Athena Widget Set — C Language Interface
X Window System
X Version 11, Release 6.4

Chris D. Peterson
formerly MIT X Consortium

X Window System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, ygarson obtaining a cgpf this software and associated documenta-
tion files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, cgpmodify and distribute this documentation forygourpose and without fee is hereby granted,
provided that the alve wpyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-
taining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein fgmpanpose. lis provided “as is'without express or implied
warranty.

Acknowledgments

Marny thanks go to Ralph Swick (Project Athena / Digital) who has contributed much time and
effort to this widget set. Previous versions of the widget set are largely due to his time and effort.
Marny of the impravements that | hae keen able to makae because he provided a solid founda-
tion to build upon. While much of the effort has been Ralph’s yrotirer people hae @ntrib-

uted to the code.

Mark Ackerman (formerly Project Athena)
Donna Comerse (MIT X Consortium)
Jim Fulton (formerly MIT X Consortium)
Loretta Guarino-Reid (Digital WSL)
Charles Haynes (Digital WSL)

Rich Hyde (Digital WSL)

Mary Larson (Digital UEG)

Joel McCormack (Digital WSL)

Ron Newman (formerly Project Athena)
Jeanne Rich (Digital WSL)

Terry Weissman (formerly Digital WSL)

While not much remains of the X10 toolkit, nyasf the ideas for this widget set come from that
original version. Thedesign and implementation of the X10 toolkit were done by:

Mike Gancarz (formerly Digital UEG)
Charles Haynes (Digital WSL)

Phil Karlton (formerly Digital WSL)
Kathleen Langone (Digital UEG)

Mary Larson (Digital UEG)

Ram Rao (Digital UEG)

Smoley Wallace (formerly Digital WSL)
Terry Weissman (formerly Digital WSL)

I haveused the formatting ideas, and some of the words from previous versions of this document.
The X11R3 Athena widget document was written by:

Ralph R. Swick (Project Athena/ Digital)
Terry Weissman (formerly Digital WSL)
Al Mento (Digital UEG)

Putting this manual together was a major task in and of iteelbuld like to hank Ralph Swick,
Donna Comerse, and Jim Fulton for taking the time to helpvasimy technical knowledge into
legible text. A special thanks to Jean Diaz (O’Reilly and Associates) for spending nearly a month
with me working out all the annoying little details.

Chris D. Peterson
MIT X Consortium 1989

The R5 edition of this document has been edited by the reseafasf St@f MIT X Consortium,
with significant contributions by Jim Fulton (NCD).

Donna Cowerse
MIT X Consortium 1991

The R6 edition of this document has been edited to reflect changes brought about by research
staf of the Omron Corporation, with special recognition to Li Yuhong, Seiji Kuwari, and Hiroshi
Kuribayashi for the X11R5/contrib/lib/X@ainternationalization that inspired this version.

Frank Sheeran
Omron Corporation 1994

Vi

Chapter 1

Athena Widgets and The Intrinsics

The X Toolkit is made up of tvdistinct pieces, the Xt Intrinsics and a widget set. The Athena
widget set is a sample implementation of a widget set built upon the Intrinsics. In the X Toolkit, a
widget is the combination of an X winder subwindav and its associated input and output
semantics.

Because the Intrinsics provide the same basic functionality to all widget sets it may be possible to
use widgets from the Athena widget set with other widget sets based upon the Intrinsics. Since
widget sets may also implementvaie protocols, all functionality may not beadable when

mixing and matching widget set§or information about the Intrinsics, see tdoolkit Intrin-

sics — C Languge Interface

The Athena widget set is a library package layered on top of the Intrinsics and Xlib that provides
a <t of user interface tools sufficient to build a wide variety of applications. This layer extends
the basic abstractions provided by X and provides the next layer of functionality primarily by sup-
plying a cohesie %t of sample widgets. Although the Intrinsics are a Consortium standard, there
is no standard widget set.

To the extent possible, the Intrinsics are "pplicee”. Theapplication environment and widget
set, not the Intrinsics, define, implement, and enforce:

. Policy
. Consistency
. Style

Each individual widget implementation defines its own polithe X Toolkit design allows for,
but does not necessarily encourage, the free mixing of radically differing widget implementations.

1.1. Introduction to the X Toolkit

The X Toolkit provides tools that simplify the design of application user interfaces in the X Win-
dow System programming @ironment. Itassists application programmers by providing a set of
common underlying user-interface functions. It also lets widget programmers modify existing
widgets, by subclassing, or addaneidgets. Byusing the X Toolkit in their applications, pro-
grammers can present a similar user interface across applications to all workstation users.

The X Toolkit consists of:

. A set of Intrinsics functions for building widgets
. An achitectural model for constructing widgets
. A widget set for application programming

While the majority of the Intrinsics functions are intended for the widget prograramsrset of

the Intrinsics functions are to be used by application programmer(3aelkit Intrinsics — C
Languae Interfacg. Thearchitectural model lets the widget programmer designwegets by

using the Intrinsics and by combining other widgets. The application interface layers built on top
of the X Toolkit include a coordinated set of widgets and composition policies. Some of these
widgets and policies are specific to a single application domain, and others are common to a vari-
ety of applications.

The remainder of this chapter discusses the X Toolkit and Athena widget set:
. Terminology

Athena Widget Set X11, Release 6.4

. Model
. Corventions used in this manual
. Format of the Widget Reference Chapters

1.2. Terminology

In addition to the terms already defined for X programming X$be— C Languge X hterfacs,
the following terms are specific to the Intrinsics and Athena widget set and used throughout this
document.

