility with the
earlier versions. This document is the product of over two years of discussion among the mem-
bers of the X Consortium’s wmtalk working group. The following people deserve thanks for
their contributions:

Gabe Beged-Dov Bill Janssen
Chan Benson Vania Joloboff
Jordan Brown Phil Karlton
Larry Cable Kaleb Keithley
Ellis Cohen Mark Manasse
Donna Converse Ralph Mor
Brian Cripe Todd Newman
Susan Dahlberg Bob Scheifler
Peter Daifuku Keith Taylor
Andrew deBlois Jim VanGilder
Clive Feather Mike Wexler
Stephen Gildea Michael Yee

Christian Jacobi

It has been a privilege for me to work with this fine group of people.

Stuart W. Marks
December 1993

vii

Preface to Version 1.1

David Rosenthal had overall architectural responsibility for the conventions defined in this docu-

ment; he wrote most of the text and edited the document, but its development has been a commu-
nal effort. The details were thrashed out in meetings at the January 1988 MIT X Conference and
at the 1988 Summer Usenix conference, and through months (and megabytes) of argument on the
wmtalk mail alias. Thanks are due to everyone who contributed, and especially to the following
people.

For the Selection section:

Jerry Farrell

Phil Karlton

Loretta Guarino Reid
Mark Manasse

Bob Scheifler

For the Cut-Buffer section:
Andrew Palay

For the Window and Session Manager sections:

Todd Brunhoff Matt Landau
Ellis Cohen Mark Manasse
Jim Fulton Bob Scheifler
Hania Gajewska Ralph Swick
Jordan Hubbard Mike Wexler
Kerry Kimbrough Glenn Widener
Audrey Ishizaki

For the Device Color Characterization section:

Keith Packard

In addition, thanks are due to those who contributed to the public review:

Gary Combs John Irwin
Errol Crary Vania Joloboff
Nancy Cyprych John Laporta
John Diamant Ken Lee

Clive Feather Stuart Marks
Burns Fisher Alan Mimms
Richard Greco Colas Nahaboo
Tim Greenwood Mark Patrick
Kee Hinckley Steve Pitschke
Brian Holt Brad Reed

John Interrante

viii

John Thomas

1. Introduction

It was an explicit design goal of X Version 11 to specify mechanism, not policy. As a result, a
client that converses with the server using the protocol defined by the X Window System Protocol,
Version 11 may operate correctly in isolation but may not coexist properly with others sharing the
same server.

Being a good citizen in the X Version 11 world involves adhering to conventions that govern
inter-client communications in the following areas:

* Selection mechanism

e Cut buffers

* Window manager

* Session manager

* Manipulation of shared resources
* Device color characterization

This document proposes suitable conventions without attempting to enforce any particular user
interface. To permit clients written in different languages to communicate, these conventions are
expressed solely in terms of protocol operations, not in terms of their associated Xlib interfaces,
which are probably more familiar. The binding of these operations to the Xlib interface for C and
to the equivalent interfaces for other languages is the subject of other documents.

1.1. Evolution of the Conventions

In the interests of timely acceptance, the Inter-Client Communication Conventions Manual
(ICCCM) covers only a minimal set of required conventions. These conventions will be added to
and updated as appropriate, based on the experiences of the X Consortium.

As far as possible, these conventions are upwardly compatible with those in the February 25,

1988, draft that was distributed with the X Version 11, Release 2, of the software. In some areas,
semantic problems were discovered with those conventions, and, thus, complete upward compati-
bility could not be assured. These areas are noted in the text and are summarized in Appendix A.

In the course of developing these conventions, a number of minor changes to the protocol were
identified as desirable. They also are identified in the text, are summarized in Appendix B, and
are offered as input to a future protocol revision process. If and when a protocol revision incorpo-
rating these changes is undertaken, it is anticipated that the ICCCM will need to be revised.
Because it is difficult to ensure that clients and servers are upgraded simultaneously, clients using
the revised conventions should examine the minor protocol revision number and be prepared to
use the older conventions when communicating with an older server.

It is expected that these revisions will ensure that clients using the conventions appropriate to pro-
tocol minor revision n will interoperate correctly with those that use the conventions appropriate
to protocol minor revision n + 1 if the server supports both.

1.2. Atoms

Many of the conventions use atoms. To assist the reader, the following sections attempt to
amplify the description of atoms that is provided in the protocol specification.

1.2.1. What Are Atoms?

At the conceptual level, atoms are unique names that clients can use to communicate information
to each other. They can be thought of as a bundle of octets, like a string but without an encoding
being specified. The elements are not necessarily ASCII characters, and no case folding

Inter-Client Communication Conventions X11, Release 6.4

happens.!

The protocol designers felt that passing these sequences of bytes back and forth across the wire
would be too costly. Further, they thought it important that events as they appear on the wire have
a fixed size (in fact, 32 bytes) and that because some events contain atoms, a fixed-size represen-
tation for them was needed.

To allow a fixed-size representation, a protocol request (InternAtom) was provided to register a
byte sequence with the server, which returns a 32-bit value (with the top three bits zero) that maps
to the byte sequence. The inverse operator is also available (GetAtomName).

1.2.2. Predefined Atoms
The protocol specifies a number of atoms as being predefined:

Predefined atoms are not strictly necessary and may not be useful in all environ-
ments, but they will eliminate many InternAtom requests in most applications.
Note that they are predefined only in the sense of having numeric values, not in the
sense of having required semantics.

Predefined atoms are an implementation trick to avoid the cost of interning many of the atoms
that are expected to be used during the startup phase of all applications. The results of the
InternAtom requests, which require a handshake, can be assumed a priori.

Language interfaces should probably cache the atom-name mappings and get them only when
required. The CLX interface, for instance, makes no distinction between predefined atoms and
other atoms; all atoms are viewed as symbols at the interface. However, a CLX implementation
will typically keep a symbol or atom cache and will typically initialize this cache with the prede-
fined atoms.

1.2.3. Naming Conventions

The built-in atoms are composed of uppercase ASCII characters with the logical words separated
by an underscore character (_), for example, WM_ICON_NAME. The protocol specification rec-
ommends that atoms used for private vendor-specific reasons should begin with an underscore.
To prevent conflicts among organizations, additional prefixes should be chosen (for example,
_DEC_WM_DECORATION_GEOMETRY).

The names were chosen in this fashion to make it easy to use them in a natural way within LISP.
Keyword constructors allow the programmer to specify the atoms as LISP atoms. If the atoms
were not all uppercase, special quoting conventions would have to be used.

1.2.4. Semantics

The core protocol imposes no semantics on atoms except as they are used in FONTPROP struc-
tures. For further information on FONTPROP semantics, see the X Logical Font Description
Conventions.

1.2.5. Name Spaces

The protocol defines six distinct spaces in which atoms are interpreted. Any particular atom may
or may not have some valid interpretation with respect to each of these name spaces.

! The comment in the protocol specification for InternAtom that ISO Latin-1 encoding should
be used is in the nature of a convention; the server treats the string as a byte sequence.

Inter-Client Communication Conventions X11, Release 6.4

Space Briefly Examples

Property name Name WM_HINTS, WM_NAME, RGB_BEST_MAP, ...
Property type Type WM_HINTS, CURSOR, RGB_COLOR_MAP, ...
Selection name Selection PRIMARY, SECONDARY, CLIPBOARD

Selection target Target FILE_NAME, POSTSCRIPT, PIXMAP, ...

