next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

             2            2             2    2   2 2    2      2     2 
o2 = ideal (f o - g*m, h*i  - j*x, f*h*w  - q , g r  - p x, g*l m - r ,
     ------------------------------------------------------------------------
          2        2 2 2
     f*k*p u - 1, a o r w - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3       3 2 3    4 3 4   2 2 4 3 3    4   2 4    4 3 2 3 3 4  
o3 = ideal (b f*i*j*l p w  - c m x , a d i m s  - c e*f q t, c d f h j x  -
     ------------------------------------------------------------------------
        2 3    3 3 2 3 3 4 2    4 3 3
     e*m o q, d j l o s u w  - p t v )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.