
LCLint User’s Guide

Version 2.4
April 1998

Larch

David Evans
Software Devices and Systems Group
MIT Laboratory for Computer Science

ii LCLint User’s Guide

Acknowledgments

John Guttag and Jim Horning had the original idea for LCLint, have provided valuable advice on its
functionality and design, and been instrumental in its development. This work has also benefited
greatly from discussions with Mike Burrows, Stephen Garland, Colin Godfrey, Steve Harrison,
Daniel Jackson, Angelika Leeb, Ulana Legedza, Anya Pogosyants, Navneet Singh, Raymie Stata,
Yang Meng Tan, and Mark Vandevoorde. I especially thank Angelika Leeb for many constructive
comments on improving this document, Raymie Stata for help designing and setting up the LCLint
web site and Mark Vandevoorde for technical assistance.

Much of LCLint’s development has been driven by feedback from users in academia and industry.
Many more people than I can mention here have made contributions by suggesting improvements,
reporting bugs, porting early versions of LCLint to other platforms. Particularly heroic contributions
have been made by Eric Bloodworth, Jutta Degener, Rick Farnbach, Chris Flatters, Huver Hu, John
Gerard Malecki, Thomas G. McWilliams, Michael Meskes, Richard O’Keefe, Jens Schweikhardt,
and Albert L. Ting. Martin "Herbert" Dietze and Mike Smith performed valiantly in producing the
original Win32 and OS2 ports.

LCLint incorporates the original LCL checker developed by Yang Meng Tan. This was built on the
DECspec Project (Joe Wild, Gary Feldman, Steve Garland, and Bill McKeeman). The LSL checker
used by LCLint was developed by Steve Garland. The original C grammar for LCLint was provided
by Nate Osgood.

This research was supported by grants from ARPA (N0014-92-J-1795), NSF (9115797-CCR) and
DEC ERP. David Evans was supported by an Intel Foundation Fellowship. LCLint was developed
on DEC Alpha and DECmips machines provided by Digital Equipment Corporation and Pentium II™
machines donated by Intel. The Win32 version of LCLint was produced using Visual Studio™
software donated by Microsoft. This document was produced using Pentium II™ Computers donated
by Intel Corporation and Microsoft Office™ software donated by Microsoft.

Contents iii

Contents

1. Overview ..2

2. Operation ...3

2.1 Messages ...4

2.2 Flags ...4

2.3 Stylized Comments...5
2.3.1 Annotations..5
2.3.2 Control Comments ...6

3. Abstract Types ...6

3.1 Access ...8

3.2 Mutability..9

3.3 Boolean Types ...10

3.4 Primitive C Types ..11
3.4.1 Characters ..11
3.4.2 Enumerators ...11
3.4.3 Numeric Types ...11
3.4.4 Arbitrary Integral Types ...12

4. Function Interfaces ..13

4.1 Modifications...13
4.1.1 Special Modifications ...13
4.1.2 Missing Modifies Clauses...14
4.1.3 Limitations...15

4.2 Global Variables ...15
4.2.1 Controlling Globals Checking ..15

4.3 Declaration Consistency..17

5. Memory Management..18

5.1 Storage Model ...18

5.2 Deallocation Errors...19
5.2.1 Unshared References ..19
5.2.2 Temporary Parameters..20
5.2.3 Owned and Dependent References..21
5.2.4 Kept Parameters ...21
5.2.5 Shared References ..21
5.2.6 Stack References...21
5.2.7 Inner Storage..21

5.3 Implicit Memory Annotations...22

5.4 Reference Counting ...23

6. Sharing ...25

vi LCLint User’s Guide

6.1 Aliasing ...25
6.1.1 Unique Parameters ...25
6.1.2 Returned Parameters...25

6.2 Exposure ...26
6.2.1 Read-Only Storage ...26
6.2.2 Exposed Storage ...28

7. Value Constraints...29

7.1 Use Before Definition ..29
7.1.1 Undefined Parameters...30
7.1.2 Relaxing Checking ...31
7.1.3 Partially Defined Structures..31
7.1.4 Global Variables...31