Font property QUAD_WIDTH, POINT_SIZE, ...

ClientMessage type WM_SAVE_YOURSELF, _DEC_SAVE_EDITS, ...

1.2.6. Discriminated Names

Sometimes a protocol requires an arbitrary number of similar objects that need unique names
(usually because the objects are created dynamically, so that names cannot be invented in
advance). For example, a colormap-generating program might use the selection mechanism to
offer colormaps for each screen and so needs a selection name for each screen. Such names are
called “discriminated names” and are discriminated by some entity. This entity can be:

A screen
An X resource (a window, a colormap, a visual, etc.)
A client

If it is only necessary to generate a fixed set of names for each value of the discriminating entity,
then the discriminated names are formed by suffixing an ordinary name according to the value of
the entity.

If name is a descriptive portion for the name, d is a decimal number with no leading zeroes, and x
is a hexadecimal number with exactly 8 digits, and using uppercase letters, then such discrimi-
nated names shall have the form:

Name Discriminated by Form Example
screen number name_Sd WM_COMMS_S2
X resource name_Rx GROUP_LEADER_R1234ABCD

To discriminate a name by client, use an X resource ID created by that client. This resource can
be of any type.

Sometimes it is simply necessary to generate a unique set of names (for example, for the proper-
ties on a window used by a MULTIPLE selection). These names should have the form:

Ud (e.g., UO U1 U2 U3 ..)

if the names stand totally alone, and the form:

name_Ud (e.g., FOO_UO BAR_UO FOO_U1 BAR_UI ..))

if they come in sets (here there are two sets, named “FOO” and “BAR”). The stand-alone Ud
form should be used only if it is clear that the module using it has complete control over the rele-
vant namespace or has the active cooperation of all other entities that might also use these names.
(Naming properties on a window created specifically for a particular selection is such a use; nam-
ing properties on the root window is almost certainly not.)

Inter-Client Communication Conventions X11, Release 6.4

In a particularly difficult case, it might be necessary to combine both forms of discrimination. If
this happens, the U form should come after the other form, thus:

FOO_R12345678_U23

Rationale

Existing protocols will not be changed to use these naming conventions, because
doing so will cause too much disruption. However, it is expected that future proto-
cols — both standard and private — will use these conventions.

2. Peer-to-Peer Communication by Means of Selections

Selections are the primary mechanism that X Version 11 defines for the exchange of information
between clients, for example, by cutting and pasting between windows. Note that there can be an
arbitrary number of selections (each named by an atom) and that they are global to the server.
Section 2.6 discusses the choice of an atom. Each selection is owned by a client and is attached
to a window.

Selections communicate between an owner and a requestor. The owner has the data representing
the value of its selection, and the requestor receives it. A requestor wishing to obtain the value of
a selection provides the following:

* The name of the selection

* The name of a property

* A window

* The atom representing the data type required

* Optionally, some parameters for the request

If the selection is currently owned, the owner receives an event and is expected to do the follow-
ing:

* Convert the contents of the selection to the requested data type

* Place this data in the named property on the named window

* Send the requestor an event to let it know the property is available

Clients are strongly encouraged to use this mechanism. In particular, displaying text in a perma-
nent window without providing the ability to select and convert it into a string is definitely con-
sidered antisocial.

Note that all data transferred between an owner and a requestor must usually go by means of the
server in an X Version 11 environment. A client cannot assume that another client can open the
same files or even communicate directly. The other client may be talking to the server by means
of a completely different networking mechanism (for example, one client might be DECnet and
the other TCP/IP). Thus, passing indirect references to data (such as, file names, host names, and
port numbers) is permitted only if both clients specifically agree.

2.1. Acquiring Selection Ownership

A client wishing to acquire ownership of a particular selection should call SetSelectionOwner,
which is defined as follows:

-

Inter-Client Communication Conventions X11, Release 6.4

SetSelectionOwner

selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTime

The client should set the specified selection to the atom that represents the selection, set the speci-
fied owner to some window that the client created, and set the specified time to some time
between the current last-change time of the selection concerned and the current server time. This
time value usually will be obtained from the timestamp of the event that triggers the acquisition of
the selection. Clients should not set the time value to CurrentTime, because if they do so, they
have no way of finding when they gained ownership of the selection. Clients must use a window
they created so that requestors can route events to the owner of the selection.?

Convention

Clients attempting to acquire a selection must set the time value of the SetSelection-
Owner request to the timestamp of the event triggering the acquisition attempt, not
to CurrentTime. A zero-length append to a property is a way to obtain a timestamp
for this purpose; the timestamp is in the corresponding PropertyNotify event.

If the time in the SetSelectionOwner request is in the future relative to the server’s current time
or is in the past relative to the last time the specified selection changed hands, the SetSelec-
tionOwner request appears to the client to succeed, but ownership is not actually transferred.

Because clients cannot name other clients directly, the specified owner window is used to refer to
the owning client in the replies to GetSelectionOwner, in SelectionRequest and Selection-
Clear events, and possibly as a place to put properties describing the selection in question. To
discover the owner of a particular selection, a client should invoke GetSelectionOwner, which is
defined as follows:

GetSelectionOwner
selection: ATOM

N
owner: WINDOW or None

Convention

Clients are expected to provide some visible confirmation of selection ownership. To
make this feedback reliable, a client must perform a sequence like the following:

SetSelectionOwner(selection=PRIMARY, owner=Window, time=timestamp)
owner = GetSelectionOwner(selection=PRIMARY)
if (owner != Window) Failure

If the SetSelectionOwner request succeeds (not merely appears to succeed), the client that issues
it is recorded by the server as being the owner of the selection for the time period starting at the

2 At present, no part of the protocol requires requestors to send events to the owner of a selec-
tion. This restriction is imposed to prepare for possible future extensions.

Inter-Client Communication Conventions X11, Release 6.4

specified time.

2.2. Responsibilities of the Selection Owner

When a requestor wants the value of a selection, the owner receives a SelectionRequest event,
which is defined as follows:

SelectionRequest

owner: WINDOW

selection: ATOM

target: ATOM

property: ATOM or None

requestor: WINDOW

time: TIMESTAMP or CurrentTime

The specified owner and selection will be the values that were specified in the SetSelection-
Owner request. The owner should compare the timestamp with the period it has owned the
selection and, if the time is outside, refuse the SelectionRequest by sending the requestor win-
dow a SelectionNotify event with the property set to None (by means of a SendEvent request
with an empty event mask).

More advanced selection owners are free to maintain a history of the value of the selection and to
respond to requests for the value of the selection during periods they owned it even though they
do not own it now.

If the specified property is None, the requestor is an obsolete client. Owners are encouraged to
support these clients by using the specified target atom as the property name to be used for the
reply.

Otherwise, the owner should use the target to decide the form into which the selection should be
converted. Some targets may be defined such that requestors can pass parameters along with the
request. The owner will find these parameters in the property named in the selection request.
The type, format, and contents of this property are dependent upon the definition of the target. If
the target is not defined to have parameters, the owner should ignore the property if it is present.
If the selection cannot be converted into a form based on the target (and parameters, if any), the
owner should refuse the SelectionRequest as previously described.

