
ESK:

Encapsulated Sketch for LATEX
∗

Tom Kazimiers†

May 5, 2010

Abstract

The ESK package allows to encapsulate Sketch files in LATEX sources.
This is very useful for keeping illustrations in sync with the text. It also
frees the user from inventing descriptive names for LATEX files that fit into
the confines of file system conventions.

Copying

ESK is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation;
either version 2, or (at your option) any later version.
ESK is distributed in the hope that it will be useful, but without any warranty ;
without even the implied warranty of merchantability or fitness for a particular

purpose. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.

∗This is esk.dtx, version v1.0, revision 1.0, date 2010/05/05.
†e-mail: tom@voodoo-arts.net

1

1 Introduction

When adding illustrations to documents, one faces two bookkeeping problems:

• How to encourage oneself to keep the illustrations in sync with the text,
when the document is updated?

• How to make sure that the illustrations appear on the right spot?

For both problems, the best solution is to encapsulate the figures in the LATEX
source:

• It is much easier to remember to update an illustration if one doesn’t have
to switch files in the editor.

• One does not have to invent illustrative file names, if the computer keeps
track of them.

Therefore ESK was written to allow to encapsulate Sketch [1] into LATEX [2, 3].
It is based on emp [4] since it follows a similar approach for METAPOST [5].
Nevertheless, it is arguable that complex Sketch figures may be easier handled
in a separate file. That is because it does not directly improve readability for
ones source code to have the Sketch code mixed with LATEX. But that’s purely a
matter of taste and complexity. To have Sketch code in separate files be included
in your build process you could do the following:

1. have your Sketch code in a file, e.g. nice scene.sk

2. include the file nice scene.sk.tex in your document source

3. configure your build in a way to automatically call Sketch on all ∗.sk files,
e.g in a Makefile:
for i in ‘ls *.sk‘; do sketch -o "$$i.tex" "$$i"; done

At least for less complex graphics it is more convenient to use ESK and thus
stay consistent more easily.

2 Usage

This chapter describes the different macros and environments provided by the
ESK package. The esk environment is the one that actually generates printable
source code. Depending on what options have been specified with \eskglobals

and \eskaddtoglobals this is TikZ or PSTricks code. If an esk environment
is encountered, it gets processed the following way:

1. Create a file name for the current figure out of the base name and a running
figure number: 〈name〉.〈number〉.sk (E. g. pyramid.1.sk)

2. (a) If a file exists that is named like written in 1 but with an addi-
tional .tex at the end (e.g. pyramid.1.sk.tex) it is treated as a Sketch

processed result file. Thus, it is included as a replacement for the
environments content.

(b) If such an item as in 2a is not found a Sketch file with the contents
of the environment is saved to a file with the name generated in 1.

2

In contrast to METAPOST Sketch can’t produce different output files out of one
source file. This means every Sketch figure has to be put into its own Sketch file.
As a consequence one has to process all generated Sketchfiles with Sketchand
one can not have one generated file for the whole document. A possible way of
managing the build (within a Makefile) of a document then could be:

1. Call latex on the document source

2. Process all Sketch files and stick to naming convention:
for i in ‘ls *.sk‘; do sketch -o "$$i.tex" "$$i"; done

3. Call either latex and dvips or pdflatex on the document source to
actually see TikZ or PSTricks figures.

2.1 Commands and Environments

The esk environment contains the description of a single figure that will beesk

placed at the location of the environment. The macro has two optional argu-
ments. The first is the name of the figure and defaults to \jobname. It is used
as the base name for file names. The second one consists of a comma separated
list of names previously defined with \eskdef. Note that the names have to be
put in parentheses (not brackets or braces). Those definitions will be prepended
to the Sketch-commands.

\begin{esk}[〈name〉](〈def 1 〉,〈def 2 〉,...)
〈Sketch-commands〉

\end{esk}

The eskdef environment acts as a container for Sketch-commands. In contrasteskdef

to esk nothing is written to a file or drawn, but kept in a token list register to
recall it later on. Thus, reoccurring patterns can be factored out and used as
argument in an esk environment. This is useful, because these environments use
the verbatim package and can therefore not be used directly as an argument
to other macros.