7.2 Null Pointers ...32
7.2.1 Predicate Functions ..33
7.2.2 Overriding Null Types..34
7.2.3 Relaxing Null Checking ...34

7.3 Execution ..35

7.4 Special Clauses ...36

8. Macros..39

8.1 Constant Macros ...39

8.2 Function-like Macros...39
8.2.1 Side-Effect Free Parameters..41
8.2.2 Polymorphism ..42

8.3 Controlling Macro Checking ...42

8.4 Iterators...43

9. Naming Conventions ..45

9.1 Type-Based Naming Conventions...45
9.1.1 Czech Names..45
9.1.2 Slovak Names...46
9.1.3 Czechoslovak Names..46

9.2 Namespace Prefixes...46

9.3 Naming Restrictions ..48
9.3.1 Reserved Names ...49
9.3.2 Distinct Identifiers..49

10. Other Checks ...51

10.1 Undefined Evaluation Order..51

10.2 Problematic Control Structures ...52
10.2.1 Likely Infinite Loops ..53
10.2.2 Switches ...53
10.2.3 Deep Breaks ...55
10.2.4 Loop and If Bodies ...55
10.2.5 Complete if-else Logic..55

10.3 Suspicious Statements ..56
10.3.1 Statements with No Effects ...56

Contents v

10.3.2 Ignored Return Values..56

10.4 Unused Declarations ...57

10.5 Complete Programs ...58
10.5.1 Unnecessary External Names..58
10.5.2 Declarations Missing from Headers ..58

10.6 Compiler Limits ...59

Appendix A Availability ..60

Appendix B Communication..60

Appendix C Flags...61

Global Flags ...61
Help ..61
Initialization ...62
Pre-processor...62
Libraries..62
Output...63
Expected Errors...64

Message Format ..64

Mode Selector Flags..64

Checking Flags..66
Key ...66
Types ..66
Function Interfaces..70
Memory Management ...75
Sharing ...77
Use Before Definition (Section 7.1) ...78
Null Pointers (Section 7.2) ..78
Macros (Section 8) ..79
Iterators...80
Naming Conventions...80
Other Checks ..85

Flag Name Abbreviations ..92

Appendix D Annotations..93

Functions ..93
Iterators (Section 8.4)..94
Constants (Section 8.1) ...94
Alternate Types (Section 8.2.2) ...94
Declarator Annotations ...94

Appendix E Control Comments...99

Error Suppression ...99
Type Access ..99
Macro Expansion ..99
Traditional Lint Comments ...100

Appendix F Libraries ..101

Standard Libraries...101

vi LCLint User’s Guide

User Libraries ...103
Header File Inclusion ..103

Appendix G Specifications...104

Specification Flags ..106

Appendix H Emacs ..108

Running LCLint.. Error! Bookmark not defined.
Editing Abbreviations ...108

References..108

Figures and Tables

Figure 1. Effort/benefit curve for LCLint...3
Figure 2. Violations using abstract types. ..8
Figure 3. Boolean checking..11
Figure 4. Modifies checking...14
Figure 5. Globals checking. ...15
Figure 6. Deallocation errors. ..20
Figure 7. Stack references..22
Figure 8. Implicit annotations. ...23
Figure 9. Reference counting. ..24
Figure 10. Unique parameters..25
Figure 11. Returned parameters. ..26
Figure 12. Exposure checking..29
Figure 13. Use before definition...31
Figure 14. Annotated globals lists..32
Figure 15. Null checking..33
Figure 16. Using notnull. ...35
Figure 17. Special Clauses...38
Figure 18. Naming checks..50
Figure 19. Evaluation order ...52
Figure 20. Infinite loop checking..54
Figure 21. Switch checking..54
Figure 22. Statements with no effect. ...56
Figure 23. Ignored return values. ...58

Table 1. Prefix character codes..47
Table 2. Flag name abbreviations. ...92

1

LCLint User’s Guide

LCLint is a tool for statically checking C programs. With minimal effort, LCLint can be used as a
better lint.1 If additional effort is invested adding annotations to programs, LCLint can perform
stronger checks than can be done by any standard lint.

