
The Arraysort Package∗

Robert J Lee
latex@rjlee.homelinux.org

September 4, 2013

Abstract

The arraysort package allows the user to sort an array (defined with the
arrayjobx package), or a portion of such an array, without using external
files or commands or requiring a second run of LATEX.

Basic comparators are provided for sorting by ASCII-code or for sorting
numeric values. Options to tweak performance of the sort are also provided,
should they be needed.

Introduction

This package implements an in-place Quick Sort algorithm for LATEX. Quick-
Sort is a recursive and highly configurable algorithm for sorting of arrays.

1 Usage

The arraysort package requires the arrayjobx package, which provides sev-
eral methods to define an array of values. This docment assumes that you are
familiar with arrayjobx. A number of examples are provided to sort a small ar-
ray named A; the package can sort much larger arrays than those shown including
arrays whose contents are stored unexpanded (although they will be expanded
when comparing them using the provided comparators).

Sorting by Text

\sortArray

To sort the first 10 elemnets of A, you can simply write: \sortArray{10}{A}
\sortArray takes two mandatory parameters: the first is the number of ele-

ments to sort, the second is the name of the array.

∗This document corresponds to Arraysort v1.0, dated 2013/09/04.

1

Example: \sortArray with words

Brown Dog Fox Jumps Lazy Over
Quick The the

1 \newarray{A}
2 \readarray{A}{The&Quick&Brown&%
3 Fox&Jumps&Over&the&Lazy&Dog}
4 \sortArray{9}{A}
5 \A(1) \A(2) \A(3) \A(4) \A(5)
6 \A(6) \A(7) \A(8) \A(9)

Note that the default is to sort by character code order, so the lower-case “the”
is sorted after the words starting with upper-case letters. This is a limitation of
the default sorting method, but other ways of sorting are possible.

Sorting Numbers

The default sorting method can have surprising results when sorting arrays of
numbers:

Example: \sortArray with numbers

1 28 4 6 78 85

1 \newarray{A}
2 \readarray{A}{78&4&85&1&28&6}
3 \sortArray{6}{A}
4 \A(1) \A(2) \A(3) \A(4) \A(5) \A(6)

Here, the numbers are still sorted in dictionary order, which was probably not
the intent, as the number 28 would usually be sorted after the number 6, even
though the first digit of 28 is smaller than the first digit of 6.

To solve this problem, an alternative comparator can be used:

Example: \sortArray with arraysortcomparenum

1 4 6 28 78 85

1 \newarray{A}
2 \readarray{A}{78&4&85&1&28&6}
3 \sortArray[arraysortcomparenum]{6}{A}
4 \A(1) \A(2) \A(3) \A(4) \A(5) \A(6)

The arraysortcomparenum comparator is passed as the first optional argument;
this option sorts by numerical order in the intuitive way — but it will error if a
value in the array is not a number.

This option requires additional package options; see section below.

2

Sorting part of an array

A second optional argument is accepted for the start of the range to be sorted.
So you can easily sort only a segment of an array:

Example: \sortArray with range

PYFGAOEBDHIJKMNQSTUWXVZ

1 \newarray{A}
2 \readarray{A}{P&Y&F&G&%
3 A&O&E&U&I&D&H&T&N&S&%
4 Q&J&K&X&B&M&W&V&Z}
5 \sortArray[arraysortcomparestr][8]{21}{A}
6 \A(1)\A(2)\A(3)\A(4)\A(5)\A(6)\A(7)%
7 \textit{\A(8)\A(9)\A(10)\A(11)\A(12)%
8 \A(13)\A(14)\A(15)\A(16)}\A(17)\A(18)%
9 \A(19)\A(20)\A(21)\A(22)\A(23)

The start of the range must be the second optional parameter, so you need to
specify the comparator as well. The default comparator is arraysortcomparestr
as shown here.

The example shows sorting the italicised region of 8–21 letters, originally ar-
ranged in the relatively jumbled order of the Dvorak keyboard.