\begin{eskdef}{〈name〉}
〈Sketch-commands〉

\end{eskdef}

Define a Sketch prelude to be written to the top of every Sketch file. The default\eskprelude

is an empty prelude. Keep in mind that verbatim arguments are not allowed.
Add to the Sketch prelude. E. g. \eskaddtoprelude{def O (0,0,0)} makes\eskaddtoprelude

sure the variable O is available in all esk environments (and thus in every
generated Sketch file). Of cause, this could also be achieved with Eskimo.
Define global Sketch properties that get passed to the global {...} method of\eskglobals

Sketch. This defaults to language tikz.
Add something to the global parameters of Sketch.\eskaddtoglobals

2.2 Examples

For a simple example, let’s draw a pyramid in a coordinate system. Since our
scene should be a composition of coordinate axes and the geometry, we prepare

3

definitions for the single parts. In that way the parts will be reusable. First the
coordinate system:

1 〈∗sample〉
2 \begin{eskdef}{axes}

3 def three_axes {

4 % draw the axes

5 def ax (dx,0,0)

6 def ay (0,dy,0)

7 def az (0,0,dz)

8 line[arrows=<->,line width=.4pt](ax)(O)(ay)

9 line[arrows=->,line width=.4pt](O)(az)

10 % annotate axes

11 special |\path #1 node[left] {z}

12 #2 node[below] {x}

13 #3 node[above] {y};|(az)(ax)(ay)

14 }

15 \end{eskdef}

Now the pyramid:

16 \begin{eskdef}{pyramid}

17 def pyramid {

18 def p0 (0,2)

19 def p1 (1.5,0)

20 def N 4

21 def seg_rot rotate(360 / N, [J])

22 % draw the pyramid by rotating a line about the J axis

23 sweep[fill=red!20, fill opacity=0.5] { N<>, [[seg_rot]] }

24 line[cull=false,fill=blue!20,fill opacity=0.5](p0)(p1)

25 }

26 \end{eskdef}

In the definitions some variable have been used that have not been declared so
far (O, dx, dy, dz, J). They have been introduced to make the definitions more
versatile. In order to draw the scene their declaration has to be prepended to
our output:

27 \eskaddtoprelude{def O (0,0,0)}

28 \eskaddtoprelude{def dx 2.3}

29 \eskaddtoprelude{def dy 2.5}

30 \eskaddtoprelude{def dz dx}

31 \eskaddtoprelude{def J [0,1,0]}

Now the previously created definitions can be used to do the actual drawing.
First, the coordinate system on its own:

z

x

y

4

32 \begin{esk}(axes)

33 def scene {

34 {three_axes}

35 }

36 put { view((10,4,2)) } {scene}

37 \end{esk}

Now the pyramid (note, the transparency effect will only be visible in a pdf):

38 \begin{esk}(pyramid)

39 def scene {

40 {pyramid}

41 }

42 put { view((10,4,2)) } {scene}

43 \end{esk}

Finally both:

z

x

y

44 \begin{esk}(axes,pyramid)

45 def scene {

46 {pyramid}

47 {three_axes}

48 }

49 put { view((10,4,2)) } {scene}

50 \end{esk}

51 〈/sample〉

With permission of Kjell Magne Fauske, the source code for this example scene
has been taken from [6].

References

[1] Eugene K. Ressler, Sketch, 2010/04/24, http://www.frontiernet.net/ eu-
gene.ressler/

[2] Leslie Lamport, LATEX — A Documentation Preparation System, Addison-
Wesley, Reading MA, 1985.

5

[3] Donald E. Knuth, The TEXbook, Addison-Wesley, 1996

[4] Thorsten Ohl, emp,Encapsulated MetaPost, 1997, available from CTAN

[5] John D. Hobby, A User’s Manual for METAPOST, Computer Science Re-
port #162, AT&T Bell Laboratories, April 1992.

[6] Kjell Magnus Fauske, An introduction to Sketch, 2010/04/24,
http://www.fauskes.net/nb/introduction-to-sketch/

Distribution

ESK is available by anonymous internet ftp from any of the Comprehensive TEX
Archive Network (CTAN) hosts

ftp.tex.ac.uk, ftp.dante.de

in the directory

macros/latex/contrib/esk

It is available from host

www.voodoo-arts.net

in the directory

pub/tex/esk

A work in progress under git control is available from

http://github.com/tomka/esk

3 Implementation

This project is greatly inspired and based on EMP. EMP is a LaTeX package
to provide a convenient way to work with metapost files and code from inside
LaTeX documents.
It’s is good practice to identify this version of the document style option. We
do this by parsing an RCS Id string and storing the result in the conventional
TEX control sequences. The parsing macro is only visible locally (within the
surrounding scope), but generated control sequences like \filename are defined
globally (due to the use of \gdef):

52 〈∗style〉
53 \def\fileversion{v1.0}

54 {\def\RCS#1#2\endRCS{%

55 % is the first parameter a "$%?

