
The zref-clever package

User manual

gusbrs

https://github.com/gusbrs/zref-clever
https://www.ctan.org/pkg/zref-clever

Version v0.4.4 – 2024-03-14

Abstract

zref-clever provides a user interface for making LATEX cross-references
which automates some of their typical features, thus easing their input in
the document and improving the consistency of typeset results. A reference
made with \zcref includes a “name” according to its “type” and lists of
multiple labels can be automatically sorted and compressed into ranges when
due. The reference format is highly and easily customizable, both globally
and locally. zref-clever is based on zref’s extensible referencing system.

EXPERIMENTAL
Please read Section 2 carefully.

1

https://github.com/gusbrs/zref-clever
https://www.ctan.org/pkg/zref-clever

Contents

1 Introduction 3

2 Warning 4

3 zref-clever for the impatient 4

4 Loading the package 5
4.1 Dependencies . 5

5 User interface 6

6 \label or \zlabel? 6

7 Options 7

8 Reference types 13

9 Reference format 14
9.1 Advanced reference formatting . 18

10 Internationalization 19

11 How-tos 24
11.1 Extended page references (varioref) . 24
11.2 \newtheorem . 25
11.3 newfloat . 27
11.4 amsmath . 28
11.5 Overriding the reference type . 29
11.6 listings . 29
11.7 enumitem . 30
11.8 zref-xr . 31
11.9 tcolorbox . 32
11.10breqn . 33
11.11Ordinal references . 33

12 Limitations 34

13 Compatibility modules 35

14 Work-arounds 37

15 Acknowledgments 39

16 Change history 39

2

1 Introduction

Cross-referencing is an area which lends itself quite naturally to automation. Not
only for input convenience but also, and most importantly, for end results consistency.
Indeed, the standard LATEX cross-referencing system – with \label, \ref, and \pageref
– is already a form of automation, by relieving us from checking the number of the
referenced object, and the page where it lies.

But the plethora of existing features, packages and document classes which, in
one way or another, extends this basic functionality is a clear indication of a demand
for more automation. Just to name the most popular: cleveref, hyperref, titleref, nameref,
varioref, fancyref, and the kernel’s \labelformat.

However, the standard cross-referencing system stores two, and only two, prop-
erties with the label: the printed representation of the counter last incremented with
\refstepcounter and the page. Of course, out of the mentioned desire to automate
more, the need arose to store more information about the label to support this: the
title or caption of the referenced object; its counter or, even better, its “type”, that is,
whether it is a section, chapter, figure, etc.; its hyperlink anchor, and so on. Thus those
two property “fields” of the standard label became quite a disputed real state. And the
packages in this area of functionality were bound to step on each other’s toes as a result.

Out of this conundrum, Heiko Oberdiek eventually developed zref, which imple-
ments an extensible referencing system, making the labels store a property list of flexible
length, so that new properties can be easily added and queried. However, even when
zref can rightfully boast this powerful basic concept and is really quite featureful, with
several different modules available, it is fair to say that, for the average user, the package
may appear to be somewhat raw. Indeed, for someone who “just wants to make a
cross-reference”, the user interface of the zref-user module is akin to the standard LATEX
cross-referencing system, and even requires some extra work if you want to have a
hyperlinked reference. In other words, zref seems to have focused on infrastructure and
on performing a number of specialized tasks with different modules, and a large part of
the landscape of automation features available for the standard referencing system was
not carried over to zref, neither by the zref itself nor by other packages.

zref-clever tries to cover this gap, by bringing a number of existing features available
for the standard referencing system to zref. And the package’s name makes it clear that
the core of the envisaged feature set is that of cleveref, even though the attempt was
less one of replicating functionality per se than that of having it as a successful point of
reference, from where we could then try to tap into zref’s potential. Indeed, although
there is a significant intersection, the features of zref-clever are neither a superset nor a
subset of those of cleveref. There are things either of them can do that the other can’t.
There are also important differences in user interface design. In particular, zref-clever
relies heavily on key=value interfaces both for general configuration and for centering
in a single user command, \zcref, as the main entrance for reference making, whose
behavior can be modulated by local options.

Considering that zref itself offers the zref-titleref module, and that zref-vario offers
integration of zref-clever with varioref, a significant part of the most prominent automation
features available to the standard referencing system is thus brought to zref, working
under a single consistent underlying infrastructure and user interface. Alas, there are
some limitations (see Section 12), and it may be your cup of tea or not. Still, all in

3

all, hopefully zref-clever can make zref more accessible to the average user, and more
interesting to users in general.

2 Warning

This package is in its early days, and should be considered experimental. By this I don’t
mean I expect it to be “edgy”, indeed quite a lot of effort has been put into it so that this
is not the case. However, during the initial development, I had to make a number of
calls for which I felt I had insufficient information: in relation to features, packages, or
classes I don’t use much, or to languages I don’t know well, user needs I found hard to
anticipate etc. Hence, the package needs some time, and some use by more adventurous
people, until it can settle down with more conviction. In the meantime, polishing the
user interface and the infrastructure have a clear priority over backward compatibility.
So, if you choose to use this package, you should be ready to accommodate to eventual
upstream changes.

3 zref-clever for the impatient

zref-clever is based on zref’s referencing system which, though independent of the
standard one, is very similar to it in its user interface. Indeed, to use zref, instead of
setting a \label and making a \ref, one would set a \zlabel and make \zrefs to it, in
pretty much the same way as for the standard system. zref-clever introduces the more
featureful \zcref for making references, but relies on zref’s \zlabel for label setting.
zref-clever provides that a \label also sets a \zlabel with the same name using the
kernel’s label hook (see the labelhook option in Section 7), so that you can use it too
with standard \labels (see the Section 6 for discussion).

A basic document using zref-clever is shown in How-to 2 which, despite the small
necessary adjustments, should feel very familiar to any LATEX user acquainted with the
standard referencing system:

How-to 2: Basic usage
\documentclass{article}
\usepackage{zref-clever}
\usepackage{hyperref}
\begin{document}
\section{Section 1}
\zlabel{sec:section-1}
\begin{figure}

A figure.
\caption{Figure 1}
\zlabel{fig:figure-1}

\end{figure}
A reference to \zcref{sec:section-1}. \zcref[S]{fig:figure-1} shows some
interesting information.
A page reference can be done with either \zcpageref{sec:section-1} or with
\zcref[page]{sec:section-1}.
A reference can also be made to multiple labels, as in \zcref{sec:section-1,

4

fig:figure-1}.
\end{document}

The references in the document of How-to 2 illustrate one of the main features of
zref-clever, which is to include an appropriate “type name” of the reference, alongside of
the reference itself. The document renders its references as:

A reference to section 1. Figure 1 shows some interesting information. A
page reference can be done with either page 1 or with page 1. A reference
can also be made to multiple labels, as in section 1 and figure 1.

How-to 2 also illustrates the use the optional argument of \zcref to modulate the
behavior of the reference. In particular, the S option is one you should get acquainted
with from the start, as it ensures that the type name of a reference is properly capitalized
and not abbreviated, and it is meant to be used in references made at the beginning of a
sentence.

But zref-clever is highly customizable, and several other options exist, and multiple
places where you can set them:

• The optional argument of \zcref: for individual references.

• \zcsetup: for settings meant to affect all references.

• \zcRefTypeSetup: to customize the behavior of each reference type.

• \zcLanguageSetup: for language-specific settings.

For the list of available options, and for these different scopes in which they can be
used, see Sections 5, 7, 9 and 10. Other usage examples are available at Section 11.

4 Loading the package

zref-clever can be loaded with the usual:

\usepackage{zref-clever}

The package does not accept load-time options, package options must be set using
\zcsetup (see Section 5).

4.1 Dependencies

zref-clever requires zref, particularly its zref-base, zref-user and zref-abspage modules, and
the LATEX kernel 2023-11-01, or newer. It requires UTF-8 input encoding, which has been
the kernel’s default for some time. It also needs ifdraft. Some packages are leveraged by
zref-clever if they are present, but are not loaded by default or required by it, namely:
hyperref, zref-check, and zref’s zref-hyperref and zref-xr modules.

5

5 User interface

\zcref⟨*⟩[⟨options⟩]{⟨labels⟩}\zcref

Typesets references to ⟨labels⟩, given as a comma separated list. When hyperref
support is enabled, references will be hyperlinked to their respective anchors, according
to options. The starred version of the command does the same as the plain one, just does
not form links. The ⟨options⟩ are (mostly) the same as those of the package, and can be
given to local effect. The ⟨labels⟩ argument is protected by zref’s \zref@wrapper@babel,
so that it enjoys the same support for babel’s active characters as zref itself does.

\zcpageref⟨*⟩[⟨options⟩]{⟨labels⟩}\zcpageref

Typesets page references to ⟨labels⟩, given as a comma separated list. It is equiva-
lent to calling \zcref with the ref=page option: \zcref⟨*⟩[⟨options⟩,ref=page]{⟨labels⟩}.

\zcsetup{⟨options⟩}\zcsetup

Sets zref-clever’s general options (see Sections 7 and 9). The settings performed by
\zcsetup are local, within the current group. But, of course, it can also be used to global
effects if ungrouped, e.g. in the preamble.

\zcRefTypeSetup{⟨type⟩}{⟨options⟩}\zcRefTypeSetup

Sets type-specific reference format options (see Section 9). Just as for \zcsetup, the
settings performed by \zcRefTypeSetup are local, within the current group.

Besides these, user facing commands related to Internationalization are presented
in Section 10. Note still that all user commands are defined with \NewDocumentCommand,
which translates into the usual handling of arguments by it and/or processing by l3keys,
particularly with regard to brace-stripping and space-trimming.

Furthermore, zref-clever loads zref’s zref-user module by default. So you also have its
user commands available out of the box, including \zref and \zpageref, but notably:

\zlabel{⟨label⟩}\zlabel

Sets ⟨label⟩ for referencing with \zref and, thus, also \zcref. \zlabel is provided
by zref-user and is the counterpart of \label for zref’s referencing system.

6 \label or \zlabel?

Technically, zref’s referencing system, and thus also zref-clever, require a label set with
\zlabel to make a reference. However, the labelhook option (see Section 7) leverages
the kernel’s label hook to also set a \zlabel when a standard \label is called, so that
we can simply use \labels in our document and refer to them with either referencing
system. Indeed, in some places the use of \label this way may be required (see

6

Sections 12 and 13). That given, which is to be preferred: use \label all around or
normally use \zlabel and, occasionally resort to \label where required? I guess it
depends, but we can reason the pros and cons of both alternatives.

Simply using \label across your document clearly speaks for convenience. You
don’t have to worry with the exceptional case where a \zlabel may not work or setting
it is not possible. You can use either referencing system for your labels as desired. Your
favorite editor may have some facilities to ease the insertion of labels, but does not
support \zlabel. And so on. The only disadvantage I can see with this approach is that
two labels end up in the .aux file which, arguably, may be seen as a redundancy, or
waste.