Application programmer

A programmer who uses the X Toolkit to produce an application user interface.
Child

A widget that is contained within another "parent” widget.
Class

The general group to which a specific object belongs.
Client

A function that uses a widget in an application or for composing other widgets.
FullName

The name of a widget instance appended to the full name of its parent.
Instance

A specific widget object as opposed to a general widget class.
Method

A function or procedure implemented by a widget class.
Name

The name that is specific to an instance of a widget forea dgiient. Thisname is speci-
fied at creation time and cannot be modified.

Object

A data abstraction consisting of yaie data and prate and public functions that operate on
the prvate data. Users of the abstraction can interact with the object only through calls to
the objects public functions. In the X Toolkit, some of the objeqtublic functions are

called directly by the application, while others are called indirectly when the application
calls the common Intrinsics functions. In general, if a function is common to all widgets, an
application uses a single Intrinsics function teoke the function for all types of widgets.

If a function is unique to a single widget type, the widget exports the function.

Parent

A widget that contains at least one other ("child") widdgeparent widget is also known as
a cmposite widget.

Resource

A named piece of data in a widget that can be set by a client, by an application, or by user
defaults.

Superclass

A larger class of which a specific class is a memA#members of a class are also mem-
bers of the superclass.

User
A person interacting with a workstation.

Athena Widget Set X11, Release 6.4

Widget
An object providing a user-interface abstraction (for example, a Scrollbar widget).
Widget class

The general group to which a specific widget belongs, otherwise known as the type of the
widget.

Widget programmer
A programmer who adds wewidgets to the X Toolkit.

1.3. Underlying Model
The underlying architectural model is based on the following premises:
Widgets are X windows

Every user-interface widget is associated with an X windthe X windav ID for a wid-
get is readily wailable from the widget. Standard Xlib calls can be used by widgets for
mary of their input and output operations.

Information hiding

The data foreery widget is prvate to the widget and its subclasses. That is, the data is nei-
ther directly accessible nor visible outside of the module implementing the widget. All pro-
gram interaction with the widget is performed by a set of operations (methods) that are
defined for the widget.

Widget semantics and widget layout geometry

Widget semantics are clearly separated from widget layout geoniditigets are con-
cerned with implementing specific user-interface semanticsy Adeelittle control over
issues such as their size or placement veldti other widget peers. Mechanisms are pro-
vided for associating geometric managers with widgets and for widgets &éatmestions
about their own geometry.

1.4. Corventions Used in this Manual

. All resources ailable to the widgets are listed with each widget. Wahthese are\ail-
able to more than one widget class due to the object oriented nature of the Intrinsics. The
new resources for each widget are listed in bold text, and the inherited resources are listed
in plain text.

. Global symbols are printed bold and can be function names, symbols defined in include
files, or structure names. Arguments are printathlics.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. Thefunction declaration itself follows, and each argument is specifically explained.
General discussion of the function, ifyas required, follows the guments. Wherappli-
cable, the last paragraph of the explanation lists the return values of the function.

. To diminate ary ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiesr, in the case of multiple arguments, the wepecify The explanations for all
arguments that are returned to you start with the wetminsor, in the case of multiple
arguments, the wonetturn. The explanations for all arguments that you can pass and are
returned start with the wordpecifies and returns

. Any pointer to a structure that is used to return a value is designated as suchrieyutime
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using tha_outsuffix.

Athena Widget Set X11, Release 6.4

1.5. Format of the Widget Reference Chapters

The majority of this document is a reference guide for the Athena widget set. Chapters three
through six gie the programmer all information necessary to use the widgets. The layout of the
chapters follows a specific pattern to allthe programmer to easily find the desired information.

The first fav pages of eery chapter gie an overview of the widgets in that sectionVidgets are
grouped into chapters by functionality.

Chapter 3 Simple Widgets

Chapter 4 Menus

Chapter 5 Text Widgets

Chapter 6 Composite and Constraint Widget

Falowing the introduction will be a description of each widget in that chaptren no func-
tional grouping is obvious the widgets are listed in alphabetical,adgdr as in chapters three
and six.

The first section of each widgetkscription is a table that contains general information about
this widget class. Here is the table for the Box widget, and an explanation of all the entries.

Application Header file <X11/Xaw/Box.h>

Class Header file <X11/Xaw/BoxP.h>

Class boxWidigetClass

Class Name Box

Superclass Composite

Application Header File This file must be included when an application uses this widget.

It usually contains the class definition, and some resource
macros. Thigs often called the “publitheader file.

Class Header File This file will only be used by widget programmers. It will need
to be included by anwidget that subclasses this widget. This is
often called the “pnate” header file.

Class This is the widget class of this widget. This global symbol is
passed tXtCreateWidget so that the Intrinsics will know
which type of widget to create.

Class Name This is the resource name of this class. This name can be used in
a resource file to match gnvidget of this class.
Superclass This is the superclass that this widget class is descended from. If

you understand lothe superclass works it will alloyou to
more quickly understand what this widget does, since much of
its functionality may be inherited from its superclass.

After this table follows a general description of the default behavior of this widget, as seen by the
user In mary cases this functionality may beearidden by the application programmer by
the user.

The next section is a table showing the name, class, type and default value of each resource that is
available to this widget. There is also a column containing notes describing special restrictions
placed upon individual resources.

A This resource may be automatically adjusted when another resource is changed.
C This resource is only settable at widget creation time, and may not be modified with
XtSetValues

Athena Widget Set X11, Release 6.4

D Do not modify this resource. While setting this resource will work, it can cause unex-
pected behaviorWhen this symbol appears there is angth@ferred, interface provided
by the X Toolkit.

R This resource is READ-ON, and may not be modified.

After the resource table is a detailed descriptiornvefyeresource ailable to that widget. Many

of these are redundant, but printing them with each widges gage flipping. The names of the
resources that are inherited are printed in plain text, while the names of the resources that are new
to this class are printed bold. If you hare dready read the description of the superclass you

need only pay attention to the resources printed in bold.