56 \ifx$#1%

57 \@RCS $#2 \endRCS

58 \else

59 \@RCS $*: #1#2$ \endRCS

60 \fi}%

61 \def\@RCS $#1: #2,v #3 #4 #5 #6 #7$ \endRCS{%

62 % global defines (independent of current scope) of file attributes

6

63 \gdef\filename{#2}%

64 \gdef\filerevision{#3}%

65 \gdef\filedate{#4}%

66 \gdef\filemaintainer{#6}}%

67 \RCS $Id: esk.dtx,v 1.0 2010/05/05 01:23:42 kazimiers Exp $ \endRCS}%

Make clear what LaTeX version is needed:

68 \NeedsTeXFormat{LaTeX2e}

And now the standard procedure:

69 \ProvidesPackage{esk}[\filedate\space\fileversion\space

70 Encapsulated Sketch LaTeX Package (\filemaintainer)]

We do not declare options for this package, so we do not need to invoke process-
ing for found ones. Some other packages needed by ESK, partly of a minimum
version, get specified.

71 \RequirePackage{verbatim}

72 \RequirePackage{kvsetkeys}[2007/09/29]

The characters ”%”, ”{” and ”}” are somewhat special to TEX. More precisely
are they used for comments and grouping respectively. Sketch uses them as well,
for the same purposes. To allow convenient code generation by using macros to
produce the symbols, three macros get defined:

\p@rcent That macro is used for creating comments. The % sign is locally defined as a
common letter (category code 11) and create a global macro using it. The @ in
the name of the control sequence makes it only visible from inside the package1.

73 {\catcode‘\%=11\gdef\p@rcent{%}}

\lc@rly

\rc@rly

Curly braces are used for scope and group definitions in Sketch. Just like with
the \p@rcent macro, we need to make them a common letter. Unfortunately we
need the curly braces to define a local scope for TEX. To come around this the
characters > and < are locally defined to be grouping characters (category code
1). To allow normal scope closing we finally make the curly braces grouping
characters again.

74 {\catcode‘\>=1 \catcode‘\<=2

75 \catcode‘\{=11 \catcode‘\}=11

76 \gdef\lc@rly>{<

77 \gdef\rc@rly>}<

78 \catcode‘\{=1 \catcode‘\}=2

79 }

\eskwrite Define a macro to write the contents of its first argument to a file. If the
Boolean toggle @eskio is set to true, the passed argument is written2 out to
the file referenced in @outesk. Normally TEX does the actual writing during a
\shipout operation, but we force it to do it immediately3. All directly following
spaces on the input will be eaten4.

80 \def\eskwrite#1{%

81 \if@eskio

82 \immediate\write\@outesk{#1}%

1see http://de.wikibooks.org/wiki/LaTeX-Wrterbuch:
2see http://www.tug.org/utilities/plain/cseq.html#write-rp
3see http://www.tug.org/utilities/plain/cseq.html#immediate-rp
4see http://en.wikibooks.org/wiki/TeX/ignorespaces

7

83 \fi

84 \ignorespaces}

\eskwritetoken If a token list register should be put into a file, this macro should be used. It
will expand the token variable to its current contents.

85 \def\eskwritetoken#1{

86 \eskwrite{\the#1}}

Next a new private Boolean toggle is defined. It is used to reflect if file writing
is enabled and set it to true.

87 \newif\if@eskio

88 \@eskiotrue

The next free output file handle will be referenced by the private macro
\@outesk. At this point no file is opened, but just an output channel defined5.
An example file open could now look like: \openout\@outesk=TEXTFILE.TXT.

89 \newwrite\@outesk

\eskfile This environment encloses each Sketch input file. The single optional argument
gives the name of the file and defaults to \jobname. This will probably not be
used explicitly when defining esk figures. It is invoked automatically with an
appropriate name for a figure. The macro \theeskfile gets locally defined and
stores the base name for a file.