It is probably fair to consider this redundancy, in most use cases, as a negligible
cost. But you may disagree, or the size of your document or your requirements may
say otherwise, in which case you may prefer the second approach and use \zlabel
normally, with some occasional \label where needed. Known relevant cases where
\label is required are documented in the manual (see Sections 11 to 13), but some trial
and error can easily cover the gap for the remaining cases. They are also rare cases. So
finding out where \label is required should not be much of a trouble either.

I think the first approach does deserve the status of “recommended” for normal use
cases and documents. Despite that, note that the examples of this manual typically use
the second approach. There’s a historic reason for this, since most of them were created
before the kernel’s label hook was available, so that it was really the only approach.
However, I’ll keep the examples this way, notwithstanding this recommendation, because
it is also important to document the limitations of directly using \zlabel, for those who
may want to use the second approach.

7 Options

zref-clever is highly configurable, offering a lot of flexibility in typeset results of the
references, but it also tries to keep these “handles” as convenient and user friendly as
possible. To this end, most of what one can do with zref-clever (pretty much all of it),
can be achieved directly through the standard and familiar “comma separated list of
key=value options”.

There are two main groups of options in zref-clever: “general options”, which affect
the overall behavior of the package, or the reference as a whole; and “reference format
options”, which control the detail of reference formatting, including type-specific and
language-specific settings.

This section covers the first group (for the second one, see Section 9). General
options can be set globally by means of \zcsetup in the preamble (see Section 5). They
can also be set locally with \zcsetup along the document or through the optional
argument of \zcref (see Section 5). Most general options can be used in any of these
contexts, but that is not necessarily true for all cases, some restrictions may apply, as
described in each option’s documentation.

The ref option controls the label property to which \zcref refers to. It can receiveref

page zref properties, as long as they are declared, but notably default, page, thecounter
and, if zref-titleref is loaded, title. The package’s default is, well, default, which is our
standard reference. thecounter is a property set by zref-clever and is similar to zref’s

7

default property, except that it is not affected by the kernel’s \labelformat.1 By default,
reference formatting, sorting, and compression are done according to information
inferred from the current counter (see currentcounter option below). Special treatment
in these areas is provided for page, but not for any other properties. The page option is
a convenience alias for ref=page.

When \zcref typesets a set of references, each group of references of the sametypeset

noname

noref

type can be, and by default are, preceded by the type’s “name”, and this is indeed an
important feature of zref-clever. This is optional however, and the typeset option controls
this behavior. It can receive values ref, in which case it typesets only the reference(s),
name, in which case it typesets only the name(s), or both, in which case it typesets, well,
both of them. Note that, when value name is used, the name is still typeset according to
the set of references given to \zcref. For example, for multiple references, the plural
form is used, capitalization options are honored, etc. Also hyperlinking behaves just as
if the references were present and, depending on the corresponding options, the name
may be linked to the first reference of the type group. The noname and noref options
are convenience aliases for typeset=ref and typeset=name, respectively.

The sort option controls whether the list of ⟨labels⟩ received as argument bysort

nosort \zcref should be sorted or not. It is a boolean option, and defaults to true. The nosort
option is a convenience alias for sort=false.

Sorting references of the same type can be done with well defined logical criteria.typesort

notypesort They either have the same counter or their counters share a clear hierarchical relation
(in the resetting behavior), such that a definite sorting rule can be inferred from the
label’s data. The same is not true for sorting of references of different types. Should
“tables” come before or after “figures”? The typesort option allows to specify the sorting
priority of different reference types. It receives as value a comma separated list of
reference types, specifying that their sorting is to be done in the order of that list.
But typesort does not need to receive all possible reference types. The special value
{{othertypes}} (yes, double braced, one for l3keys, so that the second can make the
list) can be placed anywhere along the list, to specify the sort priority of any type not
included explicitly. If {othertypes} is not present in the list, it is presumed to be at
the end of it. Any unspecified types (that is, those falling implicitly or explicitly into
the {othertypes} category) get sorted between themselves in the order of their first
appearance in the label list given as argument to \zcref. I presume the common use
cases will not need to specify {othertypes} at all but, for the sake of example, if you
just really dislike equations, you could use typesort={{{othertypes}}, equation}.
typesort’s default value is {part, chapter, section, paragraph}, which places
the sectioning reference types first in the list, in their hierarchical order, and leaves
everything else to the order of appearance of the labels. The notypesort option behaves
like typesort={{{othertypes}}} would do, that is, it sorts all types in the order of the
first appearance in the labels’ list.

1Technical note: the default property stores \@currentlabel, while the thecounter property stores
\the\@currentcounter. The later is exactly what \refstepcounter uses to build \@currentlabel, except for
the \labelformat prefix and, hence, has the advantage of being unaffected by it. But the former is more reliable
since \@currentlabel is expected to be correct pretty much anywhere whereas, although \refstepcounter
does set \@currentcounter, it is not everywhere that uses \refstepcounter for the purpose. In the cases
where the references from these two do diverge, zref-clever will likely misbehave (reference type, sorting and
compression inevitably depend on a correct currentcounter), but using default at least ensures that the
reference itself is correct. That said, if you do set \labelformat for some reason, thecounter may be useful.

8

\zcref can automatically compress a set of references of the same type into a range,comp

nocomp when they occur in immediate sequence. The comp controls whether this compression
should take place or not. It is a boolean option, and defaults to true. The nocomp option
is a convenience alias for comp=false. Of course, for better compression results the sort
is recommended, but the two options are technically independent.

The endrange option provides additional control over how the end reference of aendrange

range is typeset, so as to achieve terse ranges. The option can operate in two technically
different ways. It may receive one of a number of predefined values, which can process
the end reference of the range, comparing it with the beginning reference, to achieve
a given end result.2 Or, it can specify a label property to be used directly, without
any processing. The available predefined values are: ref, stripprefix, pagecomp,
and pagecomp2. ref corresponds to the default behavior, and instructs \zcref to use
whatever property was set at the ref option for the end of range reference. stripprefix
strips the common part at the start of each reference from the end one. pagecomp is
the equivalent of stripprefix for page numbers, it does the same thing, but only if
the references are comprised exclusively of Arabic numerals. pagecomp2 is a variant of
pagecomp that leaves at least two digits at the end reference (except for a leading zero).
If values other than the predefined ones are given to endrange they are considered as
label properties, as long as they are declared. This property is used to typeset the end
of range reference if the label contains it, and if both references would be “compressible”
according to the comp option, otherwise the property specified by the ref option is
used. This is useful for things like sub-elements for which we can build a proper
abbreviated sub-reference and populate the label with it (some compatibility modules
already provide a number of such properties, but other ones can be built with zref, as
needed).

By default (that is, when the range option is not given), \zcref typesets a completerange

rangetopair list of references according to the ⟨labels⟩ it received as argument, and only compresses
some of them into ranges if the comp option is enabled and if references of the same
type occur in immediate sequence. The range option makes \zcref behave differently.
Sorting is implied by this option (the sort option is disregarded) and, for each reference
type group in ⟨labels⟩, \zcref builds a range from the first to the last reference in
it, even if references in between do not occur in immediate sequence. It is a boolean
option, and the package’s default is range=false. The option given without a value is
equivalent to range=true (in the l3keys’ jargon, the option’s default is true). \zcref is
smart enough to recognize when the first and last references of a type do happen to be
contiguous, in which case it typesets a “pair”, instead of a “range”. But this behavior
can be disabled by setting the rangetopair option to false.

The cap option controls whether the reference type names should be capitalizedcap

nocap

capfirst

or not. It can receive values true or false, and it can also be set for specific reference
types or languages (see Section 9). The option given without a value is equivalent to
cap=true. The nocap option is a convenience alias for cap=false. The capfirst option
ensures that the reference type name of the first type block is capitalized, even when
cap is set to false.

2For the TEXnically inclined: those values that perform some processing – namely stripprefix, pagecomp,
and pagecomp2 – fully expand the references (x-type expansion) before comparing them, since it makes sense
to perform this task as close as possible to the printed representation of the references. I don’t expect this to be
a problem in normal use cases, but it does represent a limitation on what the references can contain. In case
some control over this is needed, check the zref-clever/endrange-setup hook in the code documentation.

9

The abbrev option controls whether to use abbreviated reference type namesabbrev

noabbrev

noabbrevfirst

when they are available. It can receive values true or false, and it can also be set
for specific reference types or languages (see Section 9). The option given without
a value is equivalent to abbrev=true. The noabbrev option is a convenience alias for
abbrev=false. The noabbrevfirst ensures that the reference type name of the first type
block is never abbreviated, even when abbrev is set to true.

S for “Sentence”. The S option is a convenience alias for capfirst=true,S

noabbrevfirst=true, and is intended to be used in references made at the begin-
ning of a sentence. It is highly recommended that you make a habit of using the S
option for beginning of sentence references. Even if you do happen to be currently
using cap=true, abbrev=false, proper semantic markup will ensure you get expected
results even if you change your mind in that regard later on. For that reason, it was
made short and mnemonic, it can’t get any easier.

The hyperref option controls the use of hyperref by zref-clever and takes valueshyperref

auto, true, false. The default value, auto, makes zref-clever use hyperref if it is loaded,
meaning that references made with \zcref get hyperlinked to the anchors of their
respective ⟨labels⟩. true does the same thing, but warns if hyperref is not loaded
(hyperref is never loaded for you). In either of these cases, if hyperref is loaded, module
zref-hyperref is also loaded by zref-clever. false means not to use hyperref regardless of
its availability. This is a preamble only option, but \zcref provides granular control of
hyperlinking by means of its starred version.

The nameinlink option controls whether the type name should be included in thenameinlink

reference hyperlink or not (provided there is a link, of course). Naturally, the name can
only be included in the link of the first reference of each type block. nameinlink can
receive values true, false, single, and tsingle. When the value is true the type name
is always included in the hyperlink. When it is false the type name is never included
in the link. When the value is single, the type name is included in the link only if
\zcref is typesetting a single reference (not necessarily having received a single label as
argument, as they may have been compressed), otherwise, the name is left out of the link.
When the value is tsingle, the type name is included in the link for each type block
with a single reference, otherwise, it isn’t. An example: suppose you make a couple
of references to something like \zcref{chap:chapter1} and \zcref{chap:chapter1,
sec:section1, fig:figure1, fig:figure2}. The “figure” type name will only be
included in the hyperlink if nameinlink option is set to true. If it is set to tsingle, the
first reference will include the name in the link for “chapter”, as expected, but also
in the second reference the “chapter” and “section” names will be included in their
respective links, while that of “figure” will not. If the option is set to single, only the
name for “chapter” in the first reference will be included in the link, while in the second
reference none of them will. The package’s default is nameinlink=tsingle, and the
option given without a value is equivalent to nameinlink=true.