For each composite widget there is a section on layout semantics that follows the resource
description. Thisection will describe the effect of constraint resources on the layout of the chil-
dren, as well as a general description of where it prefers to place its children.

Descriptions of default translations and action routines come next, for widgets to which they
apply. The last item in each widgsttbcumentation is the description of all wenience routines
provided by the widget.

1.6. Input Focus

The Intrinsics define a resource on all Shell widgets that interact with thewwmnaioager called
input. This resource requests the assistance of wirmdanager in acquiring the input focus.
The resource defaults Ealsein the Intrinsics, but is redefined to defaulTtae when an appli-
cation is using the Athena widget set. An application programmer weagde this default and
set the resource backfalseif the application does not need the windmanager to gie it the
input focus. See th¥ Toolkit Intrinsics — C Languge Interfacefor details on thénput
resource.

Athena Widget Set X11, Release 6.4

Chapter 2
Using Widgets

Widgets sere as he primary tools for building a user interface or applicatiorenment. The
Athena widget set consists of primagiwidgets that contain no children (for example, a command
button) and composite widgets which may contain one or more widget children (for example, a
Box widget).

The remaining chapters explain the widgets that are provided by the Athena widget set. These
user-interface components se@as annterface for application programmers who do not want to
implement their own widgets. In addition, yh&erve as a farting point for those widget pro-
grammers who, using the Intrinsics mechanisms, want to implement altergpguication pro-
gramming interfaces.

This chapter is a brief introduction to widget programming. The examples provided use the
Athena widgets, though most of the concepts will apply to all widget sets. Although there are
several programming interfaces to the X Toolkit, only one is described Ifefall description of
the programming interface is provided in the docunXeraolkit Intrinsics — C Languge Inter-
face

2.1. Settingthe Locale

If it is desirable that the application takdvantage of internationalization (i18n), you must estab-
lish locale withXtSetLanguageProcbeforeXtDisplaylnitialize or XtApplnitialize is called.

For full details, please refer to the documgnibolkit Intrinsics — C Languge Interface section
2.2. Howeer, the following simplest-case call is sufficient in rpam most applications.

XtSetLanguageProc(NULL, NULL, NULL);

Most notablythis will affect the Standard C locale, determine which resource files will be loaded,
and what fonts will be required of FontSet specifications. Inymases, the addition of this line

is the only source change required to internationalize ptagrams, and will not disturb the

function of programs in the default "C" locale.

2.2. Initializing the Toolkit

You must call a toolkit initialization function beforevioking ary other toolkit routines (besides
locale setting, ab@). XtApplnitialize opens the X server connection, parses the command line,
and creates an initial widget that will seras he root of a tree of widgets created by this applica-
tion.

Widget XtApplnitializepp_context_returrapplication_classoptions num_options
argc_in_outargv_in_outfallback_resourcesargs, num_arg}
XtAppContext "app_context_return
Stringapplication_class
XrmOptionDescReoptiong];
Cardinalnum_options
int *argc_in_out
String *argv_in_ouf];
String *fallback_resources
ArgList args
Cardinalnum_args

Athena Widget Set X11, Release 6.4

app_con_return Returns the application context of this application, if non-NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this applicatioh.useful cowention is to form
the class name by capitalizing the first letter of the application name. For
example, the application named “xmahas a class hame of “Xman”.

options Specifies hw to parse the command line foryaapplication-specific
resources. Theptions argument is passed as a parametérrtdrar-
seCommand For further information, se¥lib — C Languge X hter-

face
num_options Specifies the number of entries in the options list.
argc_in_out Specifies a pointer to the number of command line parameters.
argv_in_out Specifies the command line parameters.

fallback_resources Specifies resource values to be used if the site-wide application class
defaults file cannot be opened, or NULL.

args Specifies the argument list to use when creating the Application shell.
num_args Specifies the number of argumentsaigs

This function will remee the command line arguments that the toolkit reads &mo_in_out
andargv_in_out It will then attempt to open the displalf the display cannot be opened, an

error message is issued and XtApplnitialize terminates the application. Once the display is
opened, all resources are read from the locations specified by the Intrinsics. This function returns
an ApplicationShell widget to be used as the root of the applicatiatiget tree.

2.3. Creating a Widget

Creating a widget is a three-step process. First, the widget instance is allocated, and various
instance-specific attributes are set by u3{t@reateWidget. Second, the widget'parent is
informed of the ne child by usingXtManageChild. Finally, X windows are created for the par-
ent and all its children by usingRealizeWidgetand specifying the top-most widget. The first
two geps can be combined by usMtCreateManagedWidget In addition, XtRealizeWidget

is automatically called when the child becomes managed if the parent is already realized.

To dlocate, initialize, and manage a widget, d&€reateManagedWidget

Widget XtCreateManagedWidgeime widget_classparent args num_arg$
Stringname
WidgetClassvidget_class
Widgetparent
ArgList args
Cardinalnum_args

name Specifies the instance name for the created widget that is used for retrieving wid-
get resources.

widget_class Specifies the widget class pointer for the created widget.

parent Specifies the parent widget ID.

args Specifies the argument list. The argument list is a variable-length list composed
of name and value pairs that contain information pertaining to the specific widget
instance being createdror further information, see Section 2.7.2.

num_args Specifies the number of arguments in the argument list. If the num_args is zero,
the argument list is wer referenced.

When a widget instance is successfully created, the widget identifier is returned to the application.
If an error is encountered, th@&Error routine is ivoked to inform the user of the error.