Some problems detected by LCLint include:

• Violations of information hiding. A user-defined type can be declared as abstract, and a message
is reported where code inappropriately depends on the representation of the type. (Section 3)

• Inconsistent modification of caller-visible state. Functions can be annotated with information on
what caller-visible state may be modified by the function, and an error is reported if the
modifications produced by the function contradict its declaration. (Section 4.1)

• Inconsistent use of global variables. Information on what global and file scope variables a
function may use can be added to function declarations, and a message is reported if the
implementation of the function uses other global variables or does not use every global variable
listed in its declaration. (Section 4.2)

• Memory management errors. Instances where storage that has been deallocated is used, or where
storage is not deallocated (memory leaks). (Section 5)

• Dangerous data sharing or unexpected aliasing. Parameters to a function share storage in a way
that may lead to undefined or undesired behavior, or a reference to storage within the
representation of an abstract type is created. (Section 6)

• Using possibly undefined storage or returning storage that is not completely defined (except as
documented). (Section 7.1)

• Dereferencing a possibly null pointer. (Section 7.2)
• Dangerous macro implementations or invocations. (Section 8)
• Violations of customized naming conventions. (Section 9)
• Program behavior that is undefined because it depends on order of evaluation, likely infinite loops,

fall-through cases, incomplete logic, statements with no effect, ignored return values, unused
declarations, and exceeding certain standard limits. (Section 10)

LCLint checking can be customized to select what classes of errors are reported using command line
flags and stylized comments in the code.

This document is a guide to using LCLint. Section 1 is a brief overview of the design goals of
LCLint. Section 2 explains how to run LCLint, interpret messages and control checking. Sections 3–
10 describe particular checks done by LCLint.

1 Lint is a common programming tool for detecting anomalies in C programs. S. C. Johnson developed
the original lint in the late seventies, mainly because early versions of C did not support function
prototypes.

2 LCLint User’s Guide

1. Overview
The main goals for LCLint are to:

• Detect a large number of bugs in typical C programs, without producing an unacceptable number
of spurious messages. We are willing to accept the possibility that a few spurious messages are
produced as long as it enables significantly more powerful checking and the spurious messages can
be suppressed easily.

• Support a programming methodology involving abstract types and clean, documented interfaces in
standard C programs.

• Provide a gradual transition for programmers. LCLint can be used like a better standard lint with
minimal effort. Adding a few annotations to programs enables significantly better checking. As
more effort is put into annotating programs, better checking results. A representational
effort/benefit curve for using LCLint is shown in Figure 1. As different checks are turned on and
more information is given in code annotations the number of bugs that can be detected increases
dramatically.

• Provide enough flexibility so that LCLint can be used effectively with a wide range of coding
styles. Especially important is making it easy to use LCLint effectively to maintain and modify
legacy code.

• Check programs quickly and with no user interaction. LCLint runs faster than most compilers.
Libraries can be used to enable fast checking of a few modules in a large program.

LCLint does many of the traditional lint checks including unused declarations, type inconsistencies,
use-before-definition, unreachable code, ignored return values, execution paths with no return, likely
infinite loops, and fall-through cases. This document focuses on more powerful checks that

Typical C
Compilers

Weak Checking

S tricter
Type-Checking Abstract Types

Definition
Annotations Null Annotations

Checked Macros
Memory Management

Aliasing
Modifies, Globals

Naming Conventions

Formal Verification
Tools

Amount of Effort Required

Fr
ac

tio
n

of
 E

rr
or

s
D

et
ec

te
d

Figure 1. Effort/benefit curve for LCLint.