90 \newcommand{\eskfile}[1][\jobname]{%

91 \def\theeskfile{#1}%

Open the Sketch file. If output is enabled, check if we’re running under AMS-
LATEX and if that is the case turn off I/O during the first pass over equation
environments. This is done by looking for \ifmeasuring@ of AMS-LATEX and,
if found, replacing all \if@eskio checks with it.

92 \if@eskio

93 \@ifundefined{ifmeasuring@}%

94 {}%

95 {\def\if@eskio{\ifmeasuring@\else}}%

A a new output file is linked to our \@outesk file number. The name of that file
is the content of \theeskfile with extension .sk. Afterwards a start comment
is written to the new file.

96 \immediate\openout\@outesk=\theeskfile.sk\relax

97 \eskwrite{\p@rcent\p@rcent\p@rcent\space \theeskfile.sk -- %

98 do not edit, generated automatically by \jobname.tex}%

The esk@prelude token list register stores a prelude that should be put at
the beginning of the new file. If the register is empty, the expansion of it
(\the\esk@prelude) will be empty. This means the \ifx condition is met,
because the actual check is now if * equals *. Hence the \else branch will
not be called. If the token register is not empty (and does not start with an
asterisk) the \else branch is used..

99 \expandafter\ifx\expandafter*\the\esk@prelude*\else

100 \eskwrite{\the\esk@prelude}%

101 \fi

102 \fi}

5see A TEX primer for scientists by Stanley A. Sawyer,Steven George Krantz on p. 283

8

Define \theeskfile, later redefined with the name of the currently opened file,
to be \relax (i.e. stop reading tokens). This should be the value if no file is
opened.

103 \let\theeskfile\relax

Define a new counter \eskfig to count the single esk figures. It is initialized
with 0.

104 \newcounter{eskfig}

Let TEX create a new token list register alias \esk@prelude. It stores an op-
tional prelude for the files written out. If the indirect alias creation \newtoks

is used, TEX selects a free register and hides the technical detail from us.

105 \newtoks\esk@prelude

\eskprelude

\eskaddtoprelude

Define a public \eskprelude macro that replaces the contents of the internal
token list register \esk@prelude with the argument passed.

106 \def\eskprelude#1{\esk@prelude={#1}}

Define a public macro that appends its argument to the internal \esk@prelude
token list register. The text is added on a new line. This is accomplished by
using ^^J, a replacement ASCII representation for LF (line feed)6.

107 \def\eskaddtoprelude#1{\esk@prelude=\expandafter{\the\esk@prelude^^J#1}}

The token list register storing the global settings of Sketch is called \esk@globals
and defaults to language tikz.

108 \newtoks\esk@globals

109 \esk@globals={language tikz}

\eskglobals

\eskaddtoglobals

The macros \eskglobals and \eskaddtoglobals are there to set and modify
the private token list register \esk@globals. With them one has control over
the general settings of Sketch. On adding, new settings will be delimited by a
comma.

110 \def\eskglobals#1{\esk@globals={#1}}

111 \def\eskaddtoglobals#1{\esk@globals=\expandafter{\the\esk@globals,#1}}

\endeskfile And here is how the empfile environment is closed. If there are global settings
they are written out. The last line of the generated file will be an end statement
in form of a comment. followed by a line break. As a convention the macro
keeping the base name of the file, \theeskfile, is set to \relax. That indicates
that no file is open. To make that true, the currently opened file (if any) is finally
closed.

112 \def\endeskfile{%

113 \expandafter\ifx\expandafter*\the\esk@globals*\else

114 \eskwrite{global \lc@rly\the\esk@globals\rc@rly }%

115 \fi

116 \eskwrite{\p@rcent\p@rcent\p@rcent\space the end.^^J}%

117 \let\theeskfile\relax

118 \if@eskio

119 \immediate\closeout\@outesk

120 \fi}

6e.g. see: http://www.torsten-horn.de/techdocs/ascii.htm

9

\esk The esk environment encloses Sketch code that will be put into a file for being
later processed by Sketch. First it (re-)defines the macro \esk@@name with
the environments argument. That argument is used as the base name for the
corresponding file and defaults to \jobname. Then the internal macro \esk@

produces a single esk graphic.