The lang option controls the language used by \zcref when looking for language-lang

specific reference format options (see Section 9). The default value, current, uses the
current language, as defined by babel or polyglossia (or english if none of them is loaded).
Value main uses the main document language, as defined by babel or polyglossia (or
english if none of them is loaded). The lang option also accepts that the language be
specified directly by its name, as long as it’s a language known by zref-clever. For more
details on Internationalization, see Section 10.

10

The d option sets the declension case, and affects the type name used for typesettingd

the reference. Whether this option is operative, and which values it accepts, depends on
the declared setup for each language. For details, see Section 10.

This set of options revolving around nudge aims to offer some guard againstnudge

nudgeif

nonudge

sg

g

mischievous automation on the part of zref-clever by providing a number of “nudges”
(compilation time messages) for cases in which you may wish to revise material sur-
rounding the reference – an article, a preposition – according to the reference typeset
results. Useful mainly for languages which inflect the preceding article to gender
and/or number, but may be used generally to fine-tune the language and style around
the cross-references made with \zcref. The nudge option is the main entrance to this
feature and takes values true, false, ifdraft, or iffinal. The first two, respectively,
enable or disable the “nudging” unconditionally. With ifdraft, nudge keeps quiet when
option draft is given to \documentclass, while with iffinal, nudging is only enabled
when option final is (explicitly) passed to \documentclass. The option given without
a value is equivalent to nudge=true and the package’s default is nudge=false. nonudge
is a convenience alias for nudge=false, and can be used to silence individual references.
The nudgeif option controls the events which may trigger a nudge. It takes a comma
separated list of elements, and recognizes values multitype, comptosing, gender, and
all. The multitype nudge warns when the reference is composed by multiple type
blocks (see Section 9). The comptosing nudge let’s you know when multiple labels of
the same type have been compressed to a singular type name form. It can be combined
with the sg option, which is the way to tell \zcref you know it’s a singular and so not
to nudge if a compression to singular occurs, but to nudge if the contrary occurs, that
is, when a plural type name form is employed. The gender nudge must be combined
with option g, and depends on the language having support for it. In essence language
files can store the gender(s) of each type name (this is done for built-in language files,
but can also be done with \zcLanguageSetup for languages declared to support it). The
g option let’s you specify the gender you expect for that particular reference and the
nudge is triggered if there is a mismatch between g and the gender(s) for the type name
in the language file. Both the comptosing and the gender nudges have a type block
as its scope. See Section 10 for more details and intended use cases of the “nudging”
feature.

The font option can receive font styling commands to change the appearance offont

the whole reference list (see also the namefont and reffont reference format options in
Section 9). It does not affect the content of the note, however. The option is intended
exclusively for commands that only change font attributes: style, family, shape, weight,
size, color, etc. Anything else, particularly commands that may generate typeset output,
is not supported.

The note option receives as value some text to be typeset at the end of the wholenote

reference list. It is separated from it by notesep (see Section 9).
Provides integration of zref-clever with the zref-check package. The option is onlycheck

functional in the document body and if zref-check has been loaded. check requires a
value, which works exactly like the optional argument of \zcheck, and can receive both
checks and \zcheck’s options. And the checks are performed for each label in {⟨labels⟩}
received as argument by \zcref. See the User manual of zref-check for details. The
checks done by the check option in \zcref comprise the complete reference, including
the note (see Section 9).

11

The countertype option allows to specify the “reference type” of each counter,countertype

reftype which is stored as a label property when the label is set. This reference type is what
determines how a reference to this label will eventually be typeset when it is referred
to (see Section 8). A value like countertype = {foo = bar} sets the foo counter to
use the reference type bar. There’s only need to specify the countertype for counters
whose name differs from that of their type, since zref-clever presumes the type has the
same name as the counter, unless otherwise specified. Also, the default value of the
option already sets appropriate types for basic LATEX counters, including those from
the standard classes. Setting a counter type to an empty value removes any (explicit)
type association for that counter, in practice, this means it then uses a type equal to its
name. The reftype option allows one to specify the reference type manually, regardless
of the current counter. This can be used to locally override any countertype settings
of the package and, for those acquainted with it, is the equivalent of cleveref’s optional
argument to \label. Normally, you’d want to use this option within a group, but if you
must do otherwise, the default value can be restored by setting the option without a
value. Since these options only affect how labels are set, they are not available in \zcref.

The sorting and compression of references done by \zcref requires that we know� counterresetters

counterresetby the counter associated with a particular label but also information on any counter whose
stepping may trigger its resetting, or its “enclosing counters”. This information is not
easily retrievable from the counter itself but is (normally) stored with the counter that
does the resetting. The counterresetters option adds counter names, received as a
comma separated list, to the list of counters zref-clever uses to search for “enclosing
counters” of the counter for which a label is being set. Unfortunately, not every counter
gets reset through the standard machinery for this, including some LATEX kernel ones
(e.g. the enumerate environment counters). For those, there is really no way to retrieve
this information directly, so we have to just tell zref-clever about them. And that’s
what the counterresetby option is made for. It receives a comma separated list of
key=value pairs, in which key is the counter, and value is its “enclosing counter”, that
is, the counter whose stepping results in its resetting. This is not really an “option”
in the sense of “user choice”, it is more of a way to inform zref-clever of something it
cannot know or automatically find in general. One cannot place arbitrary information
there, or zref-clever can be thoroughly confused. The setting must correspond to the
actual resetting behavior of the involved counters. counterresetby has precedence over
the search done in the counterresetters list. The default value of counterresetters
includes the counters for sectioning commands of the standard classes which, in most
cases, should be the relevant ones for cross-referencing purposes. The default value
of counterresetby includes the enumerate environment counters. So, hopefully, you
don’t need to ever bother with either of these options. But, if you do, they are here. Use
them with caution though. Since these options only affect how labels are set, they are
not available in \zcref.

LATEX’s \refstepcounter sets two variables which potentially affect the \zlabel set� currentcounter

after it: \@currentlabel and \@currentcounter. Actually, traditionally, only the current
label was thus stored, the current counter was added to \refstepcounter somewhat
recently (with the 2020-10-01 kernel release). But, since zref-clever relies heavily on the
information of what the current counter is, it must set zref to store that information with
the label, as it does. As long as the document element we are trying to refer to uses
the standard machinery of \refstepcounter we are on solid ground and can retrieve

12

the correct information. However, it is not always ensured that \@currentcounter is
kept up to date. For example, packages which handle labels specially, for one reason or
another, may or may not set \@currentcounter as required. Considering the addition
of \@currentcounter to \refstepcounter itself is not that old, it is likely that in a good
number of places a reliable \@currentcounter is not really in place. Therefore, it may
happen we need to tell zref-clever what the current counter is in certain circumstances,
and that’s what currentcounter does. The same as with the previous two options,
this is not really an “user choice” kind of option, but a way to tell zref-clever a piece of
information it has no means to retrieve automatically. The setting must correspond to
the actual “current counter”, meaning here “the counter underlying \@currentlabel”
in a given situation. Also, when using the currentcounter option, take care that the
setting is duly grouped because, if set, it has precedence over \@currentcounter and,
contrary to the later, the former is not reset the next time \refstepcounter runs. Its
default value is, quite naturally, \@currentcounter. The default value can be reset by
calling the option with no value. Since this option only affects how labels are set, it is
not available in \zcref.

labelhook is a boolean option which controls whether zref-clever uses the kernel’s� labelhook

label hook to, whenever a standard \label is called, also set a \zlabel with the same
name. The package’s default value is true so that one can use \labels along the
document and refer to them (also) with zref and zref-clever reference commands. This
value is not only the default, but also a recommended value. Disabling this option
means you are on your own to handle cases where \zlabel does not work, which are
not many, but can be tricky to deal with where they occur. Since this option only affects
how labels are set, it is not available in \zcref. See Section 6 for some discussion of
different labeling approaches this options allows for.

Some packages, document classes, or LaTeX features may require specific support tonocompat

work with zref-clever (see Section 12). zref-clever tries to make things smoother by covering
some of them. Depending on the case, this can take the form of some simple setup for
zref-clever, or may involve the use of hooks to external environments or commands and,
eventually, a patch or redefinition. By default, all the available compatibility modules
are enabled. Should this be undesired or cause any problems in your environment, the
option nocompat can selectively or completely inhibit their loading. nocompat receives
a comma separated list of compatibility modules to disable (for the list of available
modules and details about each of them, see Section 13). You can disable all modules by
setting nocompat without a value (or an empty one). This is a preamble only option.

8 Reference types

A “reference type” is the basic zref-clever setup unit for specifying how a cross-reference
group of a certain kind is to be typeset. Though, usually, it will have the same name as
the underlying LATEX counter, they are conceptually different. zref-clever sets up reference
types and an association between each counter and its type, it does not define the counters
themselves, which are defined by your document. One reference type can be associated
with one or more counters, and a counter can be associated with different types at different
points in your document. But each label is stored with only one type, as specified by the
counter-type association at the moment it is set, and that determines how the reference
to that label is typeset. References to different counters of the same type are grouped

13

together, and treated alike by \zcref. A reference type may be known to zref-clever when
the counter it is associated with is not actually defined, and this inconsequential. In
practice, the contrary may also happen, a counter may be defined but we have no type
for it, but this must be handled by zref-clever as an error (at least, if we try to refer to it),
usually a “missing name” error.

zref-clever provides default settings for the following reference types: part, chapter,
section, paragraph, appendix, subappendix, page, line, figure, table, item, footnote,
endnote, note, equation, theorem, lemma, corollary, proposition, definition, proof,
result, remark, example, algorithm, listing, exercise, and solution. Therefore, if
you are using a language for which zref-clever has built-in support (see Section 10), these
reference types are available for use out of the box.3 And, in any case, it is always
easy to setup custom reference types with \zcRefTypeSetup or \zcLanguageSetup (see
Sections 5, 9 and 10).

The association of a counter to its type is controlled by the countertype option. As
seen in its documentation, zref-clever presumes the type to be the same as the counter
unless instructed otherwise by that option. This association, as determined by the
local value of the option, affects how the label is set, which stores the type among its
properties. However, when it comes to typesetting, that is from the perspective of
\zcref, only the type matters. In other words, how the reference is supposed to be
typeset is determined at the point the label gets set. In sum, they may be namesakes (or
not), but type is type and counter is counter.

Indeed, a reference type can be associated with multiple counters because we may
want to refer to different document elements, with different counters, as a single type,
with a single name. One prominent case of this are sectioning commands. \section,
\subsection, and \subsubsection have each their counter, but we’d like to refer to
all of them by “sections” and group them together. The same for \paragraph and
\subparagraph.

There are also cases in which we may want to use different reference types to refer
to document objects sharing the same counter. Notably, the environments created with
LATEX’s \newtheorem command and the \appendix.