Operation 3

are made possible by additional information given in source code annotations.2 Annotations are
stylized comments that document certain assumptions about functions, variables, parameters and
types. They may be used to indicate where the representation of a user-defined type is hidden, to limit
where a global variable may be used or modified, to constrain what a function implementation may do
to its parameters, and to express checked assumptions about variables, types, structure fields, function
parameters, and function results. In addition to the checks specifically enabled by annotations, many
of the traditional lint checks are improved by exploiting this additional information.

2. Operation
LCLint is invoked by listing files to be checked. Initialization files, command line flags, and stylized
comments may be used to customize checking globally and locally.

The best way to learn to use LCLint, of course, is to actually use it (if you don’t already have LCLint
installed on your system, see page 60). Before you read much further in this document, I recommend
finding a small C program. Then, try running:

lclint *.c

For the most C programs, this will produce a large number of messages. To turn off reporting for
some of the messages, try:

lclint -weak *.c

The -weak flag is a mode flag that sets many checking parameters to select weaker checking than is
done in the default mode. Other LCLint flags will be introduced in the following sections; a
complete list is given in Appendix C.

2.1 Messages
The user can customize the format and content of messages printed by LCLint. A typical message is:

sample.c: (in function faucet)
sample.c:11:12: Fresh storage x not released before return
 A memory leak has been detected. Newly-allocated or only-qualified storage is not
 released before the last reference to it is lost. (-mustfree will suppress message)
 sample.c:5:47: Fresh storage x allocated

The first line gives the name of the function in which the error is found. This is printed before the
first message reported for a function. (The function context is not printed if -showfunc is used.)

The second line is the text of the message. This message reports a memory leak — storage allocated
in a function is not deallocated before the function returns. The file name, line and column number
where the error is located precedes the text. The column numbers are used by emacs compile mode to
jump to the appropriate line and column location. (Column numbers are not printed if -showcol is
used.)

The next line is a hint giving more information about the suspected error. Most hints also include
information on how the message may be suppressed. For this message, setting the -mustfree flag
would prevent the message from being reported. Hints may be turned off by using -hints.
Normally, a hint is given only the first time a class of error is reported. To have LCLint print a hint
for every message regardless, use +forcehints.

2 Another way to provide extra information about code is to use formal specifications (Appendix G).

4 LCLint User’s Guide

The final line of the message gives additional location information. For this message, it tells where
the leaking storage is allocated.

The generic message format is (parts enclosed in square brackets are optional):

 [<file>:<line> (in <context>)]
 <file>:<line>[,<column>]: message
 [hint]
 <file>:<line>,<column>: extra location information, if appropriate

The text of messages and hints may be longer than one line. They are split into lines of length less
than the value set using -linelen <number>. The default line length is 80 characters. LCLint
attempts to split lines in a sensible place as near to the line length limit as possible.

The +parenfileformat flag can be used to generate file locations in the format recognized by
Microsoft Developer Studio. If +parenfileformat is set, the line number follows the file name
in parentheses (e.g., sample.c(11).)

2.2 Flags
So that many programming styles can be supported, LCLint provides over 300 flags for controlling
checking and message reporting. Some of the flags are introduced in the body of this document.
Appendix C describes every flag. Modes and shortcut flags are provided for setting many flags at
once. Individual flags can override the mode settings.

Flags are preceded by + or -. When a flag is preceded by + we say it is on; when it is preceded by -
it is off. The precise meaning of on and off depends on the type of flag.

The +/- flag settings are used for consistency and clarity, but contradict standard UNIX usage and it
is easy to accidentally use the wrong one. To reduce the likelihood of using the wrong flag, LCLint
issues warnings when a flag is set in an unusual way. Warnings are issued when a flag is redundantly
set to the value it already had (these errors are not reported if the flag is set using a stylized
comment), if a mode flag or special flag is set after a more specific flag that will be set by the general
flag was already set, if value flags are given unreasonable values, of if flags are set in an inconsistent
way. The -warnflags flag suppresses these warnings.

