i1 : PP4 = projectiveSpace 4; |
i2 : B = ideal PP4 o2 = ideal (x , x , x , x , x ) 4 3 2 1 0 o2 : Ideal of QQ[x , x , x , x , x ] 0 1 2 3 4 |
i3 : isMonomialIdeal B o3 = true |
i4 : C = normalToricVariety({{1,0,0},{0,1,0},{0,0,1},{1,1,-1}},{{0,1,2,3}}); |
i5 : ideal C o5 = ideal 1 o5 : Ideal of QQ[x , x , x , x ] 0 1 2 3 |
i6 : X = projectiveSpace(3) ** projectiveSpace(4); |
i7 : S = ring X; |
i8 : B = ideal X o8 = ideal (x x , x x , x x , x x , x x , x x , x x , x x , x x , x x , x x , 3 8 3 7 3 6 3 5 3 4 2 8 2 7 2 6 2 5 2 4 1 8 ------------------------------------------------------------------------ x x , x x , x x , x x , x x , x x , x x , x x , x x ) 1 7 1 6 1 5 1 4 0 8 0 7 0 6 0 5 0 4 o8 : Ideal of S |
i9 : primaryDecomposition B o9 = {ideal (x , x , x , x ), ideal (x , x , x , x , x )} 0 1 2 3 4 5 6 7 8 o9 : List |
i10 : dual monomialIdeal B o10 = monomialIdeal (x x x x , x x x x x ) 0 1 2 3 4 5 6 7 8 o10 : MonomialIdeal of S |
i11 : Y = smoothFanoToricVariety(2,3); |
i12 : max Y o12 = {{0, 1}, {0, 4}, {1, 2}, {2, 3}, {3, 4}} o12 : List |
i13 : dual monomialIdeal Y o13 = monomialIdeal (x x , x x , x x , x x , x x ) 0 2 0 3 1 3 1 4 2 4 o13 : MonomialIdeal of QQ[x , x , x , x , x ] 0 1 2 3 4 |
i14 : code(monomialIdeal, NormalToricVariety) o14 = -- code for method: monomialIdeal(NormalToricVariety) /home/dan/src/M2/1.6/M2/Macaulay2/packages/NormalToricVarieties.m2:758: monomialIdeal NormalToricVariety := MonomialIdeal => X -> monomialIdeal ----------------------------------------------------------------------- 56-758:79: --source code: ideal X |