This method computes the induced subposet Q of P with the elements of L removed from the poset.
i1 : P = chain 5;
|
i2 : dropElements(P, {3})
o2 = Relation Matrix: | 1 1 1 1 |
| 0 1 1 1 |
| 0 0 1 1 |
| 0 0 0 1 |
o2 : Poset
|
i3 : P - {4, 5}
o3 = Relation Matrix: | 1 1 1 |
| 0 1 1 |
| 0 0 1 |
o3 : Poset
|
Alternatively, this method computes the induced subposet Q of P with the elements removed which return true when f is applied.
i4 : P = divisorPoset (2*3*5*7);
|
i5 : Q = dropElements(P, e -> e % 3 == 0)
o5 = Q
o5 : Poset
|
i6 : Q == divisorPoset(2*5*7)
o6 = true
|