One more observation about “reference types” is due here. A type is not really
“defined” in the sense a variable or a function is. It is more of a “name” which zref-clever
uses to look for a whole set of type-specific reference format options (see Section 9). Each
of these options individually may be “set” or not, “defined” or not. And, depending on
the setup and the relevant precedence rules for this, some of them may be required and
some not. In practice, zref-clever uses the type to look for these options when it needs
one, and issues a compilation warning when it cannot find a suitable value.

9 Reference format

Formatting how the reference is to be typeset is, quite naturally, a big part of the
user interface of zref-clever. In this area, we tried to balance “flexibility” and “user
friendliness”. But the former does place a big toll overall, since there are indeed many
places where tweaking may be desired, and the settings may depend on at least two

3There may be slight availability differences depending on the language, but zref-clever strives to keep this
complete list available for the languages it has built-in language files.

14

important dimensions of variation: the reference type and the language. Combination
of those necessarily makes for a large set of possibilities. Hence, the attempt here is
to provide a rich set of “handles” for fine tuning the reference format but, at the same
time, do not require detailed setup by the users, unless they really want it.

With that in mind, we have settled with a user interface for reference formatting
which allows settings to be done in different scopes, with more or less overarching
effects, and some precedence rules to regulate the relation of settings given in each of
these scopes. There are four scopes in which reference formatting can be specified by
the user, in the following precedence order: i) as general options; ii) as type-specific options;
iii) as language- and type-specific options; and iv) as language-specific default options. Besides
those, there’s a fifth internal scope, with the least priority of all, a “fallback”, for the
cases where it is meaningful to provide some value, even for an unknown language.
The package itself places the default setup for reference formatting at low precedence
levels, and the users can easily and conveniently override them as desired.

“General” options (i) can be given by the user in the optional argument of \zcref,
but also set through \zcsetup (see Section 7). “Type” specific options (ii) are handled
by \zcRefTypeSetup (see Section 5). “Language” options, whether “type” specific (iii)
or “default” (iv) have their user interface in \zcLanguageSetup, and have their values
populated by the package’s built-in language files (see Section 10). Not all reference
format specifications can be given in all of these scopes, though. Some of them can’t be
type-specific, others must be type-specific, so the set available in each scope depends
on the pertinence of the case. Table 1 introduces the available reference format options,
which will be discussed in more detail soon, and lists the scopes in which each is
available.

Understanding the role of each of these reference format options is likely eased by
some visual schemes of how zref-clever builds a reference based on the labels’ data and
the value of these options. Take a ref to be that which a standard LATEX \ref would
typeset. A zref-clever “reference block”, or ref-block, is constructed as:

ref-block ≡

preref*
ˆhyperlink start

preref ref postref
ˆhyperlink end

postref*

Where the refbounds option, which receives as value a comma separated list of
four items in the form {preref*,preref,postref,postref*}, sets the surrounding
elements to ref.4 A ref-block is built for each label given as argument to \zcref. When
the ⟨labels⟩ argument is comprised of multiple labels, each “reference type group”,
or type-group is potentially made from the combination of single reference blocks,
“reference block pairs”, “reference block lists”, or “reference block ranges”, where each
is respectively built as:

type-group is a combination of:

ref-block

4As usual, if each of the items contains start or end spaces, or commas anywhere, they must be protected
by a pair of braces. However, care is taken that empty items don’t need such protection. So you can set, for
example, something like refbounds={(,,,)} to get parentheses around your references, outside the hyperlink.

15

General Type Language

Type Default
(i) (ii) (iii) (iv)

Typesetting tpairsep • •
(necessarily not tlistsep • •
type-specific) tlastsep • •

notesep • •
Typesetting namesep • • • •
(possibly pairsep • • • •
type-specific) listsep • • • •

lastsep • • • •
rangesep • • • •
refbounds • • • •

Typesetting Name-sg • •
(necessarily name-sg • •
type-specific) Name-pl • •

name-pl • •
Name-sg-ab • •
name-sg-ab • •
Name-pl-ab • •
name-pl-ab • •

Font namefont • • • •
reffont • • • •

Other cap • • • •
abbrev • • • •
endrange • • • •
rangetopair • • • •

Table 1: Reference format options and their scopes

ref-block1 pairsep ref-block2

ref-block1 listsep ref-block2 listsep ref-block3 . . .

. . . ref-blockN-1 lastsep ref-blockN

ref-block1 rangesep ref-blockN

To complete a “type-block”, a type-group only needs to be accompanied by the
“type name”:

type-block ≡

type-name namesep type-group

16

The type-name is determined not by one single reference format option but by
the appropriate one among the [Nn]ame- options according to the composition of
type-group and the general options. The reference format name options are eight in
total: Name-sg, name-sg, Name-pl, name-pl, Name-sg-ab, name-sg-ab, Name-pl-ab, and
name-pl-ab. The initial uppercase “N” signals the capitalized form of the type name.
The -sg suffix stands for singular, while -pl for plural. The -ab is appended to the
abbreviated type name form options. When setting up a type, not necessarily all forms
need to be provided. zref-clever will always use the non-abbreviated form as a fallback
to the abbreviated one, if the later is not available. Hence, if a reference type is not
intended to be used with abbreviated names (the most common case), only the basic
four forms are needed. Besides that, if you are using the cap option, only the capitalized
forms will ever be required by \zcref, so you can get away setting only Name-sg and
Name-pl. You should not do the contrary though, and provide only the non-capitalized
forms because, even if you are using the nocap option, the capitalized forms will be still
required for capfirst and S options to work. Whatever the case may be, you need not
worry too much about being remiss in this area: if \zcref does lack a name form in any
given reference, it will let you know with a compilation warning (and will typeset the
usual missing reference sign: “??”).

A complete reference typeset by \zcref may be comprised of multiple type-blocks,
in which case the “type-block-group” can also be made of single type blocks, “type
block pairs” or “type block lists”, where each is respectively built as:

type-block-group is one of:

type-block

type-block1 tpairsep type-block2

type-block1 tlistsep type-block2 tlistsep type-block3 . . .

. . . type-blockN-1 tlastsep type-blockN

Finally, since \zcref can also receive an optional note, its full typeset output is
built as:

A complete \zcref reference:

type-block-group notesep note

Reference format options can yet be divided in three general categories: i) “type-
setting” options, the ones which we have seen thus far, as “building blocks” of the
reference; ii) “font” options, which control font attributes of parts of the reference,
namely namefont and reffont; and iii) “other” options. “Typesetting” options are
intended exclusively for typesetting material: things you expect to see in the output of
your references. “Font” options set the font, respectively, for the type-name and for ref
(to set the font for the whole reference, see the font option in Section 7). These options
are intended exclusively for commands that only change font attributes: style, family,

17

shape, weight, size, color, etc. In either case, anything other than their intended uses is
not supported.

Finally, a comment about the internal “fallback” reference format values mentioned
above. These “last resort” option values are required by zref-clever for a clear particular
case: if the user loads either babel or polyglossia, or explicitly sets a language, with a
language that zref-clever does not know and has no language file for, it cannot guess what
language that is, and thus has to provide some reasonable “language agnostic” default,
at least for the options for which this makes sense. Users do not need to have access to
this scope, since they know the language of their document, or know the values they
want for those options, and can set them as general options, type-specific options, or
language options through the user interface provided for the purpose. But the “fallback”
options are documented here so that you can recognize when you are getting these
values and change them appropriately as desired. Though hopefully reasonable, they
may not be what you want. The “fallback” option values are the following:

tpairsep = {,␣} ,
tlistsep = {,␣} ,
tlastsep = {,␣} ,
notesep = {␣} ,
namesep = {\nobreakspace} ,
pairsep = {,␣} ,
listsep = {,␣} ,
lastsep = {,␣} ,
rangesep = {\textendash} ,

9.1 Advanced reference formatting

The reference format options discussed above and presented in Table 1 should suffice
for most needs. However, if more fine-grained control of the reference format is needed,
this can be achieved through a more detailed specification of refbounds for the different
cases in which they may occur when a reference is processed. The options available for
this purpose are presented in Table 2.

The “base” options are the actually operative ones, while the “derived” options are
convenience aliases to set multiple base options in one go. In the naming scheme of
these options, as is easy to presume, “first” refers to the first reference of a type-block,
“mid” to the middle ones, and “last” to the last reference of the type-block. Less
obviously, but hopefully still mnemonic enough, “sg” stands for “single”, “pb” and “pe”
for “pair begin” and “pair end”, and finally “rb” and “re” for “range begin” and “range
end”. Each of them receives as value a comma separated list of four items in the form
{preref*,preref,postref,postref*}, just like refbounds.

The base options are mutually exclusive, which means, for example, that it is not
sufficient to set refbounds-first to define the behavior of all first references of a type
block. refbounds-first is the value used for the first reference when not single, not
the beginning of a pair, and not the beginning of a range. Setting a group of them is the
purpose of the derived options. Each of these sets all options under it. Some examples.
+refbounds-first sets refbounds-first, refbounds-first-sg, refbounds-first-pb,
and refbounds-first-rg. In turn, +refbounds-rb sets refbounds-first-rb and
refbounds-mid-rb. And quite conveniently, +refbounds sets +refbounds-first,

18

General Type Language

Type Default
(i) (ii) (iii) (iv)

Base refbounds-first • • • •
options refbounds-first-sg • • • •

refbounds-first-pb • • • •
refbounds-first-rb • • • •
refbounds-mid • • • •
refbounds-mid-rb • • • •
refbounds-mid-re • • • •
refbounds-last • • • •
refbounds-last-pe • • • •
refbounds-last-re • • • •

Derived +refbounds-first • • • •
options +refbounds-mid • • • •
(groups) +refbounds-last • • • •

+refbounds-rb • • • •
+refbounds-re • • • •
+refbounds • • • •

Table 2: Advanced reference format options and their scopes

+refbounds-mid, and +refbounds-last, it is hence sufficient to set it to define the
behavior of what is typeset around all references for the whole type-block. As you
probably guessed by now, the refbounds option presented in Table 1 is an alias of
+refbounds.

Given that base and derived options are actually setting the same group of underly-
ing options (the base ones), the order in which they are given is relevant: the last one
prevails. The idea here is to use first the derived options to set some general defaults,
and then change one or another base option to handle exceptions as needed. Of course,
how best to use them depends on the case.

10 Internationalization

zref-clever provides internationalization facilities and integrates with babel and polyglossia
to adapt to the languages in use by either of these language packages, or to a language
specified directly by the user. This is primarily relevant for reference format options,
particularly reference type names (though not only, since most reference format options
can have language-specific values see Section 9). But other features of the package also
cater for language specific needs.