121 \newcommand{\esk}[1][\jobname]{%

122 \def\esk@@name{#1}%

123 \esk@}

Since the esk environment allows two optional parameters and only one can
have brackets, the second parameter is surrounded by parentheses. A macro for
an opening parenthesis is defined:

124 \let\leftparanthesis=(

\esk@ The private \esk@ macro stores the immediately following token in the macro
\next and invokes \esk@impl.

125 \def\esk@{

126 \futurelet\next\esk@impl}

\esk@impl Now that the following token is known in \next it is checked if the second
optional argument got passed. This is done by testing if the next token is
an opening parenthesis and depending on its occurrence \esk@impl@Arg or
\esk@impl@NoArg is invoked. Since we want to work with the content of the
environment verbatim, we have to get rid of \else and \fi in the input stream.
This can be achieved by just expanding them before calling the verbatim han-
dling macros with \expandafter.

127 \def\esk@impl{%

128 \ifx\next\leftparanthesis

129 \expandafter\esk@impl@Arg

130 \else

131 \expandafter\esk@impl@NoArg

132 \fi}

\esk@impl@NoArg

\esk@impl@Arg

The macro \esk@impl@NoArg just calls \esk@impl@Arg with an empty argu-
ment. It is mainly there for readability.

133 \def\esk@impl@NoArg{\esk@impl@Arg()}

The following macro, \esk@impl@Arg, expects one argument surrounded by
parentheses, namely a list of eskdef names. It makes sure some preconditions
are met by invoking \esk@start. Afterwards \esk@includegraphics checks
if a Sketch file should be generated or a LATEX file be included. Finally the
argument is parsed as a comma separated list to call \esk@def@processor for
each element found and the actual Sketch code verbatim processing is started
with \esk@cmds. As the verbatim line processing macro name ”eskwritetoken”
is passed as an argument.

134 \def\esk@impl@Arg(#1){%

135 \esk@start%

136 \esk@includegraphics{\theeskfile}%

137 \comma@parse{#1}{\esk@def@processor}%

138 \esk@cmds{eskwritetoken}}

10

esk@def@processor The macro \esk@def@processor gets expanded for every element of the second
optional argument of the esk environment. Here every eskdef name of that list
will be included in the current file by invoking \eskuse for it.

139 \def\esk@def@processor#1{

140 \esk@use{#1}}

\esk@start A macro for preparing for a new Sketch figure.

141 \def\esk@start{%

We can’t use \stepcounter because of the amstext option of AMS-LATEX dis-
ables it sometimes. Instead we globally advance the eskfig counter manually by
one. Afterwards we call \esk@checkfile to make sure a file is open. Finally
we invoke \esk@@def with our previously defined temporary esk file name to
generate new \theeskfile and \theeskfig alias macros for the current figure.

142 \global\expandafter\advance\csname c@eskfig\endcsname \@ne

143 \esk@checkfile

144 \esk@@def{\esk@@name}}

\esk@checkfile Make sure that a Sketch file is open, otherwise really obscure error messages
are possible. This is done by checking if \theeskfile is the same as \relax

(as defined during initialization and file closing). If so, try to open a file (again)
and do the test again. If it still fails print and produce an error.

145 \def\esk@checkfile{%

146 \ifx\theeskfile\relax

147 \eskfile[\esk@@name.\arabic{eskfig}]

148 \fi

149 \ifx\theeskfile\relax

150 \errmessage{Could not open file "\esk@@name.\arabic{eskfig}.sk"!}

151 \fi}

\esk@includegraphics If a file having .sk.tex added to the base name exists this macro will include it.
To start a new paragraph if we are in vertical mode and switch to horizontal
mode \leaveemode is called at the beginning. Then, if the file exists, pass its
name as an argument to \input (which expects the file to end with .tex). If
there is no such file a message is typed out to tell the user that the sketch files
might need the actual processing.

152 \def\esk@includegraphics#1{%

153 \leavevmode

154 \IfFileExists{#1.sk.tex}%

155 {\input{#1.sk.tex}}%

156 {\typeout{%

157 esk: File #1.sk.tex\space not found:^^J%

158 esk: Process #1.sk with Sketch (-o #1.sk.tex) and then %

159 reprocess this file.}}}

\esk@cmds The macro \esk@cmds gets the esk environments content by using the verbatim
package. Each line is processed by a macro which name is passed as an argument.
That is done to reuse the macro for esk and eskdef environments. The macros
in use for the line processing are eskwrite and esk@def@verb@proc respectively.
Due to the use of \begingroup TEX enters a group that has to be terminated
by \endgroup and not by }.