If the specified property is not None, the owner should place the data resulting from converting
the selection into the specified property on the requestor window and should set the property’s
type to some appropriate value, which need not be the same as the specified target.

Convention

All properties used to reply to SelectionRequest events must be placed on the
requestor window.

In either case, if the data comprising the selection cannot be stored on the requestor window (for
example, because the server cannot provide sufficient memory), the owner must refuse the Selec-
tionRequest, as previously described. See also section 2.5.

If the property is successfully stored, the owner should acknowledge the successful conversion by
sending the requestor window a SelectionNotify event (by means of a SendEvent request with
an empty mask). SelectionNotify is defined as follows:

Inter-Client Communication Conventions X11, Release 6.4

SelectionNotify

requestor: WINDOW

selection, target: ATOM

property: ATOM or None

time: TIMESTAMP or CurrentTime

The owner should set the specified selection, target, time, and property arguments to the values
received in the SelectionRequest event. (Note that setting the property argument to None indi-
cates that the conversion requested could not be made.)

Convention

The selection, target, time, and property arguments in the SelectionNotify event
should be set to the values received in the SelectionRequest event.

If the owner receives more than one SelectionRequest event with the same requestor, selection,
target, and timestamp it must respond to them in the same order in which they were received.

Rationale

It is possible for a requestor to have multiple outstanding requests that use the same
requestor window, selection, target, and timestamp, and that differ only in the prop-
erty. If this occurs, and one of the conversion requests fails, the resulting Selection-
Notify event will have its property argument set to None. This may make it impos-
sible for the requestor to determine which conversion request had failed, unless the
requests are responded to in order.

The data stored in the property must eventually be deleted. A convention is needed to assign the
responsibility for doing so.

Convention

Selection requestors are responsible for deleting properties whose names they receive
in SelectionNotify events (see section 2.4) or in properties with type MULTIPLE.

A selection owner will often need confirmation that the data comprising the selection has actually
been transferred. (For example, if the operation has side effects on the owner’s internal data
structures, these should not take place until the requestor has indicated that it has successfully
received the data.) Owners should express interest in PropertyNotify events for the specified
requestor window and wait until the property in the SelectionNotify event has been deleted
before assuming that the selection data has been transferred. For the MULTIPLE request, if the
different conversions require separate confirmation, the selection owner can also watch for the
deletion of the individual properties named in the property in the SelectionNotify event.

When some other client acquires a selection, the previous owner receives a SelectionClear event,
which is defined as follows:

Inter-Client Communication Conventions X11, Release 6.4

SelectionClear

owner: WINDOW
selection: ATOM
time: TIMESTAMP

The timestamp argument is the time at which the ownership changed hands, and the owner argu-
ment is the window the previous owner specified in its SetSelectionOwner request.

If an owner loses ownership while it has a transfer in progress (that is, before it receives notifica-
tion that the requestor has received all the data), it must continue to service the ongoing transfer
until it is complete.

If the selection value completely changes, but the owner happens to be the same client (for exam-
ple, selecting a totally different piece of text in the same xterm as before), then the client should
reacquire the selection ownership as if it were not the owner, providing a new timestamp. If the
selection value is modified, but can still reasonably be viewed as the same selected object,3 the
owner should take no action.

2.3. Giving Up Selection Ownership

Clients may either give up selection ownership voluntarily or lose it forcibly as the result of some
other client’s actions.

2.3.1. Voluntarily Giving Up Selection Ownership

To relinquish ownership of a selection voluntarily, a client should execute a SetSelectionOwner
request for that selection atom, with owner specified as None and the time specified as the time-
stamp that was used to acquire the selection.

Alternatively, the client may destroy the window used as the owner value of the SetSelection-
Owner request, or the client may terminate. In both cases, the ownership of the selection
involved will revert to None.

2.3.2. Forcibly Giving Up Selection Ownership

If a client gives up ownership of a selection or if some other client executes a SetSelection-
Owner for it and thus reassigns it forcibly, the previous owner will receive a SelectionClear
event. For the definition of a SelectionClear event, see section 2.2.

The timestamp is the time the selection changed hands. The specified owner is the window that
was specified by the current owner in its SetSelectionOwner request.

2.4. Requesting a Selection

A client that wishes to obtain the value of a selection in a particular form (the requestor) issues a
ConvertSelection request, which is defined as follows:

3 The division between these two cases is a matter of judgment on the part of the software devel-
oper.

Inter-Client Communication Conventions X11, Release 6.4

ConvertSelection

selection, target: ATOM

property: ATOM or None

requestor: WINDOW

time: TIMESTAMP or CurrentTime

The selection argument specifies the particular selection involved, and the target argument speci-
fies the required form of the information. For information about the choice of suitable atoms to
use, see section 2.6. The requestor should set the requestor argument to a window that it created;
the owner will place the reply property there. The requestor should set the time argument to the
timestamp on the event that triggered the request for the selection value. Note that clients should
not specify CurrentTime.

Convention

Clients should not use CurrentTime for the time argument of a ConvertSelection
request. Instead, they should use the timestamp of the event that caused the request
to be made.

The requestor should set the property argument to the name of a property that the owner can use
to report the value of the selection. Requestors should ensure that the named property does not

exist on the window before issuing the ConvertSelection request.* The exception to this rule is
when the requestor intends to pass parameters with the request (see below).

Rationale

It is necessary for requestors to delete the property before issuing the request so that

the target can later be extended to take parameters without introducing an incompati-
bility. Also note that the requestor of a selection need not know the client that owns

the selection nor the window on which the selection was acquired.

Some targets may be defined such that requestors can pass parameters along with the request. If
the requestor wishes to provide parameters to a request, they should be placed in the specified
property on the requestor window before the requestor issues the ConvertSelection request, and
this property should be named in the request.

Some targets may be defined so that parameters are optional. If no parameters are to be supplied
with the request of such a target, the requestor must ensure that the property does not exist before
issuing the ConvertSelection request.

The protocol allows the property field to be set to None, in which case the owner is supposed to
choose a property name. However, it is difficult for the owner to make this choice safely.

4 This requirement is new in version 2.0, and, in general, existing clients do not conform to this
requirement. To prevent these clients from breaking, no existing targets should be extended to take
parameters until sufficient time has passed for clients to be updated. Note that the MULTIPLE tar-
get was defined to take parameters in version 1.0 and its definition is not changing. There is thus no
conformance problem with MULTIPLE.

Inter-Client Communication Conventions X11, Release 6.4

Conventions
1. Requestors should not use None for the property argument of a ConvertSelec-
tion request.
2. Owners receiving ConvertSelection requests with a property argument of

None are talking to an obsolete client. They should choose the target atom as
the property name to be used for the reply.

The result of the ConvertSelection request is that a SelectionNotify event will be received. For
the definition of a SelectionNotify event, see section 2.2.

The requestor, selection, time, and target arguments will be the same as those on the ConvertSe-
lection request.

If the property argument is None, the conversion has been refused. This can mean either that
there is no owner for the selection, that the owner does not support the conversion implied by the
target, or that the server did not have sufficient space to accommodate the data.