Sorting by Custom Order

While it is useful to sort an array into numbers or alphabetically, it is possible
to sort an array into any order. To do this, you need to write a comparator ; this is
a macro that is passed 2 values from the array and evaluates which should appear
first.

A custom comparotor macro can be passed by appending its name as the
optional argument is passed at the end of the \sortarray macro call.

Your comparator macro must set the value of two toggles:
Set arraysortresult to true if the first parameter is less than the second (iearraysortresult

if the parameters are presented in sorted order).
arraysortresequal should be set by a comparator if both values are equal.arraysortresequal

It is not necessary to set arraysortresult if arraysortresequal is set to true.
Both toggles can be set using the macros \toggletrue{togglename} and

\togglefalse{togglename} defined in the etoolbox package, where togglename
is the name of the toggle to be set or cleared.

The name of the comparator is passed to the sort algorithm as the first optional
parameter; the leading \ should be omitted.

3

Example: \sortArray with custom comparator

2 12 -4 apple rabbits

1 \newcommand{\cmpnumbersfirst}[2]{%
2 \edef\cmpA{#1}%
3 \edef\cmpB{#2}%
4 \if\ IsPositive{\cmpA}%
5 \if\ IsPositive{\cmpB}%
6 \arraysortcomparenum{\cmpA}{\cmpB}%
7 \else%
8 \ togglefalse {arraysortresequal}%
9 \toggletrue{arraysortresult}%

10 \fi%
11 \else%
12 \if\ IsPositive{\cmpB}%
13 \ togglefalse {arraysortresequal}%
14 \ togglefalse {arraysortresult}%
15 \else%
16 \arraysortcomparestr{\cmpA}{\cmpB}%
17 \fi%
18 \fi%
19 }
20 \newarray{A}
21 \readarray{A}{apple&2&rabbits&12&−4}
22 \sortArray[cmpnumbersfirst]{5}{A}
23 \A(1) \A(2) \A(3) \A(4) \A(5)

This example uses the following definition of \IsPositive from the cite package1

\def\IsPositive#1{%

TT\fi

\ifcat_\ifnum0<0#1 _\else A\fi

}

This custom sort places positive integers first, in numerical order, then every-
thing else in default order.

The \cmpnumbersfirst macro tests each parameter to see if is a positive
number. If both parameters are positive integers, then it delegates to the
arraysortcomparenum macro so that integers are sorted in sequence. If both
parameters are not positive integers then the default sort is used. Otherwise,
arraysortresult is set to true if #1 is a positive integer and #2 is not, or false if
it is the other way around; this guarantees that positive numbers are sorted first.

1See http://www.tex.ac.uk/cgi-bin/texfaq2html?label=isitanum

4

tip: Most comparators will fully expand their arguments only once per com-
parison, to ensure that the sorting order remains appropriate. That is the reason
for the \edef in the above example, which expands and copies the parameter into
a temporary macro. This is useless when passing individual string arguments, as in
this example, but prevents unstable behaviour when arguments could change when
reevaluated, such as when a macro contains the current time or a pseudorandom
value.

Changing the Partitioning Scheme

The partitioning scheme does not affect the final sorting order (unless you
write your own that does not use the comparator argument) but may affect how
long it takes LATEX to sort your array. In general it is recommended to use the
default scheme, unless you are sorting a very large array and find the performance
is unacceptable.

To change the partitioning scheme, an optional argument can be added to the
end of the \sortArray macro, thus:

Example: \sortArray with custom partition

a b c d e

1 \newarray{A}
2 \readarray{A}{e&d&c&b&a}
3 \sortArray{5}{A}%
4 [sortArrayPartitionRand]
5 \A(1) \A(2) \A(3) \A(4) \A(5)

Here, the writer of the package knows that A is not randomised before it is
sorted, so uses the sortArrayPartitionRand to partition the array at random.
This avoids the worst-case performance of the sorting algorithm.

The performance of each partitioning method is discussed in detail where it is
defined; you should also read the section on the in-place quick-sort algorithm to
understand the purpose of each algorithm.