Athena Widget Set X11, Release 6.4

For further information, seX Toolkit Intrinsics — C Languge Interface

2.4. CommonResources

Although a widget can lva wique arguments that it understands, all widgete llammon argu-
ments that provide some regularity of operation. The common argumemsidiitary widgets
to be managed by highewk components without gerd for the individual widget typeWid-
gets will ignore ayp argument that thgdo not understand.

The following resources are retregl from the argument list or from the resource database by all
of the Athena widgets:

Name Class Type DefaultValue
accelerators Accelerators Acceleratorable NULL
ancestorSensite AncestorSensite Boolean Tue

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWdth BorderWdth Dimension 1

colormap Colormap Colormap Rrents Colormap
depth Depth int Parents Depth
destrgCallback Callback XtCallbackList NULL

height Height Dimension widget dependent
mappedWhenManaged MappedWhenManaged Boolean Tue

screen Screen Screen Brents Sreen
sensitve Sensitve Boolean Tue

translations Tanslations TanslationTable widget dependent
width Width Dimension widget dependent

X Position Position 0

y Position Position 0

The following additional resources are retag from the argument list or from the resource data-
base by manof the Athena widgets:

Name Class Type DefaultValue
callback Callback XtCallbackList NULL

cursor Cursor Cursor widget dependent
foreground fereground Piel XtDefaultForeground
insensitveBorder Insensitie Axmap GrgrPixmap

2.5. Resouce Corversions

Most resources in the Athena widget seteha orverter registered that will translate the string in
a resource file to the correct internal representation. While some are obvious (string to integer,
for example), others need specific mention of thenalbte values. Thregeneral coverters are
described here:

. Cursor
. Pixel
. Bitmap

Many widgets hae defined special caerters that apply only to that widget. When these occur,
the documentation section for that widget will describe theerter.

Athena Widget Set X11, Release 6.4

2.5.1. CursorConversion

The value for theursorNameresource is specified in the resource database as a string, and is of
the following forms:

. A standard X cursor name fromX11/cursorfont.h > The names icursorfont.h each
describe a specific cursofhe resource names for these cursors are exaaljhbknames
in this file except th&C _is not used. The cursor definitidd€C_gumby has a resource
name ofgumby.

. Glyphs, as irFONT font-name glyph-inad][f ont-name] glyph-inde]. The first font and
glyph specify the cursor source pixmap. The second font and glyph specify the cursor
mask pixmap. The mask font defaults to the source font, and the mask glyplkefaldts
to the source glyph index.

. A relative a absolute file name. If a relag a absolute file name is specified, that file is
used to create the source pixmap. Then the string "Mask" is appended to locate the cursor
mask pixmap. If the "Mask" file does not exist, the suffix "msk" is tried. If "'msk" fails, no
cursor mask will be used. If the filename does not start with ’/* or "./" the the bitmap file
path is used (see section 2.4.3).

2.5.2. PixelConversion

The string-to-pixel coverter takes ajpname that is acceptable to XParseColor idde— C
Languae X hterfacg. Inaddition this routine understands the special toolkit symbols ‘XtDe-
faultForeground’ and ‘XtDefaultBackground’, describedifoolkit Intrinsics — C Languge
Interface In short the acceptable pixel names are:

. Any oolor name for the rgb.txt file (typically in the directory /usr/lib/X11 on POSIX sys-
tems).

. A numeric specification of the form #<red><green><blue> where these numeric values are
hexadecimal digits (both upper and lower case).

. The special strings ‘XtDefaultForeground’ and ‘XtDefaultBackground’

2.5.3. BitmapConversion

The string-to-bitmap camrter attempts to locate a file containing bitmap data whose name is
specified by the input string. If the file name is retaf.e. does not begin with / or ./), the direc-
tories to be searched are specified inbitmapFilePath resource--clasBitmapFilePath. This
resource specifies a colon () separated list of directories that will be searched for the named bit-
map or cursor glyph (see section 2.4.1). bhmapFilePath resource is global to the applica-

tion, and maynot be specified differently for each widget that wishes tovedm cursor to bit-

map. Inaddition to the directories specified in tiigmapFilePath resource a default directory is
searched. Wheusing POSIX the default directory fgsr/include/X11/bitmaps.

2.6. Realizinga Widget
The XtRealizeWidget function performs tw tasks:

. Calculates the geometry constraints of all managed descendants of this widget. The actual
calculation is put dfuntil realize time for performance reasons.

. Creates an X winde for the widget and, if it is a composite widget, realizes each of its
managed children.

void XtRealizeWidget)
Widgetw;
w Specifies the widget.
For further information about this function, see ¥&oolkit Intrinsics — C Languze Interface

Athena Widget Set X11, Release 6.4

2.7. Processing Events

Now that the application has created, managed and realized its widgets, it is ready to process the
events that will be deliered by the X Server to this clien function call that will process the
events isXtAppMainLoop .

void XtAppMainLoop@pp_context
XtAppContextapp_context

app_context Specifies the application context of this application. The value is normally
returned byXtApplnitialize .

This function neer returns: it is an infinite loop that processes theveéas. Useiinput can be

handled through callback procedures and application defined action routines. More details are
provided inX Toolkit Intrinsics — C Languge Interface

2.8. StandardWidget Manipulation Functions

After a widget has been created, a client can interact with that widget by calling one of the stan-
dard widget manipulation routines provided by the Intrinsics, or a widget class-specific manipula-
tion routine.

The Intrinsics provide generic routines toagihe application programmer access to a set of stan-
dard widget functions. The common widget routines let an application or composite widget per-
form the following operations on widgets without requiring explicit knowledge of the widget
type.