As far as language selection is concerned, if the language is declared and zref-clever
has a built-in “language file” for it, most use cases will likely be covered by the lang
option (see Section 7), and its values current and main. When the lang option is set
to current or main, zref-check will use, respectively, the current or main language of

19

Language Aliases

dutch
english american

australian
british
canadian
newzealand
UKenglish
USenglish

french acadian

Language Aliases

german ngerman
austrian
naustrian
swissgerman
nswissgerman

italian
portuguese brazilian

brazil
portuges

spanish

Table 3: Declared languages and aliases

the document, as defined by babel or polyglossia.5 Users can also set lang to a specific
language directly, in which case babel and polyglossia are disregarded. zref-clever provides
a number of built-in “language files”, for the languages listed in Table 3, which also
includes the declared aliases to those languages.

zref-clever’s “language files” are loaded sparingly and lazily. A language file for a
single language – that specified by user options in the preamble, which by default is
the current document language – is loaded at begindocument. If any other language
file is needed, it is loaded on the fly, if and when required. Of course, in either case,
conditioned on availability. In sum, zref-clever loads as little as possible, but allows for
convenient on the fly loading of language files if the values are indeed required, without
users having to worry about it at all.

But if the built-in language files do not cover your language, or if you’d like
to adjust some of the default language-specific options, this can be done with
\zcDeclareLanguage, \zcDeclareLanguageAlias, and \zcLanguageSetup.6

\zcDeclareLanguage[⟨options⟩]{⟨language⟩}\zcDeclareLanguage

Declare a new language for use with zref-clever. If ⟨language⟩ has already been
declared, just warn. The ⟨options⟩ argument receives the usual key=value list and
recognizes three keys: declension, gender, and allcaps. declension receives a coma
separated list of valid declension cases for ⟨language⟩. The first element of the list is
considered to be the default case, both for the d option in \zcref and for the case option
in \zcLanguageSetup. Similarly, gender receives a comma separated list of genders for
⟨language⟩. The elements in this list are those which are recognized as valid for the
language for both the g option in \zcref and the gender option in \zcLanguageSetup.
There is no default presumed in this case. Finally, allcaps can be used with languages
for which nouns must be always capitalized for grammatical reasons. For a language

5Technically, zref-clever uses \languagename and \bbl@main@language for babel, and \babelname and
\mainbabelname for polyglossia, which boils down to zref-clever always using babel names internally, regardless
of which language package is in use. Indeed, an acquainted user will note that Table 3 contains only babel
language names.

6Needless to say, if you’d like to contribute a language file or improve an existing one, that is much
welcome at https://github.com/gusbrs/zref-clever/issues.

20

https://github.com/gusbrs/zref-clever/issues

Language declension gender allcaps

dutch – f,m,n –
english – – –
french – f,m –
german N,A,D,G f,m,n yes
italian – f,m –
portuguese – f,m –
spanish – f,m –

Table 4: Options for declared languages

declared with the allcaps option, the cap reference option (see Section 7) is disregarded,
and \zcref always uses the capitalized type name forms. This means that language
files for languages with such a trait can be halved in size, and that user customization
for them is simplified, only requiring the capitalized name forms. On the other hand,
the non-capitalized name- reference format options are rendered no-op for the language
in question. Table 4 presents an overview of the options in effect for the languages
declared by zref-clever. \zcDeclareLanguage is preamble only.

\zcDeclareLanguageAlias{⟨language alias⟩}{⟨aliased language⟩}\zcDeclareLanguageAlias

Declare ⟨language alias⟩ to be an alias of ⟨aliased language⟩. ⟨aliased
language⟩ must be already known to zref-clever. Once set, the ⟨language alias⟩ is
treated by zref-clever as completely equivalent to the ⟨aliased language⟩ for any lan-
guage specification by the user. \zcDeclareLanguageAlias is preamble only.

\zcLanguageSetup{⟨language⟩}{⟨options⟩}\zcLanguageSetup

Sets language-specific reference format options for ⟨language⟩ (see Section 9), be
they type-specific or not. ⟨language⟩ must be already known to zref-clever. Besides
reference format options, \zcLanguageSetup knows three other keys: type, case, and
gender. The first two work like a “switch” affecting the options following it. For
example, if type=foo is given in ⟨options⟩ the options following it will be set as type-
specific options for reference type foo. Similarly, after case=X (provided X is a valid
declension case for ⟨language⟩), the following [Nn]ame- options will set values for the X
declension case (other reference format options are not affected by case). Before the first
occurrence of either type or case default values are set. For case this means the default
declension case, which is the first element of the list provided to the declension option
in \zcDeclareLanguage. For type this means language-specific but not type-specific
option values (see Section 9). An empty valued type= key can also “unset” the type. The
gender key sets the gender of the current type (provided the value it receives is one of
the declared genders for ⟨language⟩). For types which have multiple valid genders for
a given language, the option can also receive a comma separated list. \zcLanguageSetup
is preamble only.

A couple of examples to illustrate the syntax of \zcLanguageSetup:

\zcLanguageSetup{french}{

21

type = section ,
gender = f ,
Name-sg = Section ,
name-sg = section ,
Name-pl = Sections ,
name-pl = sections ,

}
\zcLanguageSetup{german}{
type = section ,

gender = m ,
case = N ,

Name-sg = Abschnitt ,
Name-pl = Abschnitte ,

case = A ,
Name-sg = Abschnitt ,
Name-pl = Abschnitte ,

case = D ,
Name-sg = Abschnitt ,
Name-pl = Abschnitten ,

case = G ,
Name-sg = Abschnitts ,
Name-pl = Abschnitte ,

}

As already noted, zref-clever has some support for languages with declension. This
means mainly the declension of nouns, which is used for the reference type names. But
some tools are also provided to support the user in getting better results for the text
surrounding a reference, particularly for numbered and gendered articles, even if those
don’t have their typeset output automated.

For reference type names, the declension cases for each language must be declared
with \zcDeclareLanguage, and the name reference format options must be provided
for each case, which is done for built-in language files of languages which have noun
declension, and can be done by the user with \zcLanguageSetup, as we’ve seen. zref-
clever does not try to guess or infer the case though, you must tell it to \zcref. And
this is done by means of the d option (see Section 7). So you may write something like
“nach den \zcref[d=D]{sec:section-1,sec:section-2}” to get “nach den Abschnitten
1 und 2”. Or “trotz des \zcref[d=G]{eq:theorem-1}” to get “trotz des Theorems 1”.

Regarding the text surrounding the reference – the inflected article, the passing
preposition, etc. –, the issue is more delicate. zref-clever cannot and intends not to typeset
those for you. But, depending on the language, it is true that the kind of automation
provided by zref-clever may betray your best efforts to get a proper surrounding text.
Multiple labels passed to \zcref may result in singular type names, either because the
labels are of different types, or because they got compressed into a single reference.
References comprised of multiple type blocks may have each a name with a different
gender. Or, worse, tpairsep, tpairsep, and tlastsep may not provide a general enough
way to separate different type blocks in your language altogether. You may change
something in your document that causes a label to change its type, and hence the gender
of the type name. A page reference to a couple of floats which were by chance on the
same page and all of a sudden no longer are. And so on.

22

In this area, the approach taken by zref-clever is to identify some typical situations
in which your attention may be required in reviewing the surrounding text, and signal
it at compilation time. Just like bad boxes, for example. This feature can be enabled by
the nudge option (which is opt-in, see Section 7). There are three “nudges” available
for this purpose which trigger messages at different events: multitype, comptosing,
and gender. multitype nudges when a reference is comprised of multiple type blocks.
comptosing when multiple labels of the same type block have been compressed into a
single one and, hence, the type name used is singular. Finally, gender nudges when
there is a mismatch between the gender specified in \zcref with the g option and the
gender of the type name, as set in the language file or with \zcLanguageSetup, for each
type block. Which nudges to use is configurable with the option nudgeif. And, if you’re
sure of the results for a particular \zcref call, you can always silence the nudges locally
with the nonudge option.

The main reason to watch for multiple type references with the multitype nudge
is that bundling together automatically a list of type blocks is less smooth an operation
than it is for a single reference type. While it arguably works reasonably well for English,
even there it is not always flawless, and depending on the language, results may range
from “poor style” to outright wrong. A typical case would be of that of a language with
inflected articles and a reference with multiple types of different genders or numbers. For
example, in French, with a standard “au \zcref{cha:chapter-3, sec:section-3.1}”
we get “au chapitre 3 et section 3.1” which sounds ugly, at best. So we may be better off
writing instead “au \zcref{cha:chapter-3} et à la \zcref{sec:section-3.1}”. Or
something else, of course. But the general point is that, depending on circumstances
and on the language, the results of automating the grouping of multiple reference types,
as zref-clever is able to do, may leave things to be desired for. Hence it lets you know
when one such case occurs, so that you can review it for best results.

The case of the comptosing and gender nudges is more objective in nature, they
respectively signal mismatches of number and gender. When a reference is made with
\zcref to a single label we are sure the type name will be a singular form. However,
when \zcref receives multiple labels of the same type, the type name will normally be
a plural, but not necessarily so, since the labels may be compressed into a single one
(see the comp option in Section 7), in which case the singular is used. The compression
of multiple labels into a single reference should be an exception for default references,
but not so for page references, where it is easy to conceive practical situations where it
may occur. Suppose, for example, you have two contiguous floats in your document
and make a page reference to both of them. Will they end up in the same page or
not? Maybe we know what the current state is, but we cannot know what may happen
as the document keeps being edited. As a consequence, we don’t know whether that
reference will end up having a plural or a singular type name. That given, the logic
of the comptosing nudge is the following. If we are giving multiple labels to \zcref,
we can presume a plural type name, but we get a nudge in case the compression of the
labels results in a singular type name form. If one such compression did happen to one
of your references, you can use a singular article and then tell \zcref you did so with
option sg. The effect of the sg option is to inhibit the nudge when a compression to
singular occurs, but to do it instead when the compression ceases to occur, that is, if we
get a plural type name again at some point.

The gender nudge aims to guard against one particular situation: possible changes

23

of a reference’s type. This does not occur by reason of any internal behavior of zref-clever,
but it may be caused by changes in the document. You may wish to change one theorem
into a proposition and, if you’re writing in French or Portuguese, for example, that
implies that the reference to it changes gender and the likely preceding article will no
longer pass to the reference. The gender nudge requires that the gender of each type
name and of each reference be explicitly specified. For the type names, this is done
for the built-in language files of languages were this matters, and can be done with
\zcLanguageSetup as well. For the references, that is the purpose of the g option. When
there is a mismatch between the two for any type block, the nudge is triggered. Of
couse, this means that the gender markup has to be supplied in the document at each
reference. And given such type changes may not be frequent for you, or considered not
particularly problematic, you’ll have to balance if doing so is worth it. Still, the feature
is available, and it’s up to you.

11 How-tos

This section gathers some usage examples, or “how-tos”, of cases which may require
some zref-clever setup, or usage adjustments, and each item is set around a cross-reference
“task” we’d like to perform with zref-clever.

11.1 Extended page references (varioref)

Task Make cross-references to pages which are sensitive to the relative position between
the reference and the label being referred to using varioref.