If the property argument is not None, then that property will exist on the requestor window. The
value of the selection can be retrieved from this property by using the GetProperty request,
which is defined as follows:

GetProperty

window: WINDOW

property: ATOM

type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL

%

type: ATOM or None
format: {0, 8, 16, 32}
bytes-after: CARD32
value: LISTofINTS or LISTofINT16 or LISTofINT32

When using GetProperty to retrieve the value of a selection, the property argument should be set
to the corresponding value in the SelectionNotify event. Because the requestor has no way of
knowing beforehand what type the selection owner will use, the type argument should be set to
AnyPropertyType. Several GetProperty requests may be needed to retrieve all the data in the
selection; each should set the long-offset argument to the amount of data received so far, and the
size argument to some reasonable buffer size (see section 2.5). If the returned value of bytes-after
is zero, the whole property has been transferred.

Once all the data in the selection has been retrieved (which may require getting the values of sev-
eral properties — see section 2.7), the requestor should delete the property in the SelectionNotify
request by using a GetProperty request with the delete argument set to True. As previously dis-
cussed, the owner has no way of knowing when the data has been transferred to the requestor
unless the property is removed.

10

Inter-Client Communication Conventions X11, Release 6.4

Convention

The requestor must delete the property named in the SelectionNotify once all the
data has been retrieved. The requestor should invoke either DeleteProperty or Get-
Property (delete==True) after it has successfully retrieved all the data in the selec-
tion. For further information, see section 2.5.

2.5. Large Data Transfers

Selections can get large, which poses two problems:

Transferring large amounts of data to the server is expensive.

All servers will have limits on the amount of data that can be stored in properties. Exceed-
ing this limit will result in an Alloc error on the ChangeProperty request that the selection
owner uses to store the data.

The problem of limited server resources is addressed by the following conventions:

Conventions

1. Selection owners should transfer the data describing a large selection (relative
to the maximum-request-size they received in the connection handshake) using
the INCR property mechanism (see section 2.7.2).

2. Any client using SetSelectionOwner to acquire selection ownership should
arrange to process Alloc errors in property change requests. For clients using
Xlib, this involves using the XSetErrorHandler function to override the

default handler.

3. A selection owner must confirm that no Alloc error occurred while storing the
properties for a selection before replying with a confirming SelectionNotify
event.

4, When storing large amounts of data (relative to maximum-request-size), clients

should use a sequence of ChangeProperty (mode==Append) requests for rea-
sonable quantities of data. This avoids locking servers up and limits the waste
of data an Alloc error would cause.

5. If an Alloc error occurs during the storing of the selection data, all properties
stored for this selection should be deleted and the ConvertSelection request
should be refused (see section 2.2).

6. To avoid locking servers up for inordinate lengths of time, requestors retrieving
large quantities of data from a property should perform a series of GetProp-
erty requests, each asking for a reasonable amount of data.

Advice to Implementors

Single-threaded servers should take care to avoid locking up during large data trans-
fers.

2.6. Use of Selection Atoms

Defining a new atom consumes resources in the server that are not released until the server reini-
tializes. Thus, reducing the need for newly minted atoms is an important goal for the use of the
selection atoms.

11

Inter-Client Communication Conventions X11, Release 6.4

2.6.1. Selection Atoms

There can be an arbitrary number of selections, each named by an atom. To conform with the
inter-client conventions, however, clients need deal with only these three selections:

* PRIMARY
» SECONDARY
» CLIPBOARD

Other selections may be used freely for private communication among related groups of clients.

2.6.1.1. The PRIMARY Selection

The selection named by the atom PRIMARY is used for all commands that take only a single
argument and is the principal means of communication between clients that use the selection
mechanism.

2.6.1.2. The SECONDARY Selection
The selection named by the atom SECONDARY is used:

* Asthe second argument to commands taking two arguments (for example, “exchange pri-
mary and secondary selections’”)

* As ameans of obtaining data when there is a primary selection and the user does not want to
disturb it

2.6.1.3. The CLIPBOARD Selection

The selection named by the atom CLIPBOARD is used to hold data that is being transferred
between clients, that is, data that usually is being cut and then pasted or copied and then pasted.
Whenever a client wants to transfer data to the clipboard:

* It should assert ownership of the CLIPBOARD.

* If it succeeds in acquiring ownership, it should be prepared to respond to a request for the
contents of the CLIPBOARD in the usual way (retaining the data to be able to return it).
The request may be generated by the clipboard client described below.

e If it fails to acquire ownership, a cutting client should not actually perform the cut or provide
feedback that would suggest that it has actually transferred data to the clipboard.

The owner should repeat this process whenever the data to be transferred would change.

Clients wanting to paste data from the clipboard should request the contents of the CLIPBOARD
selection in the usual way.

Except while a client is actually deleting or copying data, the owner of the CLIPBOARD selec-
tion may be a single, special client implemented for the purpose. This client maintains the con-
tent of the clipboard up-to-date and responds to requests for data from the clipboard as follows:

* It should assert ownership of the CLIPBOARD selection and reassert it any time the clip-
board data changes.

. If it loses the selection (because another client has some new data for the clipboard), it
should:

- Obtain the contents of the selection from the new owner by using the timestamp in the
SelectionClear event.

- Attempt to reassert ownership of the CLIPBOARD selection by using the same time-
stamp.

12

Inter-Client Communication Conventions X11, Release 6.4

- Restart the process using a newly acquired timestamp if this attempt fails. This time-
stamp should be obtained by asking the current owner of the CLIPBOARD selection
to convert it to a TIMESTAMP. If this conversion is refused or if the same timestamp
is received twice, the clipboard client should acquire a fresh timestamp in the usual
way (for example by a zero-length append to a property).

e It should respond to requests for the CLIPBOARD contents in the usual way.

A special CLIPBOARD client is not necessary. The protocol used by the cutting client and the
pasting client is the same whether the CLIPBOARD client is running or not. The reasons for run-
ning the special client include:

* Stability — If the cutting client were to crash or terminate, the clipboard value would still be
available.

* Feedback — The clipboard client can display the contents of the clipboard.

* Simplicity — A client deleting data does not have to retain it for so long, thus reducing the
chance of race conditions causing problems.

The reasons not to run the clipboard client include:

* Performance — Data is transferred only if it is actually required (that is, when some client
actually wants the data).

* Flexibility — The clipboard data may be available as more than one target.

2.6.2. Target Atoms

The atom that a requestor supplies as the target of a ConvertSelection request determines the
form of the data supplied. The set of such atoms is extensible, but a generally accepted base set
of target atoms is needed. As a starting point for this, the following table contains those that have
been suggested so far.