The partition name is just the name of a macro, so you can easily write your
own. It must take four parameters:

1. The name of a comparator macro, described above

2. The start index (inclusive) of the array segment to be partitioned

3. The end index (inclusive) of the array segment to be partitioned

4. The name of the array to be partitioned

5

The macro should generate no output as it may be called multiple times with
different array segments to partition. It should set arraysort@partpos to the
current value of the partition element.

Values that are equal to the partition value may be sorted into either segment.
A sorting algorithm that retains the relative order of equal values is known as a
stable sorting algorithm; if this is required, then the partitioning algorithm must
retain the relative position of each element in each sub-array, not just those which
are equal to the pivot. The supplied partitioning algorithms make no claim
to be a stable sort, and stable sort semantics of the partitioning algorithm should
not be relied on for future versions.

In general, it is sufficient to identify the partition element within the array and
swap it with the first element, then use \sortArrayPartitionFirst

Note: It is important to ensure that all elements are expanded only once
during the partition, as it is theoretically possible for a macro to expand to different
values each time it is expanded.

All Package Options

Package options are passed on the \usepackage line near the top of your
document. A comma-separated list may be supplied, like this:

\usepackage[comparestr,comparenum,randompart]{arraysort}

The comparestr option requires the pdftexcmds package to be installed andcomparestr

to run pdflatex. It is currently the default sort option, so you must either supply
the comparestr option or specify a comparator explicitly.

The comparenum option defines the arraysortcomparenum comparator, whichcomparenum

allows you to sort arrays comparing numbers by numeric value instead of by name.
The randompart macro requires the lcg package to be installed. It definesrandompart

the sortArrayPartitionRand option to partition arrays using a pseudorandom
sequence. This option repeatedly calls \reinitrand, which resets the value of the
pseudorandom sequence as well as the maximum and minimum values generated,
so you should take care if using the lcg package outwith this package. At mini-
mum, you should call \reinitrand yourself after every sort, and possibly within
macros if \rand is used. Be aware that this will output whitespace unless care is
taken to consume it before it is output. lcg will output warnings about reusing
an existing counter; these can be safely ignored as sortArrayPartitionRand in-
tentionally reuses the counter to prevent exhaustion of counters with large sorts.

6

2 Method: The In-Place Quick-Sort Algorithm

Quick-sort is a practical example of a recursive algorithm.

Definition of terms:

Partition A single element from the array.

Segment A contiguous group of elements from the array.

The general approach is to divide the array into two smaller arrays, then sort
each smaller array in turn.

The inital array segment is the entire array.
The basic steps are:

1. Determine AP , the index of the partition element within the current array
segment. In practice, this must be done in constant time [O(1)] or the sort
becomes slow.

2. Partition the array into two array segments, separated by a partition, in
linear time [O(N)].

3. Quick-sort the first array segment

4. Quick-sort the second array segment

The first step is choosing the partition element, AP . This may be any element
from the array segment, although the fastest results are achieved by selecting the
median value. Many algorithms exist to perform this “best guess”.

The next step is partitioning. Other than the partition element, every element
in the array is iterated over in turn. Any value less than the partition value P is
moved to the left of the partition (lower index than AP), and any value greater
than the partition is moved to its right (higher index than AP).

So, if there are N elements in an array A, the original array is given by:

A0 . . . An

After the partitioning stage, the partitioned array is given by:

A0 . . . A(P−1), AP , A(P+1) . . . AN

where AP is the partition and P is the index of the partition.
A0 . . . A(P−1) defines the first array segment to be sorted and A(P+1) . . . AN

defines the second.
Each array segment is considered to be sorted if it contains one element or less;

otherwise, each are presented to the entire quick-sort algorithm to be sorted.
Each iteration through the algorithm divides the array into smaller segments,

each of which is always sorted relative to the other segments. Once the segment
size is as small as one element, the entire array is sorted.