. Control the mapping of widget windows

. Destrgy a widget instance

. Obtain an argument value

. Set an argument value

2.8.1. MappingWidgets

By default, widget windows are mapped (madevelde) automatically byXtRealizeWidget
This behavior can be disabled by uskigetMappedWhenManaged making the client respon-
sible for callingXtMapWidget to male the widget vievable.

void XtSetMappedWhenManaged(map_when_marggd)
Widgetw;
Booleanmap_when_marugd;

w Specifies the widget.

map_when_marsd
Specifies the mevalue. Ifmap_when_managedTsue, the widget is mapped
automatically when it is realized. If map_when_managéailse, the client
must callXtMapWidget or male a £cond call toXtSetMappedWhenMan-
agedto cause the child windoto be napped.

The definition forXtMapWidget is:

void XtMapWidget{)
Widgetw;

w Specifies the widget.

When you are creating\s®al children in sequence for a previously realized common parent it is
generally more efficient to construct a list of children ag #éhe created (usingtCreateWidget)

and then usXtManageChildren to request that their parent managed them all at once. By man-
aging a list of children at one time, the parent candawasteful duplication of geometry pro-
cessing and the associated “screen flash”.

10

Athena Widget Set X11, Release 6.4

void XtManageChildrerghildren, num_childrei
WidgetListchildren;
Cardinalnum_children
children Specifies a list of children to add.
num_children Specifies the number of children to add.

If the parent is already visible on the screen, it is especially important to batch updates so that the
minimum amount of visible windw reconfiguration is performed.

For further information about these functions, seexfieolkit Intrinsics — C Languge Inter-
face

2.8.2. Destoying Widgets
To destrgy a widget instance of antype, useXtDestroyWidget.
void XtDestroyWidget)
Widgetw;
w Specifies the widget.

XtDestroyWidget destroys the widget and recwely destroys ay children that it may hae,
including the windows created by its children. After callXipestroyWidget, no further refer-
ences should be made to the widget granildren that the destroyed widget mayédead.

2.8.3. Retriving Widget Resource Values

To retrieve the current value of a resource attribute associated with a widget instanx¢Gese
Values.
void XtGetValuesf, args num_arg$

Widgetw;

ArgList args

Cardinalnum_args

w Specifies the widget.

args Specifies a variable-length argument list of nameaaitiiesspairs that contain
the resource name and the address into which the resource value is stored.

num_args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list are dependent on the widget. Note that the
caller is responsible for providing space into which the returned resource value is copied; the
ArgList contains a pointer to this storage (e.g. x and y must be allocated as PoBitrd)ther
information, see th& Toolkit Intrinsics — C Languge Interface

2.8.4. ModifyingWidget Resource Values

To modify the current value of a resource attribute associated with a widget instangéSese
Values.

void XtSetValuesf, args num_arg}
Widgetw;
ArgList args
Cardinalnum_args

w Specifies the widget.

args Specifies an array of name aralue pairs that contain the arguments to be modi-
fied and their ne values.

num_args Specifies the number of arguments in the argument list.

11

Athena Widget Set X11, Release 6.4

The arguments and values that are passed will depend on the widget being modified. Some wid-
gets may not alle certain resources to be modified after the widget instance has been created or
realized. Naotification is gven if any part of aXtSetValuesrequest is ignored.

For further information about these functions, seextfieolkit Intrinsics — C Languge Inter-
face

Note

The argument list entry foXtGetValues specifies the address to which the caller
wants the value copied. The argument list entryXtetValues, howeve, contains
the nev value itself, if the size of value is less than sizeof(XtArgVal) (architecture
dependent, but at least sizeof(long)); otherwise, it is a pointer taline vString
resources areabys passed as pointersgaedless of the length of the string.

2.9. Usingthe Client Callback Interface

Widgets can communicate changes in their state to their clients by means of a callback facility.
The format for a cliens callback handler is:

void CallbackProgw, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies widget for which the callback is registered.

client_data Specifies arbitrary client-supplied data that the widget should pass back to the
client when the widgetecutes the cliens callback procedure. This is a way for
the client registering the callback to also register client-specific data: a pointer to
additional information about the widget, a reason feoking the callback, and
so on. If no additional information is necess&yLL may be passed as this
argument. Thidield is also frequently known as thksure

call_data Specifies ap callback-specific data the widget wants to pass to the clieont.
example, when Scrollbaixecutes itgumpProc callback list, it passes the cur-
rent position of the thumb icall_data

Callbacks can be registered either by creating an argument containing the callback list described
below or by using the special caenience routineXtAddCallback andXtAddCallbacks.

When the widget is created, a pointer to a list of callback procedure and data pairs can be passed
in the argument list t&XtCreateWidget. The list is of typeXtCallbackList :

typedef struct {
XtCallbackProc callback;
XtPointer closure;

} X tCallbackRec, *XtCallbackList;

The callback list must be allocated and initialized before caHit@€@yeateWidget. The end of

the list is identified by an entry containing NULL in callback and closure. Once the widget is cre-
ated, the client can change or de-allocate this list; the widget itself makes no further reference to
it. Theclosure field contains the client_data passed to the callback when the callback list is
executed.

The second method for registering callbacks is toXigeldCallback after the widget has been
created.

12

Athena Widget Set X11, Release 6.4

void XtAddCallbackgy, callback_namecallback client_datg
Widgetw;
Stringcallback_namg
XtCallbackProacallback
XtPointerclient_data

w Specifies the widget to add the callback to.
callback_nameSpecifies the callback list within the widget to append to.
callback Specifies the callback procedure to add.

client_data Specifies the data to be passed to the callback whenvblseth
XtAddCallback adds the specified callback to the list for the named widget.

All widgets provide a callback list namekstroyCallback where clients can register procedures
that are to bexecuted when the widget is destenl. Thedestry callbacks arexecuted when
the widget or an ancestor is degtrd. Thecall_dataargument is unused for destreallbacks.

2.10. Pogramming Considerations

This section provides some guidelines ow @ st up an application program that uses the X
Toolkit.