The zref-vario package offers a layer of compatibility with varioref and provides \z. . .
counterparts for the latter’s main reference commands.

How-to 3: zref-vario
\documentclass{article}
\usepackage{zref-clever}
\usepackage{zref-vario}
\begin{document}
\section{Section 1}
\zlabel{sec:section-1}
\begin{figure}

A figure.
\caption{Figure 1}
\zlabel{fig:figure-1}

\end{figure}
\begin{figure}
Another figure.
\caption{Figure 2}
\zlabel{fig:figure-2}

\end{figure}
\zvref[S]{sec:section-1}
\zvpageref{fig:figure-1}
\zvrefrange{fig:figure-1}{fig:figure-2}
\zvpagerefrange{fig:figure-1}{fig:figure-2}

24

\zfullref{fig:figure-1}
\end{document}

11.2 \newtheorem

Since LATEX’s \newtheorem allows users to create arbitrary numbered environments, with
respective arbitrary counters, the most zref-clever can do in this regard is to provide
some “typical” built-in reference types to smooth user setup but, in the general case,
some user setup may be indeed required. The examples below are equaly valid for
amsthm’s \newtheorem since, even it provides features beyond those available in the
kernel, its syntax and underlying relation with counters is pretty much the same. The
same for ntheorem. For thmtools’ \declaretheorem, though some adjustments to the
examples below may be required, the basic logic is the same (there is no integration with
the Refname, refname, and label options, which are targeted to the standard reference
system, but you don’t actually need them to get things working conveniently).

Simple case

Task Setup up a new theorem environment created with \newtheorem to be referred
to with \zcref. The theorem environment does not share its counter with other
theorem environments, and one of zref-clever built-in reference types is adequate
for my needs.

Suppose you set a “Lemma” environment with:

\newtheorem{lemma}{Lemma}[section]

In this case, since zref-clever provides a built-in lemma type (for supported languages)
and presumes the reference type to be the same name as the counter, there is no need
for setup, and things just work out of the box. So, you can go ahead with:

How-to 4: \newtheorem, simple case
\documentclass{article}
\usepackage{zref-clever}
\newtheorem{lemma}{Lemma}[section]
\begin{document}
\section{Section 1}
\begin{lemma}\zlabel{lemma-1}

A lemma.
\end{lemma}
\zcref{lemma-1}
\end{document}

If, however, you had chosen an environment name which did not happen to coincide
with the built-in reference type, all you’d need to do is instruct zref-clever to associate
the counter for your environment to the desired type with the countertype option:

How-to 5: \newtheorem, simple case
\documentclass{article}
\usepackage{zref-clever}

25

\zcsetup{countertype={lem=lemma}}
\newtheorem{lem}{Lemma}[section]
\begin{document}
\section{Section 1}
\begin{lem}\zlabel{lemma-1}
A lemma.

\end{lem}
\zcref{lemma-1}
\end{document}

Shared counter

Task Setup up two new theorem environments created with \newtheorem to be referred
to with \zcref. The theorem environments share the same counter, and the
available zref-clever built-in reference types are adequate for my needs.

In this case, we need to set the countertype option in the appropriate contexts, so
that the labels of each environment get set with the expected reference type. As we’ve
seen (at Section 5), \zcsetup has local effects, so it can be issued inside the respective
environments for the purpose. Even better, we can leverage the kernel’s new hook man-
agement system and just set it for all occurrences with \AddToHook{env/⟨myenv⟩/begin}.

How-to 6: \newtheorem, shared counter
\documentclass{article}
\usepackage{zref-clever}
\AddToHook{env/mytheorem/begin}{%

\zcsetup{countertype={mytheorem=theorem}}}
\AddToHook{env/myproposition/begin}{%

\zcsetup{countertype={mytheorem=proposition}}}
\newtheorem{mytheorem}{Theorem}[section]
\newtheorem{myproposition}[mytheorem]{Proposition}
\begin{document}
\section{Section 1}
\begin{mytheorem}\zlabel{theorem-1}

A theorem.
\end{mytheorem}
\begin{myproposition}\zlabel{proposition-1}
A proposition.

\end{myproposition}
\zcref{theorem-1, proposition-1}
\end{document}

Custom type

Task Setup up a new theorem environment created with \newtheorem to be referred
to with \zcref. The theorem environment does not share its counter with other
theorem environments, but none of zref-clever built-in reference types is adequate
for my needs.

26

In this case, we need to provide zref-clever with settings pertaining to the custom
reference type we’d like to use. Unless you need to typeset your cross-references in
multiple languages, in which case you’d require \zcLanguageSetup, the most convenient
way to setup a reference type is \zcRefTypeSetup. In most cases, what we really need
to provide for a custom type are the “type names” and other reference format options
can rely on default language options already provided by the package (assuming the
language is supported).

How-to 7: \newtheorem, custom type
\documentclass{article}
\usepackage{zref-clever}
\newtheorem{myconjecture}{Conjecture}[section]
\zcRefTypeSetup{myconjecture}{

Name-sg = Conjecture ,
name-sg = conjecture ,
Name-pl = Conjectures ,
name-pl = conjectures ,

}
\begin{document}
\section{Section 1}
\begin{myconjecture}\zlabel{conjecture-1}

A conjecture.
\end{myconjecture}
\zcref{conjecture-1}
\end{document}

11.3 newfloat

Task Setup a new float environment created with newfloat to be referred to with \zcref.
None of zref-clever built-in reference types is adequate for my needs.

The case here is pretty much the same as that for \newtheorem with a custom type.
Hence, we need to setup a corresponding type, for which providing the “type names”
should normally suffice. Note that, as far as zref-clever is concerned, there’s nothing
specific to the newfloat package in the setup, the same procedure can be used with
memoir’s \newfloat command or with the float, floatrow, and trivfloat packages.

How-to 8: newfloat
\documentclass{article}
\usepackage{newfloat}
\DeclareFloatingEnvironment{diagram}
\usepackage{zref-clever}
\zcRefTypeSetup{diagram}{

Name-sg = Diagram ,
name-sg = diagram ,
Name-pl = Diagrams ,
name-pl = diagrams ,

}
\begin{document}
\section{Section 1}

27

\begin{diagram}
A diagram.
\caption{A diagram}
\zlabel{diagram-1}

\end{diagram}
\zcref{diagram-1}
\end{document}

11.4 amsmath

Task Make references to amsmath display math environments.

amsmath’s display math environments have their contents processed twice, once for
measuring and the second does the final typesetting. Hence, amsmath needs to handle
\label specially inside these environments, otherwise we’d have duplicate labels all
around, and indeed it does redefine \label locally inside them. Alas, the same treat-
ment is not granted to \zlabel. Therefore, you must use \label (not \zlabel) inside
amsmath’s display math environments, and the labelhook option provides that a \label
sets both a regular \label and a \zlabel, so that we can refer to the equations with both
referencing systems. The following environments are subject to this usage restriction:
equation, align, alignat, flalign, xalignat, gather, multline, and their respective
starred versions. For more details, see the description of the amsmath compatibility
module at Section 13.

How-to 9: amsmath
\documentclass{article}
\usepackage{amsmath}
\usepackage{zref-clever}
\usepackage{hyperref}
\begin{document}
\section{Section 1}
\begin{equation}\label{eq:1}
A^{(1)}_l =\begin{cases} n!,&\text{if }l =1\\

0,&\text{otherwise}.\end{cases}
\end{equation}
\begin{equation*} \tag{foo}\label{eq:2}

A^{(1)}_l =\begin{cases} n!,&\text{if }l =1\\
0,&\text{otherwise}.\end{cases}

\end{equation*}
\begin{subequations}\label{eq:3}
\begin{align}

A+B&=B+A\\
C&=D+E\label{eq:3b}\\
E&=F

\end{align}
\end{subequations}
\zcref{eq:1, eq:2, eq:3, eq:3b}
\end{document}

28

11.5 Overriding the reference type

Task Make references to a system of equations, which should be referred to in the
plural.

Though, usually, setting the countertype option may provide a more general and
convenient way to set the reference type of a given counter, sometimes we just need to
do it for a particular label or set of labels. The reftype option allows us to do so and
set the reference type directly, regardless of what the current counter is.

How-to 10: Overriding the reference type
\documentclass{article}
\usepackage{amsmath}
\usepackage{zref-clever}
\usepackage{hyperref}
\zcRefTypeSetup{pluralequation}{

Name-sg = Equations ,
name-sg = equations ,
Name-pl = Equations ,
name-pl = equations ,

}
\begin{document}
\section{Section 1}
\begin{equation}
\zcsetup{reftype=pluralequation}
\zlabel{eq:1}
\begin{aligned}

A+B&=B+A\\
C&=D+E\\
E&=F

\end{aligned}
\end{equation}
\zcref{eq:1}
\end{document}

11.6 listings

Task Make references to a lstlisting environment from the listings package.

Being lstlisting a verbatim environment, setting labels inside it requires special
treatment. zref-clever’s labelhook option provides that a label given to the label option
gets set with both a regular \label and a \zlabel, so that we can refer to it with both
referencing systems. Setting labels for specific lines of the environment can be done
with \zlabel directly, subject to the same escaping as for the standard \label. For more
details, see the description of the listings compatibility module at Section 13.

How-to 11: listings
\documentclass{article}
\usepackage{listings}
\usepackage{zref-clever}

29

\usepackage{hyperref}
\begin{document}
\section{Section 1}
\lstset{escapeinside={(*@}{@*)}, numbers=left, numberstyle=\tiny}
\begin{lstlisting}[caption={Useless code}, label=lst:1]
for i:=maxint to 0 do
begin

{ do nothing }(*@\zlabel{ln:1.1}@*)
end;

\end{lstlisting}
\zcref{lst:1, ln:1.1}
\end{document}

11.7 enumitem

Task Setup a custom enumerate environment created with enumitem to be referred to.

Since the enumerate environment’s counters are reset at each nesting level, but not
with the standard machinery, we have to inform zref-clever of this resetting behavior
with the counterresetby option. Also, given the naming of the underlying counters
is tied with the environment’s name and the level’s number, we cannot really rely on
an implicit counter-type association, and have to set it explicitly with the countertype
option.