7

3 Possible Future Improvements

• It should be possible to sort macro contents by their unexpanded values

• It may also be possible to sort macro contents in a case-insensitive manner
(depending on language). Note that sorting mixed-language, mixed-alphabet
content in a standard-complient manner is not always possible.

• Further speed improvemnts are possible; in particular, it is often faster to
defer to a lower-overhead O(n2) sorting algorithm when the number of ar-
ray segment elements is smaller than some threshold value (quick-sort is
inefficient at sorting small arrays, but often produces many of them to be
sorted).

• More sorting and partitining options. I am undecided about passing op-
tions versus simply defining multiple macros; certainly the chance of a name
collision is very small with the naming convention used so far.

• Support partition values not in the array:

Some implementations of quicksort allow for a partition value P that does not
correspond to a value in the array, divding the array into:

s A0 . . . Ai, A(i+1) . . . AN

where i is arbitrary. This is usually less efficient, as there is an additional value
to be sorted with each iteration and hence a greater number of iterations in the
best case.

In some cases, it is not possible to know the best partition value within an array
segment, or a single partition may not be applicable (such as an array containing
only two distinct values); however, there may be some knowledge of the array’s
distribution. In the best case, a pre-calculated median of the array’s contents
might already be available prior to sorting, which would be the ideal partition
value for the first iteration but would be unlikely to be a value in the array, let
alone a value of known position.

This would likely require significant changes to the algorithm.

4 Large-Scale Sorting

Example: \sortArray on a large scale

8

Before sort:
1663422405 1198227383 1653451356
1118531306 83797298 1779381895
214224337 1285822781 695523700
913318473 2077933796 1454225052
649045651 1440796438 440113088
1046972942 2140699517 1943227222
888599772 1095069960 905946124
577432032 421544225 345221316
1781310659 418706180 2038322882
1433524024 619218869 505761115
586768173 567759781 1068778840
1412723566 1065755724 2142820482
1083063978 984869468 2044664441
641923787 2002712422 2076460317
311783616 287118626 206975567
1862313270 324957059 502359486
1397648039 1094443781 . . .

After sort:
544921 597045 654834 837130
1288256 1641621 1720755 2735418
2783139 2787241 2969413 3018282
3421638 3520977 3686589 3729320
3765849 4015197 4270493 4780611
4962951 5124989 5711085 6038417
6110593 6218449 6388226 6528730
6656722 7326515 7328075 7429679
7823021 7859575 8222801 8255806
8491502 8499115 8807286 8875754
9141432 9176485 9657300 9853381
10025395 10166867 10244461
10351310 10527702 10693570 . . .

1 \newarray{A}
2 \expandarrayelementtrue
3 \reinitrand [counter=rand,quiet=y]
4 \newcommand{\asize}{10000}
5 \multido{\i=1+1}{\asize}{
6 \rand
7 \A(\i)={\arabic{rand}}
8 }
9

10 \textbf{Before sort:}
11

12 \multido{\i=1+1}{50}{
13 \A(\i)
14 }\dots
15

16 \sortArray[arraysortcomparenum]{%
17 \asize}{A}
18

19 \line(1,0){100}
20

21 \textbf{After sort:}
22

23 \multido{\i=1+1}{50}{
24 \A(\i)
25 }\dots

This example uses the multido and lcg packages

5 Implementation

\arraysort@extrapkgs The LATEX package-option support does not allow conditional includes of packages.
So, instead, we build up the required \RequiresPackage statements inside the
\arraysort@extrapkgs macro.

1 \newcommand*{\arraysort@extrapkgs}{}

9

comparestr

2 \DeclareOption{comparestr}{

3 \g@addto@macro{\arraysort@extrapkgs}{

4 \RequirePackage{pdftexcmds}% for comparison. TODO: use compare.sty optionally

5 }

\arraysortcomparestr Called with two arguments, guaranteed to be re-evaluatable. must set arraysortre-
sequal if arguments are considered equal, otherwise must set arraysortresult true
if #2 is to be sorted after #1, otherwise must set both flags false.