2.10.1. Writing Applications

When writing an application that uses the X Toolkit, you shouldemate that your application
performs the following:

1. Include<X11/Intrinsic.h > in your application programs. This header file automatically
includes <X11/Xlib.h >, so all Xlib functions also are defined. It may also be necessary to
include< X11/StringDefs.h >when setting up argument lists, as mahthe XtNsome-
thing definitions are only defined in this file.

2. Includethe widget-specific header files for each widget type that you need t&ase.
example, X11/Xaw/Label.h> and <X11/Xaw/Command.h>.

3. Callthe XtApplnitialize function before imoking ary other toolkit or Xlib functions.For
further information, see Section 2.1 and Xh@olkit Intrinsics — C Languge Interface

4. To pass attributes to the widget creation routines that wairade ary site or user cus-
tomizations, set up argument lists. In this document, a list of valid argument names is pro-
vided in the discussion of each widget. The names eaghehdobal symbol defined that
begins withXtN to help catch spelling errorg&or example XtNlabel is defined for the
label resource of manwidgets.

For further information, see Section 2.9.2.2.

5. Whenthe argument list is set up, create the widget wittktidreateManagedWidget
function. For further information, see Section 2.2 andXh®olkit Intrinsics — C Lan-
guage Interface

6. If the widget has ancallback routines, set by théNcallback argument or theXtAdd-
Callback function, declare these routines within the application.

7. Aftercreating the initial widget hierarghwindows must be created for each widget by
calling XtRealizeWidget on the top leel widget.

8. Mostapplications nw sit in a loop processingvents usingXtAppMainLoop , for exam-
ple:

XtCreateManagedWidgetéme class parent args, num_args;
XtRealizeWidgetghel);
XtAppMainLoop@pp_context

13

Athena Widget Set X11, Release 6.4

For information about this function, see tkdoolkit Intrinsics — C Languge Interface

9. Link your application witHibXaw (the Athena widgets)ibXmu (miscellaneous utili-
ties), libXt (the X Toolkit Intrinsics) JibSM (Session ManagementihICE (Inter-Client
Exchange)libXext (the extension library needed for the shape extension code which
allows rounded Command buttons), difcK11 (the core X library). The following pro-
vides a sample command line:

cc -oapplication applicatiorc —IXaw —IXmu —IXt —-ISM -IICE —IXext —IX11

2.10.2. ChangingResource Values

The Intrinsics support twvmethods of changing the default resource values; the resource man-
ager and an argument list passed into XtCreaity®t. Whileresources values will get updated
no matter which method you use, th@tmethods provide slightly different functionality.

Resource Manager This method picks up resource definitions descrikidal-r C Lan-
guage X hterfacefrom mary different locations at run time. The loca-
tions most important to the application programmer aréailimack
resourcesand theapp-defaultdile, (seeX Toolkit Intrinsics — C Lan-
guage Interfacefor the complete list). Since these resource are loaded at
run time, thg can be eerridden by the usedlowing an application to
be customized to fit the particular needs of each individual T$ese
values can also be modified without the need to rebuild the application,
allowing rapid prototyping of user intades. Applicatiopprogrammers
should use resources in preference to hard-coded valuesushpossi-
ble.

Argument Lists The values passed into the widget at creation time via an argument list
cannot be modified by the usand allov no goportunity for customiza-
tion. Itis used to set resources that cannot be specified as strings (e.g.
callback lists) or resources that should noteralden (e.g. window
depth) by the user.

2.10.2.1. SpecifyindResources

It is important for all X Toolkit application programmers to understandtoaise the X
Resource Manager to specify resources for widgets in an X application. This section will
describe the most common methods used to specify these resourcesy émddaothe X
Resource manager.

Xrdb Thexrdb utility may be used to load a file containing resources into the
X server Once the resources are loaded, the resources will affect any
new applications started on the display thatyteere loaded onto.

Application Defaults The application defaults (app-defaults) file (normally in /usr/lib/X11/app-
defaultstlassnamgfor an application is loaded whemethe application
is started.

The resource specification haoteolon-separated parts, a name, andlaez Thevalueis a
string whose format is dependent on the resource specifieaintyy Nameis constructed by
appending a resource name to a full widget name.

The full widget name is a list of the name wéry ancestor of the desired widget separated by
periods (.). Each widget also has a class associated wilclass is a type of widget (e.g. Label
or Scrollbar or Box). Notice that class names, byeption, begin with capital letters and
instance names begin with lower case letters. The clasy efidget may be used in place of its
name in a resource specification. Here areveef@amples:

xman.form.litton1 Thisis a fully specified resource name, and will affect only widgets
called buttonl that are children of widgets called form that are children

14

Athena Widget Set X11, Release 6.4

of applications named xman. (Note that while typicallp twdgets that
are siblings will hge dfferent names, it is not prohibited.)

Xman.Form.Command Thiwill match aty Command widget that is a child of a Form widget
that is itself a child of an application of clagsan

Xman.Form.bttonl Thisis a mixed resource name with both widget names and classes speci-
fied.

This syntax allows an application programmer to specijywédget in the widget treeTo match
more than one widget (for example a user may want te@bkommand buttons blue), use an
asterisk (*) instead of a period. When an asterisk is usgdjuamber of widgets (including zero)
may exist between the bawidget names. For example:

Xman*Command Thisnatches all Command widgets in the Xman application.
Foo*buttonl Thismatches anwidget in the Foo application that is nantedtonl

The root of all application widget trees is the widget returnedtBpplnitialize . Even though
this is actually an ApplicationShell widget, the toolkit replaces its widget class with the class
name of the application. The name of this widget is either the name usedk® tive applica-
tion (argv[0]) or the name of the application specified using the stanrdardecommand line
option supported by the Intrinsics.