Atom Type Data Received

ADOBE_PORTABLE_DOCUMENT_FORMAT

STRING [1]
APPLE_PICT APPLE_PICT [2]
BACKGROUND PIXEL A list of pixel values
BITMAP BITMAP A list of bitmap IDs
CHARACTER_POSITION SPAN The start and end of the selection in bytes
CLASS TEXT (see section 4.1.2.5)
CLIENT_WINDOW WINDOW Any top-level window owned by the selection

owner

COLORMAP COLORMAP A list of colormap IDs
COLUMN_NUMBER SPAN The start and end column numbers
COMPOUND_TEXT COMPOUND_TEXT Compound Text
DELETE NULL (see section 2.6.3.1)
DRAWABLE DRAWABLE A list of drawable IDs
ENCAPSULATED_POSTSCRIPT

STRING [3], Appendix H®
ENCAPSULATED_POSTSCRIPT_INTERCHANGE

STRING [3], Appendix H

13

Inter-Client Communication Conventions X11, Release 6.4

Atom Type Data Received

FILE_NAME TEXT The full path name of a file
FOREGROUND PIXEL A list of pixel values

HOST_NAME TEXT (see section 4.1.2.9)
INSERT_PROPERTY NULL (see section 2.6.3.3)
INSERT_SELECTION NULL (see section 2.6.3.2)

LENGTH INTEGER The number of bytes in the selection ®
LINE_NUMBER SPAN The start and end line numbers
LIST_LENGTH INTEGER The number of disjoint parts of the selection
MODULE TEXT The name of the selected procedure
MULTIPLE ATOM_PAIR (see the discussion that follows)

NAME TEXT (see section 4.1.2.1)

ODIF TEXT ISO Office Document Interchange Format
OWNER_OS TEXT The operating system of the owner client
PIXMAP PIXMAP’ A list of pixmap IDs

POSTSCRIPT STRING [3]

PROCEDURE TEXT The name of the selected procedure
PROCESS INTEGER, TEXT The process ID of the owner

STRING STRING ISO Latin-1 (+TAB+NEWLINE) text
TARGETS ATOM A list of valid target atoms

TASK INTEGER, TEXT The task ID of the owner

TEXT TEXT The text in the owner’s choice of encoding
TIMESTAMP INTEGER The timestamp used to acquire the selection
USER TEXT The name of the user running the owner
UTF8_STRING TEXT UTF-8 text

References:

[1] Adobe Systems, Incorporated. Portable Document Format Reference Manual. Reading,
MA, Addison-Wesley, ISBN 0-201-62628-4.

[2] Apple Computer, Incorporated. Inside Macintosh, Volume V. Chapter 4, “Color Quick-
Draw,” Color Picture Format. ISBN 0-201-17719-6.

[3] Adobe Systems, Incorporated. PostScript Language Reference Manual. Reading, MA,
Addison-Wesley, ISBN 0-201-18127-4.

It is expected that this table will grow over time.

Selection owners are required to support the following targets. All other targets are optional.

3 Earlier versions of this document erroneously specified that conversion of the PIXMAP target
returns a property of type DRAWABLE instead of PIXMAP. Implementors should be aware of this
and may want to support the DRAWABLE type as well to allow for compatibility with older
clients.

® The targets ENCAPSULATED_POSTSCRIPT and ENCAPSULATED_POST-
SCRIPT_INTERCHANGE are equivalent to the targets _ADOBE_EPS and _ ADOBE_EPSI
(respectively) that appear in the selection targets registry. The _ADOBE_ targets are deprecated,
but clients are encouraged to continue to support them for backward compatibility.

7 This definition is ambiguous, as the selection may be converted into any of several targets that
may return differing amounts of data. The requestor has no way of knowing which, if any, of these
targets corresponds to the result of LENGTH. Clients are advised that no guarantees can be made
about the result of a conversion to LENGTH; its use is thus deprecated.

14

Inter-Client Communication Conventions X11, Release 6.4

* TARGETS - The owner should return a list of atoms that represent the targets for which an
attempt to convert the current selection will succeed (barring unforseeable problems such as
Alloc errors). This list should include all the required atoms.

* MULTIPLE - The MULTIPLE target atom is valid only when a property is specified on the
ConvertSelection request. If the property argument in the SelectionRequest event is None
and the target is MULTIPLE, it should be refused.

When a selection owner receives a SelectionRequest (target==MULTIPLE) request, the
contents of the property named in the request will be a list of atom pairs: the first atom nam-
ing a target and the second naming a property (None is not valid here). The effect should be
as if the owner had received a sequence of SelectionRequest events (one for each atom pair)
except that:

- The owner should reply with a SelectionNotify only when all the requested conver-
sions have been performed.

- If the owner fails to convert the target named by an atom in the MULTIPLE property,
it should replace that atom in the property with None.

Convention

The entries in a MULTIPLE property must be processed in the order they appear
in the property. For further information, see section 2.6.3.

The requestor should delete each individual property when it has copied the data from that
conversion, and the property specified in the MULTIPLE request when it has copied all the
data.

The requests are otherwise to be processed independently, and they should succeed or fail
independently. The MULTIPLE target is an optimization that reduces the amount of proto-
col traffic between the owner and the requestor; it is not a transaction mechanism. For
example, a client may issue a MULTIPLE request with two targets: a data target and the
DELETE target. The DELETE target will still be processed even if the conversion of the
data target fails.

» TIMESTAMP - To avoid some race conditions, it is important that requestors be able to dis-
cover the timestamp the owner used to acquire ownership. Until and unless the protocol is
changed so that a GetSelectionOwner request returns the timestamp used to acquire owner-
ship, selection owners must support conversion to TIMESTAMP, returning the timestamp
they used to obtain the selection.

2.6.3. Selection Targets with Side Effects

Some targets (for example, DELETE) have side effects. To render these targets unambiguous, the
entries in a MULTIPLE property must be processed in the order that they appear in the property.

In general, targets with side effects will return no information, that is, they will return a zero
length property of type NULL. (Type NULL means the result of InternAtom on the string
“NULL”, not the value zero.) In all cases, the requested side effect must be performed before the
conversion is accepted. If the requested side effect cannot be performed, the corresponding con-
version request must be refused.

15

Inter-Client Communication Conventions X11, Release 6.4

Conventions
1. Targets with side effects should return no information (that is, they should have
a zero-length property of type NULL).
2. The side effect of a target must be performed before the conversion is
accepted.
3. If the side effect of a target cannot be performed, the corresponding conversion

request must be refused.

Problem

The need to delay responding to the ConvertSelection request until a further conver-
sion has succeeded poses problems for the Intrinsics interface that need to be
addressed.

These side-effect targets are used to implement operations such as “exchange PRIMARY and
SECONDARY selections.”

2.6.3.1. DELETE

When the owner of a selection receives a request to convert it to DELETE, it should delete the
corresponding selection (whatever doing so means for its internal data structures) and return a
zero-length property of type NULL if the deletion was successful.

2.6.3.2. INSERT_SELECTION

When the owner of a selection receives a request to convert it to INSERT_SELECTION, the
property named will be of type ATOM_PAIR. The first atom will name a selection, and the sec-
ond will name a target. The owner should use the selection mechanism to convert the named
selection into the named target and should insert it at the location of the selection for which it got
the INSERT_SELECTION request (whatever doing so means for its internal data structures).

2.6.3.3. INSERT_PROPERTY

When the owner of a selection receives a request to convert it to INSERT_PROPERTY, it should
insert the property named in the request at the location of the selection for which it got the
INSERT_SELECTION request (whatever doing so means for its internal data structures).

2.7. Use of Selection Properties

The names of the properties used in selection data transfer are chosen by the requestor. The use
of None property fields in ConvertSelection requests (which request the selection owner to
choose a name) is not permitted by these conventions.

The selection owner always chooses the type of the property in the selection data transfer. Some
types have special semantics assigned by convention, and these are reviewed in the following sec-
tions.

