This function produces a diagonal matrix
D, and invertible matrices
P and
Q such that
D = PMQ. Warning: even though this function is called the Smith normal form, it doesn't necessarily satisfy the more stringent condition that the diagonal entries
d1, d2, ..., dn of
D satisfy:
d1|d2|...|dn..
i1 : M = matrix{{1,2,3},{1,34,45},{2213,1123,6543},{0,0,0}}
o1 = | 1 2 3 |
| 1 34 45 |
| 2213 1123 6543 |
| 0 0 0 |
4 3
o1 : Matrix ZZ <--- ZZ
|
i2 : (D,P,Q) = smithNormalForm M
o2 = (| 135654 0 0 |, | 1 33471 -43292 0 |, | 171927 -42421 54868 |)
| 0 1 0 | | 0 1 0 0 | | 93042 -22957 29693 |
| 0 0 1 | | 0 0 1 0 | | -74119 18288 -23654 |
| 0 0 0 | | 0 0 0 1 |
o2 : Sequence
|
i3 : D == P * M * Q
o3 = true
|
i4 : (D,P) = smithNormalForm(M, ChangeMatrix=>{true,false})
o4 = (| 135654 0 0 |, | 1 33471 -43292 0 |)
| 0 1 0 | | 0 1 0 0 |
| 0 0 1 | | 0 0 1 0 |
| 0 0 0 | | 0 0 0 1 |
o4 : Sequence
|
i5 : D = smithNormalForm(M, ChangeMatrix=>{false,false}, KeepZeroes=>true)
o5 = | 135654 0 0 |
| 0 1 0 |
| 0 0 1 |
3 3
o5 : Matrix ZZ <--- ZZ
|
This function is the underlying routine used by minimalPresentation in the case when the ring is ZZ, or a polynomial ring in one variable over a field.
i6 : prune coker M
o6 = cokernel | 135654 |
| 0 |
2
o6 : ZZ-module, quotient of ZZ
|
In the following example, we test the result be checking that the entries of
D1, P1 M Q1 are the same. The degrees associated to these matrices do not match up, so a simple test of equality would return false.
i7 : S = ZZ/101[t]
o7 = S
o7 : PolynomialRing
|
i8 : D = diagonalMatrix{t^2+1, (t^2+1)^2, (t^2+1)^3, (t^2+1)^5}
o8 = | t2+1 0 0 0 |
| 0 t4+2t2+1 0 0 |
| 0 0 t6+3t4+3t2+1 0 |
| 0 0 0 t10+5t8+10t6+10t4+5t2+1 |
4 4
o8 : Matrix S <--- S
|
i9 : P = random(S^4, S^4)
o9 = | -16 21 25 29 |
| -16 -45 -7 13 |
| -32 -48 -24 -26 |
| 40 2 10 5 |
4 4
o9 : Matrix S <--- S
|
i10 : Q = random(S^4, S^4)
o10 = | 8 37 -27 -27 |
| 19 -34 -3 -22 |
| -47 -1 50 -23 |
| -36 25 -7 -27 |
4 4
o10 : Matrix S <--- S
|
i11 : M = P*D*Q
o11 = | -34t10+32t8-32t4+5t2-29 18t10-11t8-47t6-3t4+15t2
| 37t10-17t8-8t6-3t4+41t2-11 22t10+9t8+25t6-47t4-27t2-43
| 27t10+34t8-16t6+15t4+25t2-13 -44t10-18t8-12t6-49t4+13t2+24
| 22t10+9t8-48t6-41t4+5t2+11 24t10+19t8+28t6+41t4+20t2+12
-----------------------------------------------------------------------
-t10-5t8+28t6+41t4+11t2+2 25t10+24t8-22t6-18t4+29t2+26 |
10t10+50t8-48t6-7t4+5t2+25 -48t10-38t8-16t6-17t4+29t2+20 |
-20t10+t8+14t6-20t4-23t2-10 -5t10-25t8-3t6+36t4-39t2+43 |
-35t10+27t8+49t6+33t4+31t2-15 -34t10+32t8+36t6+37t4-8t2+26 |
4 4
o11 : Matrix S <--- S
|
i12 : (D1,P1,Q1) = smithNormalForm M;
|
i13 : D1 - P1*M*Q1 == 0
o13 = true
|
i14 : prune coker M
o14 = cokernel | t10+5t8+10t6+10t4+5t2+1 0 0 0 |
| 0 t6+3t4+3t2+1 0 0 |
| 0 0 t4+2t2+1 0 |
| 0 0 0 t2+1 |
4
o14 : S-module, quotient of S
|
This routine is under development. The main idea is to compute a Gröbner basis, transpose the generators, and repeat, until we encounter a matrix whose transpose is already a Gröbner basis. This may depend heavily on the monomial order.