The last step in constructing the resource name is to append the name of the resource with either a
period or asterisk to the full or partial widget name already constructed.

*foreground:Blue Specifiethat all widgets in all applications will i@ a bre-
ground color of blue.
Xman*borderwdth:10 Specifieshat all widgets in an application whose class is

Xman will hare a lorder width of 10 (pixels).

xman.form.buttonl.labeléting Specifiethat a particular widget in the xman application
will have a hbel hamedesting

An exclamation point (!) in the first column of a line indicates that the rest of the line should be
treated as a comment.

Final Words

The Resource manager is a powerful tool that can be used veryelfetcticustomize X Toolkit
applications at run time by either the application programmer or the $@®e final points to
note:

. An gpplication programmer may addwmeesources to their application. These resources
are associated with the global application, and npparticular widget. The X Toolkit
function used for adding the application resourced@etApplicationResources

. Be aareful when creating resource files. Since widgets will ignore resources thdothe
not understand, grspelling errors will cause a resource toéao efect.

. Only one resource line will matchagiven resource. Theris a set of precedence rules,
which tale the following general stance.

. More specific verrides less specific, thus perioavays overrides asterisk.
. Names on the left are more specific amerode names on the right.

. When resource specifications are exactly the same, user defaults
will override program defaults.

For a omplete explanation of the rules of precedence, and other specific topic3osmkit
Intrinsics — C Languge InterfaceandXlib — C Languge X hterface

15

Athena Widget Set X11, Release 6.4

2.10.2.2. Ceating Argument Lists

To =t up an argument list for the inline specification of widget attributes, you mayyusétha

four approaches discussed in this section. Each resource name has a global symbol associated
with it. This global symbol has the form Xtdsource name For example, the symbol for “fore-
ground’ i s XtNforeground. For further information, see thé Toolkit Intrinsics — C Languze
Interface

Argument are specified by using the following structure:

typedef struct {
String name;
XtArgVal value;
} Arg, *ArgList;

The first approach is to statically initialize the argument ksr. example:

static Aig arglist[] = {
{XtNwidth, (XtArgVal) 400},
{XtNheight, (XtArgVal) 300},

|3

This approach is caenient for lists that do not need to be computed at runtime and makes
adding or deleting me elements easyThe XtNumber macro is used to compute the number of
elements in the argument list, peating simple programming errors:

XtCreateWidgettame class parent arglist, XtNumberérglist));
The second approach is to use Xi€etArg macro. Br example:

Arg aglist[10];
XtSetArg(arglist[1], XtNwidth, 400);
XtSetArg(arglist[2], XtNheight, 300);

To make it easier to insert and delete entries, you also can use a variable index:

Arg aglist[10];

Cardinal i=0;

XtSetArg(arglist[i], XtNwidth, 400); i++;
XtSetArg(arglist[i], XtNheight, 300); i++;

The i variable can then be used as the argument list count in the widget create function. In this
example,XtNumber would return 10, not 2, and therefore is not useful.

Note

You should not use auto-increment or auto-decrement within the first argument to
XtSetArg. Asitis aurrently implementedXtSetArg is a macro that dereferences the
first argument twice.

The third approach is to individually set the elements of the argument list array:

Arg aglist[10];

arglist[0].name =XtNwidth;
arglist[0].value = (XtArgVal) 400;
amglist[1].name =XtNheight;
arglist[1].value = (XtArgVal) 300;

16

Athena Widget Set X11, Release 6.4

Note that in this example, as in the previous examfifsumber would return 10, not 2, and
therefore would not be useful.

The fourth approach is to use a mixture of the first and third approaches: you can statically define
the argument list but modify some entries at runtiffa. example:

static Ag arglist[] = {
{XtNwidth, (XtArgVal) 400},
{XtNheight, (XtArgVal) NULL},

|3
arglist[1].value = (XtArgVal) 300;
In this exampleXtNumber can be used, as in the first approach, for easier code maintenance.

2.11. ExamplePrograms

The best way to understandwto use aly programming library is by trying some simple exam-
ples. Acollection of example programs that introduces each of the widgets in that Athena widget
set, as well as mgnmportant toolkit programming concepts, \gitable in the X11R6 release as
distributed by the X Consortium. It can be found in the distribution directumgrib/exam-
ples/mit/Xaw, but see your site administrator for the exact location of these files on your system.
See the README file from that directory for a guide to the examples.

17

Athena Widget Set X11, Release 6.4

Chapter 3
Simple Widgets

Each of these widgets performs a specific user interface function. afd@mplebecause they
cannot hge widget children—thg may only be used as s of the widget tree. These widgets
display information or takuser input.

Command A push button that, when selected, may cause a specific actiore jdaed.
This widget can display a multi-line string or a bitmap or pixmap image.

Grip A rectangle that, when selected, will cause an action &optake.

Label A rectangle that can display a multi-line string or a bitmap or pixmap image.

List A list of text strings presented irwaolumn format that may be individually
selected. Whean element is selected an action mag tdéice.

Panner A rectangular area containingkderthat may be meed in two dmensions.
Notification of maement may be continuous or discrete.

Repeater A push button that triggers an action at an increasing rate when selected. This
widget can display a multi-line string or a bitmap or pixmap image.

Scrollbar A rectangular area containinglaumbthat when slid along one dimension may
cause a specific action to eaflace. TheScrollbar may be oriented horizontally
or vertically.

Simple The base class for most of the simple widgets. Provides a rectangular area with a

settable mouse cursor and special border.
StripChart A real time data graph that will automatically update and scroll.

Toggle A push button that contains state informatidioggles may also be used as
“radio buttons’to implement a “one of manyor ‘‘zero or one of manygroup
of buttons. Thiswidget can display a multi-line string or a bitmap or pixmap
image.