In all cases, a request for conversion to a target should return either a property of one of the types
listed in the previous table for that target or a property of type INCR and then a property of one of
the listed types.

Certain selection properties may contain resource IDs. The selection owner should ensure that
the resource is not destroyed and that its contents are not changed until after the selection transfer
is complete. Requestors that rely on the existence or on the proper contents of a resource must

16

Inter-Client Communication Conventions X11, Release 6.4

operate on the resource (for example, by copying the contents of a pixmap) before deleting the
selection property.

The selection owner will return a list of zero or more items of the type indicated by the property
type. In general, the number of items in the list will correspond to the number of disjoint parts of
the selection. Some targets (for example, side-effect targets) will be of length zero irrespective of
the number of disjoint selection parts. In the case of fixed-size items, the requestor may deter-
mine the number of items by the property size. Selection property types are listed in the table
below. For variable-length items such as text, the separators are also listed.

Type Atom Format Separator
APPLE_PICT 8 Self-sizing
ATOM 32 Fixed-size
ATOM_PAIR 32 Fixed-size
BITMAP 32 Fixed-size
C_STRING 8 Zero

COLORMAP 32 Fixed-size
COMPOUND_TEXT 8 Zero

DRAWABLE 32 Fixed-size
INCR 32 Fixed-size
INTEGER 32 Fixed-size
PIXEL 32 Fixed-size
PIXMAP 32 Fixed-size
SPAN 32 Fixed-size
STRING 8 Zero

UTF8_STRING 8 Zero

WINDOW 32 Fixed-size

It is expected that this table will grow over time.

2.7.1. TEXT Properties

In general, the encoding for the characters in a text string property is specified by its type. Itis
highly desirable for there to be a simple, invertible mapping between string property types and
any character set names embedded within font names in any font naming standard adopted by the
Consortium.

The atom TEXT is a polymorphic target. Requesting conversion into TEXT will convert into

whatever encoding is convenient for the owner. The encoding chosen will be indicated by the
type of the property returned. TEXT is not defined as a type; it will never be the returned type
from a selection conversion request.

If the requestor wants the owner to return the contents of the selection in a specific encoding, it
should request conversion into the name of that encoding.

In the table in section 2.6.2, the word TEXT (in the Type column) is used to indicate one of the
registered encoding names. The type would not actually be TEXT; it would be STRING or some
other ATOM naming the encoding chosen by the owner.

STRING as a type or a target specifies the ISO Latin-1 character set plus the control characters
TAB (hex 09) and NEWLINE (hex 0A). The spacing interpretation of TAB is context dependent.
Other ASCII control characters are explicitly not included in STRING at the present time.

17

Inter-Client Communication Conventions X11, Release 6.4

COMPOUND_TEXT as a type or a target specifies the Compound Text interchange format; see
the Compound Text Encoding.

UTF8_STRING as a type or a target specifies an UTF-8 encoded string, with NEWLINE
(U+000A, hex 0A) as end-of-line marker.

There are some text objects where the source or intended user, as the case may be, does not have a
specific character set for the text, but instead merely requires a zero-terminated sequence of bytes
with no other restriction; no element of the selection mechanism may assume that any byte value
is forbidden or that any two differing sequences are equivalent.® For these objects, the type
C_STRING should be used.

Rationale

An example of the need for C_STRING is to transmit the names of files; many oper-
ating systems do not interpret filenames as having a character set. For example, the
same character string uses a different sequence of bytes in ASCII and EBCDIC, and
so most operating systems see these as different filenames and offer no way to treat
them as the same. Thus no character-set based property type is suitable.

Type STRING, COMPOUND_TEXT, UTF8_STRING, and C_STRING properties will consist of
a list of elements separated by null characters; other encodings will need to specify an appropriate
list format.

2.7.2. INCR Properties

Requestors may receive a property of type INCR® in response to any target that results in selec-
tion data. This indicates that the owner will send the actual data incrementally. The contents of
the INCR property will be an integer, which represents a lower bound on the number of bytes of
data in the selection. The requestor and the selection owner transfer the data in the selection in
the following manner.

The selection requestor starts the transfer process by deleting the (type==INCR) property forming
the reply to the selection.

The selection owner then:

* Appends the data in suitable-size chunks to the same property on the same window as the
selection reply with a type corresponding to the actual type of the converted selection. The
size should be less than the maximum-request-size in the connection handshake.

* Waits between each append for a PropertyNotify (state==Deleted) event that shows that the
requestor has read the data. The reason for doing this is to limit the consumption of space in
the server.

* Waits (after the entire data has been transferred to the server) until a PropertyNo-
tify (state==Deleted) event that shows that the data has been read by the requestor and then
writes zero-length data to the property.

The selection requestor:

* Waits for the SelectionNotify event.

8 Note that this is different from STRING, where many byte values are forbidden, and from
COMPOUND_TEXT, where, for example, inserting the sequence 27, 40, 66 (designate ASCII into
GL) at the start does not alter the meaning.

® These properties were called INCREMENTAL in an earlier draft. The protocol for using them
has changed, and so the name has changed to avoid confusion.

18

Inter-Client Communication Conventions X11, Release 6.4

* Loops:
- Retrieving data using GetProperty with the delete argument True.
- Waiting for a PropertyNotify with the state argument New Value.
* Waits until the property named by the PropertyNotify event is zero-length.
* Deletes the zero-length property.

The type of the converted selection is the type of the first partial property. The remaining partial
properties must have the same type.

2.7.3. DRAWABLE Properties

Requestors may receive properties of type PIXMAP, BITMAP, DRAWABLE, or WINDOW,
which contain an appropriate ID. While information about these drawables is available from the
server by means of the GetGeometry request, the following items are not:

* Foreground pixel
* Background pixel
* Colormap ID

In general, requestors converting into targets whose returned type in the table in section 2.6.2 is
one of the DRAWABLE types should expect to convert also into the following targets (using the
MULTIPLE mechanism):

. FOREGROUND returns a PIXEL value.
. BACKGROUND returns a PIXEL value.
* COLORMAP returns a colormap ID.

2.7.4. SPAN Properties

Properties with type SPAN contain a list of cardinal-pairs with the length of the cardinals deter-
mined by the format. The first specifies the starting position, and the second specifies the ending
position plus one. The base is zero. If they are the same, the span is zero-length and is before the
specified position. The units are implied by the target atom, such as LINE_NUMBER or CHAR-
ACTER_POSITION.

2.8. Manager Selections

Certain clients, often called managers, take on responsibility for managing shared resources. A
client that manages a shared resource should take ownership of an appropriate selection, named
using the conventions described in sections 1.2.3 and 1.2.6. A client that manages multiple
shared resources (or groups of resources) should take ownership of a selection for each one.

The manager may support conversion of various targets for that selection. Managers are encour-
aged to use this technique as the primary means by which clients interact with the managed
resource. Note that the conventions for interacting with the window manager predate this section;
as a result many interactions with the window manager use other techniques.

Before a manager takes ownership of a manager selection, it should use the GetSelectionOwner
request to check whether the selection is already owned by another client, and, where appropriate,
it should ask the user if the new manager should replace the old one. If so, it may then take own-
ership of the selection. Managers should acquire the selection using a window created expressly
for this purpose. Managers must conform to the rules for selection owners described in sections
2.1 and 2.2, and they must also support the required targets listed in section 2.6.2.