How-to 12: enumitem
\documentclass{article}
\usepackage{zref-clever}
\zcsetup{

countertype = {
myenumeratei = item ,
myenumerateii = item ,
myenumerateiii = item ,
myenumerateiv = item ,

} ,
counterresetby = {

myenumerateii = myenumeratei ,
myenumerateiii = myenumerateii ,
myenumerateiv = myenumerateiii ,

}
}
\usepackage{enumitem}
\newlist{myenumerate}{enumerate}{4}
\setlist[myenumerate,1]{label=(\arabic*)}
\setlist[myenumerate,2]{label=(\Roman*)}
\setlist[myenumerate,3]{label=(\Alph*)}
\setlist[myenumerate,4]{label=(\roman*)}
\begin{document}
\begin{myenumerate}
\item An item.\zlabel{item-1}
\begin{myenumerate}

30

\item An item.\zlabel{item-2}
\begin{myenumerate}
\item An item.\zlabel{item-3}

\begin{myenumerate}
\item An item.\zlabel{item-4}
\end{myenumerate}

\end{myenumerate}
\end{myenumerate}

\end{myenumerate}
\zcref{item-1, item-2, item-3, item-4}
\end{document}

11.8 zref-xr

Task Make references to labels set in an external document.

zref itself offers this functionality with module zref-xr, and zref-clever is prepared
to make use of it. Just a couple of details have to be taken care of, for it to work as
intended: i) zref-clever must be loaded in both the main document and the external
document, so that the imported labels also contain the properties required by zref-clever;
ii) since \zexternaldocument defines any properties it finds in the labels from the
external document when it imports them, it must be called after zref-clever is loaded,
otherwise the later will find its own internal properties already defined when it does
get loaded, and will justifiably complain. Note as well that the starred version of
\zexternaldocument*, which imports the standard labels from the external document,
is not sufficient for zref-clever, since the imported labels will not contain all the required
properties.

Assuming here documentA.tex as the main file and documentB.tex as the external
one, and also assuming we just want to refer in “A” to the labels from “B”, and not the
contrary, a minimum setup would be the following.

How-to 13: zref-xr
documentA.tex:

\documentclass{article}
\usepackage{zref-clever}
\usepackage{zref-xr}
\zexternaldocument[B-]{documentB}
\usepackage{hyperref}
\begin{document}
\section{Section A1}
\zlabel{sec:section-a1}
\zcref{sec:section-a1, B-sec:section-b1}
\end{document}

documentB.tex:

\documentclass{article}
\usepackage{zref-clever}
\usepackage{hyperref}
\begin{document}

31

\section{Section B1}
\zlabel{sec:section-b1}
\end{document}

11.9 tcolorbox

Task Make references to boxes from the tcolorbox package.

Since version 6.0.0, tcolorbox has support for zref and zref-clever, through the label
is zlabel option. With this option enabled, the label option sets a \zlabel, which can
be referred to from \zref or \zcref. If you are using the auto counter, or some other
custom counter, you can set the reference type for the box’s labels with the label type
option.

How-to 14: tcolorbox
\documentclass{article}
\usepackage{zref-clever}
\usepackage{zref-titleref}
\usepackage{tcolorbox}
\tcbuselibrary{theorems}
\tcbset{label is zlabel}
\usepackage{hyperref}
\newtcolorbox[auto counter,number within=section]{pabox}[2][]{%

label type=example,
title=Example~\thetcbcounter: #2,#1}

\newtcolorbox[use counter from=pabox,number within=section]{pabox2}[2][]{%
label type=solution,
title=Solution~\thetcbcounter: #2,#1}

\newtcbtheorem[number within=section]{mytheo}{My Theorem}{%
label type=mytheorem}{th}

\zcRefTypeSetup{mytheorem}{
Name-sg=Mytheorem,
name-sg=mytheorem,
Name-pl=Mytheorems,
name-pl=mytheorems,

}
\begin{document}
\section{Section 1}
\zlabel{sec:section-1}
\begin{pabox}[label={box:1}]{Title text}

This is tcolorbox \zcref{box:1} on \zcpageref{box:1}.
\end{pabox}
\begin{pabox2}[label={box:2}]{Title text}
This is tcolorbox \zcref{box:2} on \zcpageref{box:2}.

\end{pabox2}
\begin{mytheo}{This is my title}{theo}
This is \zcref{th:theo} on \zcpageref{th:theo} and it is titled
``\zcref[noname,ref=title]{th:theo}''.

\end{mytheo}
\end{document}

32

11.10 breqn

Task Make references to breqn math environments.

breqn’s math environments dgroup, dmath, dseries, and darray offer a label option
(plus labelprefix) for the purpose of label setting. breqn’s documentation says the
following about the use of \label inside its environments: “Use of the normal \label
command instead of the label option works, I think, most of the time (untested)”. My
light testing suggests the same is true for \zlabel, which can then be used directly in
these environments. Either way, given the labelhook option, we can just use breqn’s
label option and be at ease. Also, breqn does not use \refstepcounter to increment
the equation counters and, as a result, fails to set hyperref anchors for the equations (thus
affecting standard labels too). You may wish to use the work-around provided by Heiko
Oberdiek at https://tex.stackexchange.com/a/241150.

How-to 15: breqn
\documentclass{article}
\usepackage{zref-clever}
\usepackage{breqn}
\usepackage{hyperref}
% From https://tex.stackexchange.com/a/241150.
\usepackage{etoolbox}
\makeatletter
\patchcmd\eq@setnumber{\stepcounter}{\refstepcounter}{}{%
\errmessage{Patching \noexpand\eq@setnumber failed}}

\makeatother
\begin{document}
\section{Section 1}
\begin{dmath}[label={eq:1}]
f(x)=\frac{1}{x} \condition{for $x\neq 0$}

\end{dmath}
\begin{dmath}[labelprefix={eq:},label={2}]
H_2^2 = x_1^2 + x_1 x_2 + x_2^2 - q_1 - q_2

\end{dmath}
\zcref{eq:1, eq:2}
\end{document}

11.11 Ordinal references

Task Typesetting the references as ordinal numbers.

This example is intended as an illustration of the flexibility zref’s extensible refer-
encing system grants us.7 Getting references as ordinal numbers, something that would
be normally a tricky task, can be handled with a simple custom zref property, which we
then use to set zref-clever’s ref option.

How-to 16: Ordinal references
\documentclass{article}

7Though clearly simplified, the example is less than academic. See https://tex.stackexchange.com/a/
670088 for an application to add a reference suffix needed in Turkish.

33

https://tex.stackexchange.com/a/241150
https://tex.stackexchange.com/a/670088
https://tex.stackexchange.com/a/670088

\usepackage{zref-clever}
\usepackage{fmtcount}
\makeatletter
\zref@newprop{ordref}{\ordinal{\@currentcounter}}
\zref@addprop{main}{ordref}
\makeatother
\zcsetup{ref=ordref}
\begin{document}
\section{Section 1}
\zlabel{sec:section-1}
\begin{figure}
A figure.
\caption{Figure 1}
\zlabel{fig:figure-1}
\end{figure}
\zcref{sec:section-1,fig:figure-1}
\end{document}

12 Limitations

Being based on zref entails one quite sizable advantage for zref-clever: the extensible
referencing system of the former allows zref-clever to store and retrieve the information
it needs to work without having to redefine some core LATEX commands. This alone
makes for reduced compatibility problems and less load order issues than the average
package in this functionality area. On the other hand, being based on zref also does
impair the supported scope of zref-clever. Not because of any particular limitation of
either, but because any class or package which implements some special handling for
reference labels universally does so aiming at the standard referencing system, and
whether specific support for zref is included, or whether things work by spillover of the
particular technique employed, is not guaranteed.

The limitation here is less one of zref-clever than that of a potencial lack of support for
zref itself. Broadly speaking, what zref-clever does is setup zref so that its \zref@newlabels
contains the information we need using zref’s API. Once the \zlabel is set correctly,
there is little in the way of zref-clever, it can just extract the label’s information, again
using zref’s API, and do its job. Therefore, the problems that may arise are really in label
setting.

For \zlabel to be able to set a label with everything zref-clever needs, some condi-
tions must be fulfilled, most of which are pretty much the same as that of a regular label,
but not only. As far as my experience goes, the following label setting requirements can
be potentially problematic and are not necessarily granted for \zlabel:

1. One must be able to call \zlabel, directly or indirectly, at the appropriate scope/lo-
cation so as to set the label.

2. When \zlabel is set, it must see a correct value of \@currentcounter.

As to the first, it is not everywhere we technically can set a (z)label. On verbatim-
like environments it depends on how they are defined and whether they provide a

34

proper place or option to do so. But other places may be problematic too, for example,
amsmath display math environments also handle \label specially and the same work
is not done for \zlabel. Classes and packages may offer label setting by means of
arguments or options, and those usually only cater for the standard referencing system,
etc. Fortunately for us, the label hook introduced by the LATEX kernel in the 2023-
06-01 release improves the situation considerably. zref-clever makes use of it with the
labelhook option, enabled by default, so that a standard \label also sets a \zlabel
with the same name, thus providing a very general and reliable way to deal with these
places where setting a \zlabel directly is problematic: just set a standard label.

Regarding the second, a correctly set \@currentcounter is critical for the task
of zref-clever: the reference type will depend on that and, consequently, sorting and
compression as well, counter resetting behavior information is also retrieved based
on it, and so on. Since the 2020-10-01 LATEX release, \@currentcounter is set by
\refstepcounter alongside \@currentlabel and, since the 2021-11-15 release, the sup-
port for \@currentcounter has been further extended in the kernel. Hence, as long as
kernel features are involved, or as long as \refstepcounter is the tool used for the
purpose of reference setting, \zlabel will tend to have all information within its grasp
at label setting time. But that’s not always the case. For this reason, zref-clever has the
option currentcounter which at least allows for some viable work-arounds when the
value of \@currentcounter cannot be relied upon. Whether we have a proper opening
to set it, depends on the case. Still, \refstepcounter is ubiquitous enough a tool that
we can count on \@currentcounter most of the time.

All in all, most things work, but some things may not. And if the later will
eventually work depends essentially on whether support for zref is provided by the
relevant packages and classes or not. Or, failing that, whether zref-clever is able to
provide some specific support when a reasonable way to do so is within reach.

13 Compatibility modules

This section gives a description of each compatibility module provided by zref-clever.
These modules intend to smooth the interaction of LATEX features, document classes, and
packages with zref-clever and zref, and they can be selectively or completely disabled
with the option nocompat (see Section 7). This set is not to be confused with “the list of
packages or classes supported by zref-clever”. In most circumstances, things should just
work out of the box, and need no specific handling. These are just the ones for which
some special treatment was required. Of course, this effort is bound to be incomplete
(see Section 12).

The purpose of outlining to some extend what the compatibility modules do is
twofold. First, some of them require usage adjustments for label setting, which must be
somehow conveyed in this documentation. Second, the kind and degree of intervention
in external code varies significantly for each module, and since this is an area of potential
friction, a minimum of information for the users to judge whether they want to leave
these modules enabled or not is due. For this reason, this is also a little technical, but
for full details, see the code documentation.

The \appendix command provided by many document classes is normally used toappendix

change the behavior of the sectioning commands after that point. Usually, depending

35

on the class, the changes that interest us involve using \@Alph for numbering and
\appendixname for chapter’s names. In sum, we’d like to refer to the appendix sectioning
commands as “appendices” rather than “chapters” or “sections”. Since the sectioning
commands are the same as before \appendix, and so are their underlying counters, we
must configure the counter type of the sectioning counters to appendix. And this is
what this compatibility module does, and it uses a ltcmdhooks hook on \appendix for the
purpose. Hence, this module applies to any document class or package which provides
that command.