Basic ASCII-like comparison

6 \newcommand*{\arraysortcomparestr}[2]{%

7 \protected@edef\arraysort@left{#1}%

8 \protected@edef\arraysort@right{#2}%

9 \arraysort@comparestr%

10 }

The following macro performs the comparison. The parameters must (it seems)
be passed by macro as passing by parameter #1 and #2 did not cause the expected
results, hence the extra macro.

11 \newcommand*{\arraysort@comparestr}{%

12 \protected@edef\arraysort@compresult{\pdf@strcmp{\arraysort@left}{\arraysort@right}}%

13 \ifthenelse{\equal{\arraysort@compresult}{0}}{%

14 \toggletrue{arraysortresequal}%

15 }{%

16 \togglefalse{arraysortresequal}%

17 \ifthenelse{\equal{\arraysort@compresult}{-1}}{%

18 \toggletrue{arraysortresult}% #2 > #1

19 }{%

20 \togglefalse{arraysortresult}% #2 < #1

21 }%

22 }%

23 }

24 }

comparenum

25 % Numeric comparison, as |\arraysortcomparestr| but used with arrays compairng numbers

26 \DeclareOption{comparenum}{

\arraysortcomparenum

27 \newcommand*{\arraysortcomparenum}[2]{%

28 \ifthenelse{\equal{#1}{#2}}{%

29 \toggletrue{arraysortresequal}%

30 }{%

31 \togglefalse{arraysortresequal}%

32 \ifthenelse{#2 > #1}{%

33 \toggletrue{arraysortresult}%

34 }{%

35 \togglefalse{arraysortresult}%

36 }%

10

37 }%

38 }

39 }

All partitioning algorithms should complete in O(1) time; that is, they should
not iterate over the array, or do anything that takes longer the more elements
there are.

\sortArrayPartitionMed Partition the segment consisting of indexes #2–#3 (inclusive) of array named #4,
using comparator #1

Use the median of the first, last and middle values. While this has extra
overhead compared to sortArrayPartitionFirst, it is guaranteed to avoid the worst-
case performance of that method. If the array is randomly shuffled prior to sorting,
this usually offers the best performance. This is the default method.

Performance depends on the comparison macro.
May not work well if there are many duplicate values.

40 \newcommand*{\sortArrayPartitionMed}[4]{%

41 \setcounter{arraysort@temp1}{(#2 + #3) / 2}%

42 \edef\arraysort@midpos{\arabic{arraysort@temp1}}%

43 \testarray{#4}(#2)\protected@edef\arraysort@left{\temp@macro}%

44 \testarray{#4}(\arraysort@midpos)\protected@edef\arraysort@mid{\temp@macro}%

45 \testarray{#4}(#3)\protected@edef\arraysort@right{\temp@macro}%

46 \csname#1\endcsname{\arraysort@left}{\arraysort@mid}%

47 \iftoggle{arraysortresequal}{%

left = mid if any two are the same, there can be no median, so may as well leave
alone

48 }{%

left 6= mid

49 \iftoggle{arraysortresult}{%

left < mid

50 \csname#1\endcsname{\arraysort@left}{\arraysort@right}%

51 \iftoggle{arraysortresequal}{%

(left = right) < mid

52 }{%

53 \iftoggle{arraysortresult}{%

left < mid, left < right

54 \csname#1\endcsname{\arraysort@mid}{\arraysort@right}%

55 \iftoggle{arraysortresequal}{%

left < (mid = right)

56 }{%

57 \iftoggle{arraysortresult}{%

left < mid < right

58 \arraysort@swap{#4}{#2}{\arraysort@midpos}%

59 }{%

11

left < right < mid

60 \arraysort@swap{#4}{#2}{#3}%

61 }%

62 }%

63 }{%

left < mid, left > right
left is already in the middle; leave alone

64 }%

65 }%

66 }{%

left > mid

67 \csname#1\endcsname{\arraysort@mid}{\arraysort@right}%

68 \iftoggle{arraysortresequal}{%

left > (mid = right)