19

Inter-Client Communication Conventions X11, Release 6.4

If a manager loses ownership of a manager selection, this means that a new manager is taking
over its responsibilities. The old manager must release all resources it has managed and must
then destroy the window that owned the selection. For example, a window manager losing own-
ership of WM_S2 must deselect from SubstructureRedirect on the root window of screen 2
before destroying the window that owned WM_S2.

When the new manager notices that the window owning the selection has been destroyed, it
knows that it can successfully proceed to control the resource it is planning to manage. If the old
manager does not destroy the window within a reasonable time, the new manager should check
with the user before destroying the window itself or killing the old manager.

If a manager wants to give up, on its own, management of a shared resource controlled by a selec-
tion, it must do so by releasing the resources it is managing and then by destroying the window
that owns the selection. It should not first disown the selection, since this introduces a race condi-
tion.

Clients who are interested in knowing when the owner of a manager selection is no longer man-
aging the corresponding shared resource should select for StructureNotify on the window own-
ing the selection so they can be notified when the window is destroyed. Clients are warned that
after doing a GetSelectionOwner and selecting for StructureNotify, they should do a GetSe-
lectionOwner again to ensure that the owner did not change after initially getting the selection
owner and before selecting for StructureNotify.

Immediately after a manager successfully acquires ownership of a manager selection, it should
announce its arrival by sending a ClientMessage event. This event should be sent using the
SendEvent protocol request with the following arguments:

Argument Value
destination: the root window of screen 0, or the root window of the appropriate screen
if the manager is managing a screen-specific resource
propagate: False
event-mask: StructureNotify
event: ClientMessage
type: MANAGER
format: 32
data[O]: 10 timestamp
data[1]: manager selection atom
data[2]: the window owning the selection
data[3]: manager-selection-specific data
data[4]: manager-selection-specific data

Clients that wish to know when a specific manager has started should select for StructureNotify
on the appropriate root window and should watch for the appropriate MANAGER Client-
Message.

3. Peer-to-Peer Communication by Means of Cut Buffers

The cut buffer mechanism is much simpler but much less powerful than the selection mechanism.
The selection mechanism is active in that it provides a link between the owner and requestor

10 We use the notation data[n] to indicate the n™ element of the LISTofINTS8, LISTofINT16, or
LISTofINT32 in the data field of the ClientMessage, according to the format field. The list is
indexed from zero.

20

Inter-Client Communication Conventions X11, Release 6.4

clients. The cut buffer mechanism is passive; an owner places data in a cut buffer from which a
requestor retrieves the data at some later time.

The cut buffers consist of eight properties on the root of screen zero, named by the predefined
atoms CUT_BUFFERO to CUT_BUFFER7. These properties must, at present, have type
STRING and format 8. A client that uses the cut buffer mechanism must initially ensure that all
eight properties exist by using ChangeProperty requests to append zero-length data to each.

A client that stores data in the cut buffers (an owner) first must rotate the ring of buffers by plus 1
by using RotateProperties requests to rename each buffer; that is, CUT_BUFFERO to
CUT_BUFFER1, CUT_BUFFERI to CUT_BUFFER2, ..., and CUT_BUFFER7 to
CUT_BUFFERQO. It then must store the data into CUT_BUFFERO by using a ChangeProperty
request in mode Replace.

A client that obtains data from the cut buffers should use a GetProperty request to retrieve the
contents of CUT_BUFFERO.

In response to a specific user request, a client may rotate the cut buffers by minus 1 by using
RotateProperties requests to rename each buffer; that is, CUT_BUFFER7 to CUT_BUFFERG,
CUT_BUFFERG6 to CUT_BUFFERS, ..., and CUT_BUFFERO to CUT_BUFFER?7.

Data should be stored to the cut buffers and the ring rotated only when requested by explicit user
action. Users depend on their mental model of cut buffer operation and need to be able to identify
operations that transfer data to and fro.

4. Client-to-Window-Manager Communication

To permit window managers to perform their role of mediating the competing demands for
resources such as screen space, the clients being managed must adhere to certain conventions and
must expect the window managers to do likewise. These conventions are covered here from the
client’s point of view.

In general, these conventions are somewhat complex and will undoubtedly change as new win-
dow management paradigms are developed. Thus, there is a strong bias toward defining only
those conventions that are essential and that apply generally to all window management para-
digms. Clients designed to run with a particular window manager can easily define private proto-
cols to add to these conventions, but they must be aware that their users may decide to run some
other window manager no matter how much the designers of the private protocol are convinced
that they have seen the “one true light” of user interfaces.

It is a principle of these conventions that a general client should neither know nor care which win-
dow manager is running or, indeed, if one is running at all. The conventions do not support all
client functions without a window manager running; for example, the concept of Iconic is not
directly supported by clients. If no window manager is running, the concept of Iconic does not
apply. A goal of the conventions is to make it possible to kill and restart window managers with-
out loss of functionality.

Each window manager will implement a particular window management policy; the choice of an
appropriate window management policy for the user’s circumstances is not one for an individual
client to make but will be made by the user or the user’s system administrator. This does not
exclude the possibility of writing clients that use a private protocol to restrict themselves to oper-
ating only under a specific window manager. Rather, it merely ensures that no claim of general
utility is made for such programs.

For example, the claim is often made: “The client I'm writing is important, and it needs to be on
top.” Perhaps it is important when it is being run in earnest, and it should then be run under the
control of a window manager that recognizes ‘““important” windows through some private

21

Inter-Client Communication Conventions X11, Release 6.4

protocol and ensures that they are on top. However, imagine, for example, that the “important”
client is being debugged. Then, ensuring that it is always on top is no longer the appropriate
window management policy, and it should be run under a window manager that allows other win-
dows (for example, the debugger) to appear on top.

4.1. Client’s Actions

In general, the object of the X Version 11 design is that clients should, as far as possible, do
exactly what they would do in the absence of a window manager, except for the following:

* Hinting to the window manager about the resources they would like to obtain

* Cooperating with the window manager by accepting the resources they are allocated even if
they are not those requested

* Being prepared for resource allocations to change at any time

4.1.1. Creating a Top-Level Window

A client’s top-level window is a window whose override-redirect attribute is False. It must either
be a child of a root window, or it must have been a child of a root window immediately prior to
having been reparented by the window manager. If the client reparents the window away from
the root, the window is no longer a top-level window; but it can become a top-level window again
if the client reparents it back to the root.

A client usually would expect to create its top-level windows as children of one or more of the
root windows by using some boilerplate like the following:

win = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), xsh.x, xsh.y,
xsh.width, xsh.height, bw, bd, bg);

If a particular one of the root windows was required, however, it could use something like the fol-
lowing:

win = XCreateSimpleWindow(dpy, RootWindow(dpy, screen), xsh.x, xsh.y,
xsh.width, xsh.height, bw, bd, bg);

Ideally, it should be possible to override the choice of a root window and allow clients (including
window managers) to treat a nonroot window as a pseudo-root. This would allow, for example,
the testing of window managers and the use of application-specific window managers to control
the subwindows owned by the members of a related suite of clients. Doing so properly requires
an extension, the design of which is under study.