160 \newcommand{\esk@cmds}[1]{%

161 \begingroup

11

The macros \@bsphack ... \@esphack are used by macros such as \index and
\begin{@float} ... \end{@float} that want to be invisible – i.e. not leave any
extra space when used in the middle of text. Such a macro should begin with
\@bsphack and end with \@esphack. The macro in question should not create
any text, nor change the mode.

162 \@bsphack

The next thing to do is to defuse LATEX’ special characters: \dospeciels ex-
pands to a list of special characters of the form \do\ \do\\ \do\{ \do\}....
If one (re-)defines the ”\do” macro one can execute a macro on all of them.
In our case we define \do to be \@makeother. That assigns category code 12
(non-letter) to all special characters, thus they get normal characters without
any special meaning. Due to the environment those changes are local.

163 \let\do\@makeother\dospecials

^^M is the ASCII representation of CR (carriage return). With the following
line we make it an active character. Thus a macro with the name ^^M can now
be defined.

164 \catcode‘\^^M\active

Since we use the verbatim package \verbatim@processline is called after each
line. We redefine it to do what we would like it to do: Process the line with
the macro with the name passed as argument.. The current line is available in
\verbatim@line, a token register 7.

165 \def\verbatim@processline{\csname#1\endcsname{\verbatim@line}}%

Enter the real verbatim mode. From here on all characters have lost their
special meaning (if they had any).

166 \verbatim@start}%

\endesk@cmds To end the invisible environment and the group started by \esk@cmds, this
macro has to be used.

167 \def\endesk@cmds{%

168 \@esphack

169 \endgroup}

\endesk This macro triggers the termination of the verbatim reading and closes the
current file.

170 \def\endesk{%

171 \endesk@cmds

172 \endeskfile}

\eskdef An eskdef environment allows to store blocks of Sketch code in token list reg-
isters for using them in esk environments. The macro has one parameter, the
name of the definition. First a private and local name for the new block is
defined. Then \esk@def checks if the name is already there and does the rest.

173 \newcommand{\eskdef}[1]{%

174 %% Define a new name

175 \def\esk@@def@name{esk@def:#1}%

176 \esk@def}

7see: Latex hacks by Anselm Lingnau, p. 43

12

\esk@def The \esk@def macro relies on \esk@@def@name being defined previously. At the
beginning it checks if that name is already registered by looking for a control
sequence with the defined name. If so, an error message is produced.

177 \def\esk@def{%

178 \expandafter\ifcsname\esk@@def@name\endcsname

179 \errmessage{"\esk@@def@name" is already defined!}

180 \fi

If a new eskdef name is given a new token list register is created and named like
the expansion of \esk@@def@name. It is not necessary to tell TEX that the new
register will be global, because new... tokens act always globally. Unfortunately
\newtoks is an \outermacro and we use the wrapper \tok@newtoks (see below)
to call it.

181 \expandafter\tok@newtoks\csname\esk@@def@name\endcsname

Create or override a global definition \esk@@def@reg containing our new token
register. Unfortunately, this works only with a global definition. Afterwards
the verbatim reading of the environment is started with a different verbatim
line processor as before. Finally the macro ends with removing the previously
defined alias for the new token list register.

182 \global\edef\esk@@def@reg{\csname\esk@@def@name\endcsname}

183 \esk@cmds{esk@def@verb@proc}}

184 \global\def\esk@@def@reg{}

\esk@def@verb@proc The verbatim line processor for the eskdef environment first creates a local alias
for the new token list register. This is done to make the code more readable.

185 \def\esk@def@verb@proc#1{%

186 \expandafter\let\expandafter\token@reg\esk@@def@reg

If the token list register is empty it is filled with the current verbatim line.

187 \expandafter\ifx\expandafter*\the\token@reg*

188 \global\esk@@def@reg=\expandafter{\the#1}

If not, the verbatim line is appended on a new line.

189 \else

190 \global\esk@@def@reg=\expandafter{%

191 \the\expandafter\token@reg\expandafter^^J\the#1}

192 \fi}

\endeskdef On ending an eskdef environment \endeskdef is expanded. Here, its only
purpose is to invoke the macro ending the verbatim input environment.