3.1. CommandWidget

Application header file <X11/Xaw/Command.h>
Class header file <X11/Xaw/CommandP.h>
Class commanditfgetClass
Class Name Command

Superclass Label

The Command widget is an area, often rectangthlat contains text or a graphical image. Com-
mand widgets are often referred to as “push buttoéhen the pointer isver a Command wid-

get, the widget becomes highlighted by drawing a rectangle around its periffesehighlight-

ing indicates that the widget is ready for selection. When mouse button 1 is pressed, the Com-
mand widget indicates that it has been selectedvsysiag its foreground and background col-

ors. Wherthe mouse button is released, the Command widgetiyy action is ivoked, calling

all functions on its callback list. If the pointer is wed off of the widget before the pointer but-

ton is released, the widgewegts to its normal foreground and background colors, and releasing
the pointer button has nofeét. Thisbehavior allows the user to cancel an action.

18

Athena Widget Set

3.1.1. Resouces

X11, Release 6.4

When creating a Command widget instance, the following resources aneedstiiiem the argu-
ment list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators Acceleratorable NULL
ancestorSensite AncestorSensite Boolean D True

background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
bitmap Bitmap Pixmap None

borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderwdth BorderWdth Dimension 1

callback Callback XtCallbackList NULL

colormap Colormap Colormap Rrents Colormap
cornerRoundPercent CornerRoundPercent Dimension 25

cursor Cursor Cursor None

cursorName Cursor String NULL

depth Depth int C Paent's Depth
destrgCallback Callback XtCallbackList NULL

encoding Encoding UnsignedChar XaTextEncoding8bit
font Font XFontStruct XtDedultFont
foreground fereground Piel XtDefaultForeground
height Height Dimension A graphic height + 2 internalHeight
highlightThickness Thickness Dimension A 2 (0 if Shaped)
insensitveBorder Insensitie Axmap Grg/Pixmap
internalHeight Height Dimension 2

internalWdth Width Dimension 4

international International Boolean C Fdse

justify Justify Justify XtJustifyCentefcenter)
label Label String nameof widget
leftBitmap LeftBitmap Bitmap None
mappedWhenManaged MappedWhenManagedBoolean Tue

pointerColor Breground Piel XtDefaultForeground
pointerColorBackground Background Pixel XtDefaultBackground
resize Resize Boolean Tue

screen Screen Screen R Paent’s Sreen
sensitve Sensitve Boolean Tue

shapeStyle ShapeStyle ShapeStyle Rectangle
translations fanslations Tanslation@ble Sedelow

width Width Dimension A graphic width + 2 *internalWidth
X Position Position 0

y Position Position 0

accelerators

ancestorSensite

background

backgroundPixmap

Aist of event to action bindings to bexecuted by this widget,ven
though the eent occurred in another widget. (See ¥@doolkit Intrin-
sics — C Languge Interfacefor details).

The sensitivity state of the ancestors of this widdetvidget is insensi-
tive if either it or ary of its ancestors is insensiéi This resource should
not be changed witKtSetValues dthough it may be queried.

Apixel value which indees the widgets colormap to dekie the back-
ground color of the widget'window.

Theackground pixmap of this widgethindow. If this resource is set
to anything other thaktUnspecifiedPixmap the pixmap specified will

19

Athena Widget Set

bitmap

borderColor
borderPixmap
borderWdth
callback

colormap
cornerRoundPercent

cursor

cursorName

depth
destrgCallback
encoding

font

fontSet

foreground

height
width

highlightThickness

insensitveBorder

internalHeight
internalWdth

X11, Release 6.4

be used instead of the background color.

Abitmap to display instead of thebel. The default size of the widget
will be just large enough to contain the bitmap and the wislgg€rnal
width and height. The resource werter for this resource constructs bit-
maps from the contents of files. (S@enverting Bitmaps for details.)

If this bitmap is one bit deep then the will be rendered in the fore-
ground colorand the 0% in the background colorf bitmap has a depth
greater than one, it is copied directly into the windo

Apixel value which indees the widgets colormap to dexie the border
color of the widges window.

Theorder pixmap of this widgetwindow. If this resource is set to
anything other thaXtUnspecifiedPixmap the pixmap specified will be
used instead of the border color.

Thewidth of this widgets window border.
A list of routines to be called when thetify action is ivoked.
Thecolormap that this widget will use.

When aShapeStyleof roundedRectangles used, this resource controls
the radius of the rounded corndihe radius of the rounded corners is
specified as a percentage of the length of the shortest side of the widget.

Thamage that will be displayed as the pointer cursor wieneis in
this widget. The use of this resource is deprecateavim &f cursor-
Name

Theame of the symbol to use to represent the pointer cufbs
resource will @erride thecursor resource if both are specified. (See
2.4.1)

Thedepth of this widges window.
Allfunctions on this list are called when this widget is destroyed.

Theencoding method used by the value ofldieel resource. Thealue
may beXawTextEncoding8bit or XawTextEncodingChar2b. When
international is set tatrue this resource is not used.

Thetext font to use when displaying ttabel, when theinternational
resource igalse

Theext font set to use when displaying tabel, when theinterna-
tional resource isrue.

Apixel value which indees the widgets mlormap to derxie the fore-
ground color of the widget'window. This color is also used to render
all 1's in abitmap one plane deep.

Theheight and width of this widget in pixels.

The thickness of the rectangle that is used to highlight the internal border
of this widget, alerting the user that it is ready to be selected. The default
value is 2 pixels if theshapeStylas rectangle and 0 Pixels (no high-
lighting) otherwise.

Thispixmap will be tiled into the widget'border if the widget becomes
insensitve.

Theminimum amount of space to ieabetween the graphic and the ver-
tical and horizontal edges of the windo

20

A