From the client’s point of view, the window manager will regard its top-level window as being in
one of three states:

J Normal
. Iconic
. Withdrawn

Newly created windows start in the Withdrawn state. Transitions between states happen when the
top-level window is mapped and unmapped and when the window manager receives certain mes-
sages. For further details, see sections 4.1.2.4 and 4.1.4.

4.1.2. Client Properties

Once the client has one or more top-level windows, it should place properties on those windows
to inform the window manager of the behavior that the client desires. Window managers will

22

Inter-Client Communication Conventions X11, Release 6.4

assume values they find convenient for any of these properties that are not supplied; clients that
depend on particular values must explicitly supply them. The window manager will not change
properties written by the client.

The window manager will examine the contents of these properties when the window makes the
transition from the Withdrawn state and will monitor some properties for changes while the win-
dow is in the Iconic or Normal state. When the client changes one of these properties, it must use
Replace mode to overwrite the entire property with new data; the window manager will retain no
memory of the old value of the property. All fields of the property must be set to suitable values
in a single Replace mode ChangeProperty request. This ensures that the full contents of the
property will be available to a new window manager if the existing one crashes, if it is shut down
and restarted, or if the session needs to be shut down and restarted by the session manager.

Convention

Clients writing or rewriting window manager properties must ensure that the entire
content of each property remains valid at all times.

Some of these properties may contain the IDs of resources, such as windows or pixmaps. Clients
should ensure that these resources exist for at least as long as the window on which the property
resides.

If these properties are longer than expected, clients should ignore the remainder of the property.
Extending these properties is reserved to the X Consortium; private extensions to them are forbid-
den. Private additional communication between clients and window managers should take place
using separate properties. The only exception to this rule is the WM_PROTOCOLS property,
which may be of arbitrary length and which may contain atoms representing private protocols
(see section 4.1.2.7).

The next sections describe each of the properties the clients need to set, in turn. They are summa-
rized in the table in section 4.4.

4.1.2.1. WM_NAME Property

The WM_NAME property is an uninterpreted string that the client wants the window manager to
display in association with the window (for example, in a window headline bar).

The encoding used for this string (and all other uninterpreted string properties) is implied by the
type of the property. The type atoms to be used for this purpose are described in section 2.7.1.

Window managers are expected to make an effort to display this information. Simply ignoring
WM_NAME is not acceptable behavior. Clients can assume that at least the first part of this
string is visible to the user and that if the information is not visible to the user, it is because the
user has taken an explicit action to make it invisible.

On the other hand, there is no guarantee that the user can see the WM_NAME string even if the
window manager supports window headlines. The user may have placed the headline off-screen
or have covered it by other windows. WM_NAME should not be used for application-critical
information or to announce asynchronous changes of an application’s state that require timely
user response. The expected uses are to permit the user to identify one of a number of instances
of the same client and to provide the user with noncritical state information.

Even window managers that support headline bars will place some limit on the length of the
WM_NAME string that can be visible; brevity here will pay dividends.

23

Inter-Client Communication Conventions X11, Release 6.4

4.1.2.2. WM_ICON_NAME Property

The WM_ICON_NAME property is an uninterpreted string that the client wants to be displayed
in association with the window when it is iconified (for example, in an icon label). In other
respects, including the type, it is similar to WM_NAME. For obvious geometric reasons, fewer
characters will normally be visible in WM_ICON_NAME than WM_NAME.

Clients should not attempt to display this string in their icon pixmaps or windows; rather, they
should rely on the window manager to do so.

4.1.2.3. WM_NORMAL_HINTS Property

The type of the WM_NORMAL_HINTS property is WM_SIZE_HINTS. Its contents are as fol-
lows:

Field Type Comments

flags CARD32 (see the next table)

pad 4*CARD32 For backwards compatibility
min_width INT32 If missing, assume base_width
min_height INT32 If missing, assume base_height
max_width INT32

max_height INT32

width_inc INT32

height_inc INT32

min_aspect (INT32,INT32)

max_aspect (INT32,INT32)

base_width INT32 If missing, assume min_width
base_height INT32 If missing, assume min_height
win_gravity INT32 If missing, assume NorthWest

The WM_SIZE_HINTS.flags bit definitions are as follows:

Name Value Field

USPosition 1 User-specified x, y

USSize 2 User-specified width, height
PPosition 4 Program-specified position

PSize 8 Program-specified size

PMinSize 16 Program-specified minimum size
PMaxSize 32 Program-specified maximum size
PResizelnc 64 Program-specified resize increments
PAspect 128 Program-specified min and max aspect ratios
PBaseSize 256 Program-specified base size
PWinGravity 512 Program-specified window gravity

To indicate that the size and position of the window (when a transition from the Withdrawn state
occurs) was specified by the user, the client should set the USPosition and USSize flags, which
allow a window manager to know that the user specifically asked where the window should be
placed or how the window should be sized and that further interaction is superfluous. To indicate
that it was specified by the client without any user involvement, the client should set PPosition

24

Inter-Client Communication Conventions X11, Release 6.4

and PSize.
The size specifiers refer to the width and height of the client’s window excluding borders.

The win_gravity may be any of the values specified for WINGRAVITY in the core protocol
except for Unmap: NorthWest (1), North (2), NorthEast (3), West (4), Center (5), East (6),
SouthWest (7), South (8), and SouthEast (9). It specifies how and whether the client window
wants to be shifted to make room for the window manager frame.

If the win_gravity is Static, the window manager frame is positioned so that the inside border of
the client window inside the frame is in the same position on the screen as it was when the client
requested the transition from Withdrawn state. Other values of win_gravity specify a window ref-
erence point. For NorthWest, NorthEast, SouthWest, and SouthEast the reference point is
the specified outer corner of the window (on the outside border edge). For North, South, East,
and West the reference point is the center of the specified outer edge of the window border. For
Center the reference point is the center of the window. The reference point of the window man-
ager frame is placed at the location on the screen where the reference point of the client window
was when the client requested the transition from Withdrawn state.

The min_width and min_height elements specify the minimum size that the window can be for
the client to be useful. The max_width and max_height elements specify the maximum size. The
base_width and base_height elements in conjunction with width_inc and height_inc define an
arithmetic progression of preferred window widths and heights for non-negative integers i and j:

width = base_width + (i X width_inc)

height = base_height + (j X height_inc)

Window managers are encouraged to use i and j instead of width and height in reporting window
sizes to users. If a base size is not provided, the minimum size is to be used in its place and vice
versa.

The min_aspect and max_aspect fields are fractions with the numerator first and the denominator
second, and they allow a client to specify the range of aspect ratios it prefers. Window managers
that honor aspect ratios should take into account the base size in determining the preferred win-
dow size. If a base size is provided along with the aspect ratio fields, the base size should be sub-
tracted from the window size prior to checking that the aspect ratio falls in range. If a base size is
not provided, nothing should be subtracted from the window size. (The minimum size is not to be
used in place of the base size for this purpose.)

4.1.2.4. WM_HINTS Property

The WM_HINTS property (whose type is WM_HINTYS) is used to communicate to the window
manager. It conveys the information the window manager needs other than the window geometry,
which is available from the window itself; the constraints on that geometry, which is available
from the WM_NORMAL_HINTS structure; and various strings, which need separate properties,
such as WM_NAME. The contents of the properties are as follows:

Field Type Comments

flags CARD32 (see the next