193 \def\endeskdef{

194 \endesk@cmds}

\esk@@def A macro which takes a file name as argument to globally define new macros
\esk@k:f:<arg> and \esk@k:c:<arg> which expand to \theeskfile and
\theeskfig respectively.

195 \def\esk@@def#1{%

196 \global\e@namedef{esk@k:f:#1}{\theeskfile}%

197 \global\e@namedef{esk@k:c:#1}{\theeskfig}}

\e@namedef A macro which defines a new macro with the name of the argument. This
is done in use of \expandafter and \csname...\endcsname. The new macro

13

expands to the following group, i.e. the new macros body. Due to the use of
\edef this happens dynamically.

198 \def\e@namedef#1{%

199 \expandafter\edef\csname #1\endcsname}

\esk@use The \esk@use macro appends an ESK Sketch code definition defined by
\eskdef, into the currently defined file. After creating an alias macro for the
argument passed is is made sure that the definition actually exists. If not an
error message is produced. If there is a token list register, named like passed
as argument, a short describing comment is written. Further, the register is
written as token to the file. The file writing is finished with a new line.

200 \def\esk@use#1{%

201 \def\esk@@def@name{esk@def:#1}%

202 \expandafter\ifcsname\esk@@def@name\endcsname

203 \eskwrite{\p@rcent\p@rcent\space included definition: #1}%

204 \expandafter\eskwritetoken\expandafter{%

205 \expandafter\csname\esk@@def@name\endcsname}

206 \eskwrite{^^J}

207 \else

208 \errmessage{esk: "#1" is undefined!}

209 \fi

210 }

\tok@newtoks Since \newtoks is an \outer macro, it is not allowed in definitions. Because we
are in the need of creating token list registers on the fly, we define a wrapper.
It lets TEX construct the \newtoks call:

211 \def\tok@newtoks{

212 \csname newtoks\endcsname}

\futurespacelet A special version of the \futurelet macro. It is taken from Donald. E. Knuths
TEXbook and behaves like \futurelet, but ignores spaces.

213 \def\futurenospacelet#1{\def\cs{#1}%

214 \afterassignment\stepone\let\nexttoken= }

Let \stoken be a space token:

215 \def\\{\let\stoken= } \\

And define the stepwise look-ahead macros:

216 \def\stepone{\expandafter\futurelet\cs\steptwo}

217 \def\steptwo{\expandafter\ifx\cs\stoken\let\next=\stepthree

218 \else\let\next=\nexttoken\fi \next}

219 \def\stepthree{\afterassignment\stepone\let\next= }

220 〈/style〉

Index

Numbers written in italic refer to the page where the corresponding entry is
described; numbers underlined refer to the code line of the definition; numbers
in roman refer to the code lines where the entry is used.

Symbols

\% 73

\- 227

\< 74

\> 74

\@RCS 57, 59, 61

14

\@eskiotrue 88
\@makeother 163
\@outesk 82, 89, 96, 119
\\ 215
\{ 75, 78
\} 75, 78
\^ 164

\ 240

A

\afterassignment .
. 214, 219

\arabic 147, 150

C

\comma@parse 137
\cs 213, 216, 217

E

\e@namedef 196, 197, 198
\endesk 170
\endesk@cmds

. . . . 167, 171, 194
\endeskdef 193
\endeskfile . . 112, 172
\endRCS 54, 57, 59, 61, 67
environments:

esk 3

eskdef 3

\ESK 225
\esk 121
esk (environment) . . . 3

\esk@ 123, 125
\esk@@def . . . 144, 195
\esk@@def@name 175,

178, 179, 181,
182, 201, 202, 205

\esk@@def@reg . 182,
184, 186, 188, 190

\esk@@name
122, 144, 147, 150

\esk@checkfile 143, 145
\esk@cmds 138, 160, 183
\esk@def 176, 177
\esk@def@processor

. . . . 137, 139, 139
\esk@def@verb@proc 185
\esk@globals

108–111, 113, 114
\esk@impl . . . 126, 127
\esk@impl@Arg 129, 133
\esk@impl@NoArg 131, 133
\esk@includegraphics

. 136, 152
\esk@prelude

. 99, 100, 105–107
\esk@start . . 135, 141
\esk@use 140, 200
\eskaddtoglobals 3, 110
\eskaddtoprelude .