Default flag settings will be read from ~/.lclintrc if it is readable. If there is a .lclintrc file
in the working directory, settings in this file will be read next and its settings will override those in
~/.lclintrc. Command-line flags override settings in either file. The syntax of the .lclintrc
file is the same as that of command-line flags, except that flags may be on separate lines and the #
character may be used to indicate that the remainder of the line is a comment. The -nof flag prevents
the ~/.lclintrc file from being loaded. The -f <filename> flag loads options from filename.

To make flag names more readable, hyphens (-), underscores (_) and spaces in flags at the command
line are ignored. Hence, warnflags, warn-flags and warn_flags all select the
warnflags option.

2.3 Stylized Comments
Stylized comments are used to provide extra information about a type, variable or function interface
to improve checking, or to control flag settings locally.

Operation 5

All stylized comments begin with /*@ and are closed by the end of the comment. The role of the @
may be played by any printable character. Use -commentchar <char> to select a different
stylized comment marker.

2.3.1 Annotations
Annotations are stylized comments that follow a definite syntax. Although they are comments, they
may only be used in fixed grammatical contexts (e.g., like a type qualifier).

Syntactic comments for function interfaces are described in Section 4; comments for declaring
constants in Section 8.1 and comments for declaring iterators in Section 8.4. Sections 3–7 include
descriptions of annotations for expressing assumptions about variables, parameters, return values,
structure fields and type definitions. A summary of annotations is found in Appendix D.

2.3.2 Control Comments
Unlike annotations, control comments may appear between any two tokens in a C program.3

Syntactically, they are no different from standard comments. Control comments are used to provide
source-level control of LCLint checking. They may be used to suppress spurious messages, set flags,
and control checking locally in other ways. A complete description of control comments is found in
Appendix E.

Most flags (all except those characterized as “global” in Appendix C) can be set locally using control
comments. A control comment can set flags locally to override the command line settings. The
original flag settings are restored before processing the next file. The syntax for setting flags in
control comments is the same as that of the command line, except that flags may also be preceded by
= to restore their setting to the original command-line value. For instance,

/*@+boolint -modifies =showfunc@*/

sets boolint on (this makes bool and int indistinguishable types), sets modifies off (this
prevents reporting of modification errors), and sets showfunc to its original setting (this controls
whether or not the name of a function is displayed before a message).

3 Unlike regular C comments, control comments should not be used within a single token. They may
introduce new separators in the code during parsing.

6 LCLint User’s Guide

3. Abstract Types
Information hiding is a technique for handling complexity. By hiding implementation details,
programs can be understood and developed in distinct modules and the effects of a change can be
localized. One technique for information hiding is data abstraction. An abstract type is used to
represent some natural program abstraction. It provides functions for manipulating instances of the
type. The module that implements these functions is called the implementation module. We call the
functions that are part of the implementation of an abstract type the operations of the type. Other
modules that use the abstract type are called clients.

Clients may use the type name and operations, but should not manipulate or rely on the actual
representation of the type. Only the implementation module may manipulate the representation of an
abstract type. This hides information, since implementers and maintainers of client modules should
not need to know anything about how the abstract type is implemented. It provides modularity, since
the representation of an abstract type can be changed without having to change any client code.

LCLint supports abstract types by detecting places where client code depends on the concrete
representation of an abstract type.

To declare an abstract type, the abstract annotation is added to a typedef. For example (in
mstring.h),

typedef /*@abstract@*/ char *mstring;

declares mstring as an abstract type. It is implemented using a char *, but clients of the type
should not depend on or need to be aware of this. If it later becomes apparent that a better
representation such as a string table should be used, we should be able to change the implementation
of mstring without having to change or inspect any client code.