69 }{%

70 \iftoggle{arraysortresult}{%

left > right > mid

71 \arraysort@swap{#4}{#2}{#3}%

swap right & left, so left is median

72 }{%

left > mid > right
swap right & mid, so left is median

73 \arraysort@swap{#4}{#2}{\arraysort@midpos}%

74 }%

75 }%

76 }%

77 }%

78 \sortArrayPartitionFirst{#1}{#2}{#3}{#4}%

79 }

\sortArrayPartitionRand Partition the sub-array consisting of indexes #2–#3 (inclusive) of array named #4,
using comparator #1

Use the lcg package to generate a (pseudo)-random partition value. This should
perform reasonably well most of the time, and you can simply re-run LaTeX if the
performance is unacceptable.

Caution: this macro will re-initialise the LCG package.

randompart

80 \DeclareOption{randompart}{

81 \g@addto@macro{\arraysort@extrapkgs}{

Store for later execution the fact that we will need tho lcg package for random
numbers

82 \RequirePackage[quiet]{lcg}

83 }

84 \newcommand*{\sortArrayPartitionRand}[4]{%

12

It is necessary to change the start and end values of the sequence; the only way to
do this is by reinitialising lcg. There are 2 possible problems; firstly, reinitrand
outputs whitespace; and secondly it prints out a warning about a re-used counter.
It’s actually best to re-use the counter, but there’s no way to silence the warning.

85 \reinitrand[counter=arraysort@temp1,first=#2,last=#3,quiet=y]%

86 \rand%

87 \arraysort@swap{#4}{#2}{\arabic{arraysort@temp1}}%

88 \sortArrayPartitionFirst{#1}{#2}{#3}{#4}%

89 }

90 }

\sortArrayPartitionMid Partition the sub-array consisting of indexes #2–#3 (inclusive) of array named #4,
using comparator #1

This implementation uses the middle value in the array segment. This is
generally the best option if you don’t know anything about the array’s contents;
in particular, it offers reasonable speed when attempting to re-sort previously-
sorted ararys.

91 \newcommand*{\sortArrayPartitionMid}[4]{%

92 \setcounter{arraysort@temp1}{(#2 + #3) / 2}%

93 \arraysort@swap{#4}{#2}{\arabic{arraysort@temp1}}%

94 \sortArrayPartitionFirst{#1}{#2}{#3}{#4}%

95 }

\sortArrayPartitionFirst Partition the array segment consisting of indexes #2–#3 (inclusive) of array named
#4, using comparator #1

This implementation uses the first value in the array segment. This is fastest
in theory, but only if the array is pre-shuffled. This has the worst performance
when attempting to sort an already-sorted array.

96 \newcommand*{\sortArrayPartitionFirst}[4]{%

97 \setcounter{arraysort@partpos}{#2}%

98 \setcounter{arraysort@temp1}{#2 + 1}%

99 \setcounter{arraysort@endpos}{#3 + 1}%

100 \arraysort@repeats{arraysort@temp1}{\value{arraysort@temp1}}{\value{arraysort@endpos}}{1}{%

101 \testarray{#4}(\arabic{arraysort@temp1})%

if the value Atemp1 is less than partition AP , decrement the partition counter by
1 and swap.

\let copies without expanding:

102 \let\arraysort@cur\temp@macro%

103 \testarray{#4}(\arabic{arraysort@partpos})%

Expand the macros only once just in case they would be different on subsequent
expansion:

104 \protected@edef\arraysort@left{\arraysort@cur}%

105 \protected@edef\arraysort@right{\temp@macro}%

106 \csname#1\endcsname{\arraysort@left}{\arraysort@right}% #2 = cur, #3 = partition

107 \setcounter{arraysort@temp2}{\value{arraysort@partpos} + 1}%

108 \iftoggle{arraysortresequal}{% #2 = #3

13

Must be moved before pivot Swap AP with AP+1 then swap (the new) AP with
current (Atemp2 = AP+1)