. . . . 3, 27–31, 106
\eskdef 173
eskdef (environment) 3

\eskfile 90, 147
\eskglobals 3, 110
\eskprelude 3, 106
\eskwrite

80, 86, 97, 100,
114, 116, 203, 206

\eskwritetoken 85, 204

F

\filemaintainer 66, 70
\filerevision 64
\futurelet . . 126, 216
\futurenospacelet 213
\futurespacelet . . 213

I

\if@eskio
81, 87, 92, 95, 118

\ifcsname . . . 178, 202
\ifmeasuring@ 95

\input 155

L

\lc@rly 74, 114
\leftparanthesis .

. 124, 128

M

\MP 227

N

\next . 126, 128, 217–219
\nexttoken . . 214, 218

P

\p@rcent 73, 97, 116, 203
\path 11

R

\rc@rly 74, 114
\RCS 54, 67

S

\setlength 232
\SK 226
\stepone . 214, 216, 219
\stepthree . . 217, 219
\steptwo 216, 217
\stoken 215, 217

T

\theeskfig 197
\theeskfile 91,

96, 97, 103, 117,
136, 146, 149, 196

\tok@newtoks . 181, 211
\token@reg 186, 187, 191

V

\verbatim@line . . . 165
\verbatim@processline

. 165
\verbatim@start . . 166

Change History

v1.0
General: Version 1.0 Release 6

A Driver File

221 〈∗driver〉

15

222 \documentclass[a4paper]{article}

223 \usepackage{doc}

224 \usepackage{amsmath}

The logos would come out much nicer if mflogo would support some more letters
(i.e. k and K). We don’t have that and so we define the logos the following way:

225 \def\ESK{\textsf{ESK}}%

226 \def\SK{\textsf{Sketch}}%

227 \def\MP{\textsf{META}\-\textsf{POST}}%

228

Protect against certain outdated versions of the kvsetkeys package:
229 \usepackage{kvsetkeys}[2007/09/29]

230 \usepackage{tikz}

231 \usepackage{esk}

232 \setlength{\parindent}{0pt}

233 \def\manindex#1{\SortIndex{#1}{#1}}

234 〈manual〉\OnlyDescription
235 \EnableCrossrefs

236 \RecordChanges

237 \CodelineIndex

238 \DoNotIndex{\def,\gdef,\long,\let,\begin,\end,\if,\ifx,\else,\fi}

239 \DoNotIndex{\immediate,\write,\newwrite,\openout,\closeout,\typeout}

240 \DoNotIndex{\font,\jobname,\documentclass,\char,\catcode,\ }

241 \DoNotIndex{\CodelineIndex,\DocInput,\DoNotIndex,\EnableCrossrefs}

242 \DoNotIndex{\filedate,\filename,\fileversion,\logo,\manfnt}

243 \DoNotIndex{\NeedsTeXFormat,\ProvidesPackage,\RecordChanges,\space}

244 \DoNotIndex{\begingroup,\csname,\edef,\endcsname,\expandafter}

245 \DoNotIndex{\usepackage,\@ifundefined,\ignorespaces,\item,\leavevmode}

246 \DoNotIndex{\newcounter,\newif,\par,\parindent}

247 \DoNotIndex{\relax,\setcounter,\stepcounter,\the,\advance}

248 \DoNotIndex{\CurrentOption,\DeclareOption,\documentstyle}

249 \DoNotIndex{\endgroup,\global,\hfuzz,\LaTeX,\LaTeXe}

250 \DoNotIndex{\macrocode,\OnlyDescription,\PassOptionsToPackage}

251 \DoNotIndex{\ProcessOptions,\RequirePackage,\string,\textsf,\unitlength}

252 \DoNotIndex{\@bsphack,\@esphack,\@nameuse,\@ne,\active,\do,\dospecials}

253 \DoNotIndex{\errhelp,\errmessage,\ifcase,\IfFileExists,\includegraphics}

254 \DoNotIndex{\manindex,\SortIndex,\newcommand,\newtoks,\or,\origmacrocode}

255 \DoNotIndex{\alpha,\displaystyle,\frac,\sin,\texttt}

Cut the line breaking some slack for macro code which might contain long lines
(it doesn’t really hurt if they stick out a bit).

256 \let\origmacrocode\macrocode

257 \def\macrocode{\hfuzz 5em\origmacrocode}

258 \begin{document}

259 \DocInput{esk.dtx}

260 \end{document}

261 〈/driver〉

16