In a client module, abstract types are checked by name, not structure. LCLint reports an error if an
instance of mstring is passed as a char * (for instance, as an argument to strlen), since the
correctness of this call depends on the representation of the abstract type. LCLint also reports errors
if any C operator except assignment (=) or sizeof is used on an abstract type. The assignment
operator is allowed since its semantics do not depend on the representation of the type.4 The use of
sizeof is also permitted, since this is the only way for clients to allocate pointers to the abstract
type. Type casting objects to or from abstract types in a client module is an abstraction violation and
will generate a warning message.

Normally, LCLint will assume a type definition is not abstract unless the /*@abstract@*/
qualifier is used. If instead you want all user-defined types to be abstract types unless they are
marked as concrete, the +imp-abstract flag can be used. This adds an implicit abstract
annotation to any typedef that is not marked with /*@concrete@*/.

Some examples of abstraction violations detected by LCLint are shown in Figure 2.

4 For abstract types whose instances can change value, a client does need to know if assignment has
copy or sharing semantics (see Section 3.2).

Traditionally,
programming
books wax
mathematical
when they
arrive at the
topic of
abstract data
types… Such
books make it
seem as if
you’d never
actually use an
abstract data
type except as
a sleep aid.

 Steve
 McConnell

Function Interfaces 7

palindrome.c Running LCLint
include "bool.h"
include "mstring.h"

bool isPalindrome (mstring s)
{
 6 char *current = (char *) s;
 7 int i, len = (int) strlen (s);

 for (i = 0; i <= (len+1) / 2; i++)
 {
11 if (current[i] != s[len-i-1])
 return FALSE;
 }
 return TRUE;
}

bool callPal (void)
{
19 return (isPalindrome ("bob"));
}

> lclint palindrome.c
LCLint 2.4 --- 10 Apr 98

palindrome.c: (in function isPalindrome)
palindrome.c:6: Cast from underlying abstract type
 mstring: (char *)s
palindrome.c:7: Function strlen expects arg 1 to be
 char * gets mstring: s
palindrome.c:11: Array fetch from non-array (mstring):
 s[len - i - 1]
palindrome.c: (in function callPal)
palindrome.c:19: Function isPalindrome expects arg 1 to
 be mstring gets char *: "bob"

Finished LCLint checking --- 4 code errors found

In client code, the abstract type is a distinct type,
incompatible with its concrete representation.

Figure5 2. Violations using abstract types.

3.1 Access
Where code may manipulate the representation of an abstract type, we say the code has access to that
type. If code has access to an abstract type, the representation of the type and the abstract type are
indistinguishable. Usually, a single program module that is the only code that has access to the type
representation implements an abstract type. Sometimes, more complicated access control is desired if
the implementation of an abstract type is split across program files, or particular client code needs to
access the representation.

There are a several ways of selecting what code has access the representation of an abstract type:

• Modules. An abstract type defined in M.h is accessible in M.c. Controlled by the
accessmodule flag. This means when accessmodule is on, as it is by default, the module
access rule is in effect. If accessmodule is off (when -access-module is used), the
module access rule is not in effect and an abstract type defined in M.h is not necessarily
accessible in M.c

• File names. An abstract type named type is accessible in files named type.<extension> .
For example, the representation of mstring is accessible in mstring.h and mstring.c.
Controlled by the access-file flag.

• Function names. An abstract type named type may be accessible in a function named
type_name or typeName. For example, mstring_length and mstringLength would
have access to the mstring abstract type. Controlled by accessfunction and the naming
convention (see Section 9).

5 Output from LCLint is displayed in sans-serif font. The command line is preceded by >, the rest is
output from LCLint. Explanations added to the code or LCLint output are shown in italics. Code
shown in the figures in this document is available via anonymous ftp from
ftp://larch.lcs.mit.edu/pub/Larch/lclint/guide.tar.gz

8 LCLint User’s Guide

• Access control comments. The syntax /*@access type,+@*/6 allows the following code to
access the representation of type. Similarly, /*@noaccess type,+@*/ restricts access to
the representation of type. The type in a noaccess comment must have been declared as an
abstract type.

