i1 : c = 2 o1 = 2 |
i2 : S = ZZ/32003[x_0..x_(c-1),a_(0,0)..a_(c-1,c-1)]; |
i3 : A = genericMatrix(S,a_(0,0),c,c); 2 2 o3 : Matrix S <--- S |
i4 : f = matrix{{x_0..x_(c-1)}}*map(S^{c:-1},S^{c:-2},A) o4 = | x_0a_(0,0)+x_1a_(0,1) x_0a_(1,0)+x_1a_(1,1) | 1 2 o4 : Matrix S <--- S |
i5 : R = S/ideal f; |
i6 : kR = R^1/ideal(x_0..x_(c-1)) o6 = cokernel | x_0 x_1 | 1 o6 : R-module, quotient of R |
i7 : MF = matrixFactorization(f,highSyzygy kR) o7 = {{2} | a_(0,1) a_(0,0) a_(1,1) a_(1,0) |, {3} | x_1 -a_(0,0) 0 {2} | -x_0 x_1 0 0 | {3} | x_0 a_(0,1) 0 {2} | 0 0 -x_0 x_1 | {3} | 0 0 x_1 {3} | 0 0 x_0 ------------------------------------------------------------------------ -a_(1,0) 0 |} a_(1,1) 0 | -a_(0,0) -a_(1,0) | a_(0,1) a_(1,1) | o7 : List |
i8 : netList BRanks MF +-+-+ o8 = |2|2| +-+-+ |1|2| +-+-+ |
i9 : netList dMaps MF +---------------------------------------+ o9 = |{2} | a_(0,1) a_(0,0) | | |{2} | -x_0 x_1 | | +---------------------------------------+ |{2} | a_(0,1) a_(0,0) a_(1,1) a_(1,0) || |{2} | -x_0 x_1 0 0 || |{2} | 0 0 -x_0 x_1 || +---------------------------------------+ |
i10 : netList bMaps MF +-----------------------+ o10 = |{2} | a_(0,1) a_(0,0) || |{2} | -x_0 x_1 || +-----------------------+ |{2} | -x_0 x_1 | | +-----------------------+ |
i11 : netList psiMaps MF +-----------------------+ o11 = |{2} | a_(1,1) a_(1,0) || |{2} | 0 0 || +-----------------------+ |