next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
NormalToricVarieties :: rays(NormalToricVariety)

rays(NormalToricVariety) -- get the rays of the associated fan

Synopsis

Description

A normal toric variety corresponds to a strongly convex rational polyhedral fan in affine space. In this package, the fan associated to a normal d-dimensional toric variety lies in the rational vector space d with underlying lattice N = ℤd. As a result, each ray in the fan is determined by the minimal nonzero lattice point it contains. Each such lattice point is given as a list of d integers.

The examples show the rays for the projective plane, projective 3-space, a Hirzebruch surface, and a weighted projective space. Observe that there is a bijection between the rays and torus-invariant Weil divisor on the toric variety.

i1 : PP2 = projectiveSpace 2;
i2 : rays PP2

o2 = {{-1, -1}, {1, 0}, {0, 1}}

o2 : List
i3 : dim PP2

o3 = 2
i4 : wDiv PP2

       3
o4 = ZZ

o4 : ZZ-module, free
i5 : PP3 = projectiveSpace 3;
i6 : rays PP3

o6 = {{-1, -1, -1}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

o6 : List
i7 : dim PP3

o7 = 3
i8 : wDiv PP3

       4
o8 = ZZ

o8 : ZZ-module, free
i9 : FF7 = hirzebruchSurface 7;
i10 : rays FF7

o10 = {{1, 0}, {0, 1}, {-1, 7}, {0, -1}}

o10 : List
i11 : dim FF7

o11 = 2
i12 : wDiv FF7

        4
o12 = ZZ

o12 : ZZ-module, free
i13 : X = weightedProjectiveSpace {1,2,3};
i14 : rays X

o14 = {{-2, -3}, {1, 0}, {0, 1}}

o14 : List
i15 : dim X

o15 = 2
i16 : wDiv X

        3
o16 = ZZ

o16 : ZZ-module, free
When X is nondegerenate, the number of rays equals the number of variables in the total coordinate ring.
i17 : #rays X == numgens ring X

o17 = true
An ordered list of the minimal nonzero lattice points on the rays in the fan is part of the defining data of a toric variety.

See also