109 \arraysort@swap{#4}{\arabic{arraysort@partpos}}{\arabic{arraysort@temp2}}%

110 \arraysort@swap{#4}{\arabic{arraysort@partpos}}{\arabic{arraysort@temp1}}%

Increment partition; otherwise the next non-equal pivot will break

111 \stepcounter{arraysort@partpos}%

112 }{%

113 \iftoggle{arraysortresult}{% #3 > #2

114 \ifthenelse{\equal{\arabic{arraysort@temp2}}{\arabic{arraysort@temp1}}}{%

Just swap part with current value; they are adjacent

115 \arraysort@swap{#4}{\arabic{arraysort@partpos}}{\arabic{arraysort@temp1}}%

116 }{%

Swap AP with AP+1 then swap (the new) AP with current (temp2 = Ap+1)

117 \arraysort@swap{#4}{\arabic{arraysort@partpos}}{\arabic{arraysort@temp2}}%

118 \arraysort@swap{#4}{\arabic{arraysort@partpos}}{\arabic{arraysort@temp1}}%

119 }%

Increment partition; one more in left array segment

120 \stepcounter{arraysort@partpos}%

121 }{%

Aarraysort@cur > AP and already after it; leave it alone

122 }%

123 }%

124 }%

125 }

\ProcessOptions This processes the package include options, defining whichever of the above
macros the user has asked for, and adding a list of any optional packages into
\arraysort@extrapkgs.

126 \ProcessOptions\relax

Package includes for required packages:
For loading the arrays that we will sort

127 \RequirePackage{arrayjobx}

For easier syntax on counter operations

128 \RequirePackage{calc}

For comparisons

129 \RequirePackage{ifthen}

Toggles etc.

130 \RequirePackage{etoolbox}

To declare macros with multiple optional arguments (ie \sortArray)

131 \RequirePackage{xargs}

For partitioning

132 \RequirePackage{macroswap}

14

now process any conditional includes

133 \arraysort@extrapkgs

Now we are done including packages, so discard the macro:

134 \let\arraysort@extrapkgs\relax

Sort the elements at index #2–#3 of array named #4, using comparator #1.\sortArray

#5 is the partitioning algorithm to use.
eg \sortArray[1]{3}{ABC}

Defined using the xargs package

135 \newcommandx*\sortArray[5][1=arraysortcomparestr,2=1,5=sortArrayPartitionMed]{%

136 \ifcsname#1\endcsname%

137 \ifthenelse{#2>0}{%

138 \ifthenelse{#3>#2}{%

139 \ifcsname total@#4\endcsname%

140 \arraysort@sort{#1}{#2}{#3}{#4}{#5}%

141 \else%

142 \PackageError{arraysort}{Cannot sort unknown array #4}{}%

143 \fi%

144 }{%

145 \PackageError{arraysort}{Cannot sort; to index #3 greater than from index #2}{}%

146 }%

147 }{%

148 \PackageError{arraysort}{Cannot sort; Invalid from index #2}{}%

149 }%

150 \else%

151 \PackageError{arraysort}{Cannot sort by undefined comparator #1}{}%

152 \fi%

153 }

\arraysort@sort As \sortArray, except that it doesn’t validate its parameters, hence the @ in the
name (signifying an internal macro).

Use with caution as error messages may be misleading.
Sort the elements at index #2–#3 of array named #4, using comparator #1
#5 is the partitioning algorithm to use.

154 \newcommand*{\arraysort@sort}[5]{%

155 \csname#5\endcsname{#1}{#2}{#3}{#4}%

Keep the position on the local stack!