This module implements support for the appendices and subappendices environ-appendices

ments provided by the appendix package, and also by memoir. The task is the same as for
the appendix module: set proper counter types for the sectioning counters. This module
employs environment hooks to appendices and subappendices and a command hook
to \appendix for the purpose.

This compatibility module provides support for some of memoir’s cross-referencingmemoir

features. Namely, it: i) sets counter types for counters subfigure, subtable,
poemline (used in the verse environment), sidefootnote, and pagenote; ii) config-
ures resetting behavior (counterresetby option) for subfigure and subtable coun-
ters; iii) provides the zref property “subcaption” so that we can refer to, for ex-
ample, \zcref[ref=subcaption]{subcap-1} to emulate the functionality of memoir’s
\subcaptionref.

The module ensures proper currentcounter values are in place for the display mathamsmath

environments, for which it uses environment hooks. The module also provides a subeq
property, for display math environments used inside the subequations environment,
which can be used to refer to them directly with the ref option, or to build terse ranges
with the endrange option.

mathtools has a feature to show the numbers only for those equations actuallymathtools

referenced (with \eqref or \refeq), which is enabled by the showonlyrefs option. This
compatibility module adds support for this feature, such that equation references made
with \zcref also get marked as “referenced” for mathtools, when the option is active, of
course. The module uses a couple of mathtools functions, but does not need to redefine
or hook into anything, everything is handled on zref-clever’s side.

This compatibility module only sets proper currentcounter values for the envi-breqn

ronments dgroup, dmath, dseries, and darray, and uses environment hooks for the
purpose. See the How-to 15 for an usage example.

The module sets appropriate countertype, counterresetby and currentcounterlistings

values for the listings’ counters: lstlisting and lstnumber. See the How-to 11 for an
usage example.

LATEX’s enumerate environment requires some special treatment from zref-clever,enumitem

since its resetting behavior is not stored in the standard way, and the counters’ names,
given they are numbered by level, do not map to the reference type naturally. This is
done by default for the up to four levels of nested enumerate environments the kernel
offers. enumitem, though, allows one to increase this maximum list depth for enumerate
and, if this is done, setup for these deeper nesting levels have also to be taken care
of, and that’s what this compatibility module does. All settings here are internal to
zref-clever, no hooks or redefinitions are needed, we just check the existing pertinent
counters at begindocument, and supply settings for them. Of course, this means that

36

only enumitem’s settings done in the preamble will be visible to the module and provided
for.

This compatibility module sets appropriate countertype and counterresetby forsubcaption

the subfigure and subtable counters, and provides the zref property “subref” so that
we can refer to, for example, \zcref[ref=subref]{⟨label⟩} to emulate the functionality
of subcaption’s \subref. The later feature uses the \caption@subtypehook provided by
caption to locally add the subref property to zref’s main property list.

This module just sets appropriate countertype and counterresetby for thesubfig

subfigure and subtable counters.

14 Work-arounds
� As should be clear by now, the use of zref’s \zlabel and thus of zref-clever may occasion-

ally require some adjustments, since it does not enjoy the universal support the standard
referencing system does. The compatibility modules presented in Section 13 go a long
way in ensuring the user has to worry very little about it, but they cannot be expected
to go all the way. Not only because this kind of support will never be exhaustive, but
also since, sometimes, given the way certain features are implemented by packages or
document classes, there may not be a reasonable way to provide this support, from our
side. But, still, most of the time, it is still “viable” to get there, if one really wishes to
do so. So, this section keeps track of some known recipes, which I don’t think belong
in zref-clever itself, but which you may choose to use. Note that this list is intended to
spare users from having to reinvent the wheel every time someone needs something of
the sort, but from zref-clever’s perspective, their status is “not supported”.

beamer

beamer does some really atypical things with regard to cross-references. To start with, it
redefines \label to receive an optional <⟨overlay specification⟩> argument. Then,
presumably to support overlays, it goes on and hijacks hyperref’s anchoring system,
sets anchors (\hypertargets) to each label in the .snm file, while letting every standard
label’s anchor in the .aux file default to Doc-Start. Of course, having rendered useless
hyperref’s anchoring, it has to redefine \ref so that it uses its own .snm provided “label
anchors” to make hyperlinks. In particular, from our perspective, there is no support
at all for zref provided by beamer. Which is specially unfortunate since the above
procedures also appear to break cleveref.8

Adding proper support for this is the business of beamer, zref, and/or hyperref.
Likely the former’s really. But, taking advantage of zref’s flexibility, as a user, you can
have a work-around in the meantime.

Work-around 2: beamer
\documentclass{beamer}
\usepackage{zref-clever}

8See, for example, https://tex.stackexchange.com/q/266080, https://tex.stackexchange.com/q/
668998, and https://github.com/josephwright/beamer/issues/750. The workaround provided at https:
//tex.stackexchange.com/a/266109 is not general enough since it breaks cleveref’s ability to receive a list of
labels as argument.

37

https://tex.stackexchange.com/q/266080
https://tex.stackexchange.com/q/668998
https://tex.stackexchange.com/q/668998
https://github.com/josephwright/beamer/issues/750
https://tex.stackexchange.com/a/266109
https://tex.stackexchange.com/a/266109

\makeatletter
\RenewDocumentCommand{\zlabel}{ D<>{1} m }{%
\ifx\label\ltx@gobble
\else

\zref@wrapper@babel{\zref@label<#1>}{#2}%
\fi

}
\NewCommandCopy\beamer@old@zref@label\zref@label
\RenewDocumentCommand{\zref@label}{ D<>{1} m }{%
\alt<#1>{%

\zref@ifpropundefined{anchor}{}{\zref@setcurrent{anchor}{#2}}%
\beamer@old@zref@label{#2}%
\beamer@nameslide{#2}%

}{%
\beamer@dummynameslide%

}%
}
\makeatother
\begin{document}
\begin{frame}
\begin{table}

\begin{tabular}{cc}
1 & 2 \\
3 & 4 \\

\end{tabular}
\caption{Table 1}
\zlabel{tab:1}

\end{table}
\end{frame}
\begin{frame}
\begin{figure}

\rule{5cm}{5cm}
\caption{Figure 1}
\zlabel{fig:1}

\end{figure}
\end{frame}
\begin{frame}
\zcref{tab:1,fig:1}

\end{frame}
\end{document}

This work-around redefines \zlabel so that it takes an overlay specification ar-
gument, and provides that the work done by beamer for the standard \label is also
done for it. And it works by setting the anchor to the label so as to be able to speak the
“beamer-lingo” of anchors.

A couple of caveats though. First, there’s probably still some work to be done there
in defining and setting reference types for beamer specific document objects, e.g. overlays.
But it can be done by the standard user interface of zref-clever. Second, since beamer’s
anchoring system does not provide for uniqueness of anchors as hyperref does, if you
(need to) use \label to set both \label and \zlabel, relying on the labelhook option,
this will result in duplicate anchors for labels set in them, with corresponding hyperref

38

warnings of “destination with the same identifier has been already used, duplicate
ignored”. The warning is actually harmless in this case, since both labels are set in the
same place, and thus have identical anchors, it is nevertheless there.

15 Acknowledgments

zref-clever would not be possible without other people’s previous work and help.
Heiko Oberdiek’s zref, now maintained by the Oberdiek Package Support Group,

is the underlying infrastructure of this package. The potential of its basic concept and
the solid implementation were certainly among the reasons I’ve chosen to venture into
these waters, to start with. And I believe they will remain one of the main assets of
zref-clever as it matures.

The name of the package makes no secret that a major inspiration for the kind of
“feel” I strove to achieve has been Toby Cubitt’s cleveref. Indeed, I have been a user of
cleveref for several years, and a happy one at that. But the role cleveref played in the
development of zref-clever extends beyond the visible influence in the design of user
facing functionality. Some technical solutions and, specially, the handling of support for
other packages were a valuable reference. Hence, the accumulated experience of cleveref
allowed for zref-clever to start on a more solid foundation than would otherwise be the
case.

The long term efforts of the LATEX Project Team around expl3 and xparse have also
left their marks in this package. By implementing powerful tools and smoothing several
regular programming tasks, they have certainly reduced my entry barrier to LATEX
programming and enabled me to develop this package with a significantly reduced
effort. And, given the constraints of my abilities, the result is no doubt much better than
it would be in their absence.

Besides these more general acknowledgments, a number of people have contributed
to zref-clever, whether they are aware of it or not. Suggestions, ideas, solutions to prob-
lems, bug reports or even encouragement were generously provided by (in chronological
order): Ulrike Fischer, Phelype Oleinik, Enrico Gregorio, Steven B. Segletes, Jonathan
P. Spratte, David Carlisle, Frank Mittelbach, ‘samcarter’, Alan Munn, Florent Rougon,
Denis Bitouzé, Marcel Krüger, Jürgen Spitzmüller, ‘niluxv’, Joseph Wright, Thomas F.
Sturm, Yukai Chou, and Lars Madsen.

The package’s language files have been provided or improved thanks to: Denis
Bitouzé (French), François Lagarde (French), ‘niluxv’ (Dutch), and Matteo Ferrigato
(Italian).

If I have inadvertently left anyone off the list I apologize, and please let me know,
so that I can correct the oversight.

Thank you all very much!

16 Change history

A change log with relevant changes for each version, eventual upgrade instruc-
tions, and upcoming changes, is maintained in the package’s repository, at https:
//github.com/gusbrs/zref-clever/blob/main/CHANGELOG.md. The change log is also
distributed with the package’s documentation through CTAN upon release so, most

39

https://github.com/gusbrs/zref-clever/blob/main/CHANGELOG.md
https://github.com/gusbrs/zref-clever/blob/main/CHANGELOG.md

likely, texdoc zref-clever/changelog should provide easy local access to it. An
archive of historical versions of the package is also kept at https://github.com/gusbrs/
zref-clever/releases.

40

https://github.com/gusbrs/zref-clever/releases
https://github.com/gusbrs/zref-clever/releases

	Contents
	1 Introduction
	2 Warning
	3 zref-clever for the impatient
	4 Loading the package
	4.1 Dependencies

	5 User interface
	6 \label or \zlabel?
	7 Options
	8 Reference types
	9 Reference format
	9.1 Advanced reference formatting

	10 Internationalization
	11 How-tos
	11.1 Extended page references (varioref)
	11.2 \newtheorem
	11.3 newfloat
	11.4 amsmath
	11.5 Overriding the reference type
	11.6 listings
	11.7 enumitem
	11.8 zref-xr
	11.9 tcolorbox
	11.10 breqn
	11.11 Ordinal references

	12 Limitations
	13 Compatibility modules
	14 Work-arounds
	15 Acknowledgments
	16 Change history