156 \edef\arraysort@partition{\value{arraysort@partpos}}%

157 \setcounter{arraysort@temp1}{\arraysort@partition - 1}%

158 \ifthenelse{#2 = \value{arraysort@temp1} \OR #2 > \value{arraysort@temp1}}{%

159 }{%

160 \edef\arraysort@to{\arabic{arraysort@temp1}}%

161 \arraysort@sort{#1}{#2}{\arraysort@to}{#4}{#5}%

162 }%

163 \setcounter{arraysort@temp1}{\arraysort@partition + 1}%

164 \ifthenelse{\value{arraysort@temp1} = #3 \OR #3 < \value{arraysort@temp1}}{%

165 }{%

166 \edef\arraysort@from{\arabic{arraysort@temp1}}%

15

167 \arraysort@sort{#1}{\arraysort@from}{#3}{#4}{#5}%

168 }%

169 }

Counters used for sorting
current position of the partition

170 \newcounter{arraysort@partpos}

current position in loop

171 \newcounter{arraysort@temp1}

partition position +1

172 \newcounter{arraysort@temp2}

used for partitioning

173 \newcounter{arraysort@endpos}

Toggles used by the comparator macro
set by comparison if #1 < #2

174 \newtoggle{arraysortresult}

set by comparison if #1 = #2

175 \newtoggle{arraysortresequal}

\arrayort@repeats Don’t use \whiledo here because it uses up TeX’s capacity, so rolling own basic
repeat loop...

For counter #1 from #2 to #3 step #4, do #5

176 \newcommand*{\arraysort@repeats}[5]{%

177 \setcounter{#1}{#2}%

178 \ifthenelse{\equal{\value{#1}}{#3}}{%

179 }{%

180 #5%

181 \addtocounter{#1}{#4}%

182 \arraysort@repeats{#1}{\arabic{#1}}{#3}{#4}{#5}%

183 }%

184 }

\arraysort@swap Globally swap array values #1(#2) with #1(#3)

ie
#1 is the macro name
#2 and #3 are the numeic indexes of the array elements to be swapped.

185 \newcommand\arraysort@swap[3]{%

arrayjobx does not provide a way to assign an array element to the contents of
another element (or macro) without expanding it. This macro simply swaps the
definitions of the two macros used internally by arrayjobx:

186 \gmacroswap{#1#2\string~}{#1#3\string~}%

187 }

That is all

16

Change History

v1.0
General: Initial version 1

17

Index

Numbers written in italic refer to the page where the corresponding entry is
described; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

A
\arrayort@repeats . 176
\arraysort@comparestr

. 9, 11
\arraysort@compresult

. 12, 13, 17
\arraysort@cur 102, 104
\arraysort@extrapkgs

. 1, 3, 81, 133, 134
\arraysort@from 166, 167
\arraysort@left 7, 12,

43, 46, 50, 104, 106
\arraysort@mid

. . . . 44, 46, 54, 67
\arraysort@midpos .

. . . . 42, 44, 58, 73
\arraysort@partition

. . . . 156, 157, 163
\arraysort@repeats .

. . . . 100, 176, 182
\arraysort@right . .

. . . . 8, 12, 45,
50, 54, 67, 105, 106

\arraysort@sort 140, 154
\arraysort@swap . . .

. 58, 60, 71, 73,
87, 93, 109, 110,
115, 117, 118, 185

\arraysort@to . 160, 161
\arraysortcomparenum 27
\arraysortcomparestr

. 6, 25
\arraysortresequal . . 3
\arraysortresult . . . 3

C
\comparenum 6, 25
\comparestr 2, 6

D
\DeclareOption 2, 26, 80

G
\gmacroswap 186

N
\newcommandx 135
\newcounter . . . 170–173
\newtoggle . . . 174, 175

P
\PackageError

. 142, 145, 148, 151
\pdf@strcmp 12
\ProcessOptions . . . 126
\protected@edef 7, 8,

12, 43–45, 104, 105

R

\rand 86

\randompart 6, 80

\reinitrand 85

\RequirePackage . . .
. . . 4, 82, 127–132

S

\sortArray . . 1, 15, 135

\sortArrayPartitionFirst

. . . . 78, 88, 94, 96

\sortArrayPartitionMed

. 40

\sortArrayPartitionMid

. 91

\sortArrayPartitionRand

. 80

T

\temp@macro
. . 43–45, 102, 105

\testarray
. . 43–45, 101, 103

\togglefalse
. . . . 16, 20, 31, 35

\toggletrue 14, 18, 29, 33

18