3.2 Mutability
We can view types as being mutable or immutable. A type is mutable if passing it as a parameter to
a function call can change the value of an instance of the type.7 For example, the primitive type int
is immutable. If i is a local variable of type int and no variables point to the location where i is
stored, the value of i must be the same before and after the call f(i). Structure and union types are
also immutable, since they are copied when they are passed as arguments. On the other hand, pointer
types are mutable. If x is a local variable of type int *, the value of *x (and hence, the value of the
object x) can be changed by the function call g(x).

The mutability of a concrete type is determined by its type definition. For abstract types, mutability
does not depend on the type representation but on what operations the type provides. If an abstract
type has operations that may change the value of instances of the type, the type is mutable. If not, it is
immutable. The value of an instance of an immutable type never changes. Since object sharing is
noticeable only for mutable types, they are checked differently from immutable types.
The /*@mutable@*/ and /*@immutable@*/ annotations are used to declare an abstract type
as mutable or immutable. (If neither is used, the abstract type is assumed to be mutable.) For
example,
 typedef /*@abstract@*/ /*@mutable@*/ char *mstring;
 typedef /*@abstract@*/ /*@immutable@*/ int weekDay;

declares mstring as a mutable abstract type and weekDay as an immutable abstract type.

Clients of a mutable abstract type need to know the semantics of assignment. After the assignment
expression s = t, do s and t refer to the same object (that is, will changes to the value of s also
change the value of t)?

LCLint prescribes that all abstract types have sharing semantics, so s and t would indeed be the
same object. LCLint will report an error if a mutable type is implemented with a representation (e.g.,
a struct) that does not provide sharing semantics (controlled by mutrep flag).

The mutability of an abstract type is not necessarily the same as the mutability of its representation.
We could use the immutable concrete type int to represent mutable strings using an index into a
string table, or declare mstring as immutable as long as no operations are provided that modify the
value of an mstring.

3.3 Boolean Types
Standard C has no boolean representation – the result of a comparison operator is an integer, and no
type checking is done for test expressions. Many common errors can be detected by introducing a
distinct boolean type and stronger type checking.

6 The meta-notation, item,+ is used to denote a comma separated list of items. For example,

/*@access mstring, intSet@*/
provides access to the representations of both mstring and intSet.)
7 Through the parameter. Modifications using some other variable that has a pointer to the location of
this parameter are not considered.

Function Interfaces 9

Use the –booltype <name> flag to select the type name is used to represent boolean values.8

Relations, comparisons and certain standard library functions are declared to return booleans.

LCLint checks that the test expression in an if, while, or for statement or an operand to &&, || or
! is a boolean. If the type of a test expression is not a boolean, LCLint will report an error
depending on the type of the test expression and flag settings. If the test expression has pointer type,
LCLint reports an error if predboolptr is on (this can be used to prevent messages for the idiom
of testing if a pointer is not null without a comparison). If it is type int, an error is reported if
pred-bool-int is on. For all other types, LCLint reports an error if pred-bool-others is
on.

Since using = instead of == is such a common bug, reporting of test expressions that are assignments
is controlled by the separate pred-assign flag. The message can be suppressed by adding extra
parentheses around the test expression.

Appendix C describes other flags for controlling boolean checking.

bool.c Running LCLint
include "bool.h"

int f (int i, char *s,
 bool b1, bool b2)
{
 6 if (i = 3)
 7 return b1;
 8 if (!I || s)
 9 return i;
10 if (s)
11 return 7;
12 if (b1 == b2)
13 return 3;
14 return 2;
}

> lclint bool.c +predboolptr –booltype bool
LCLint 2.4 --- 10 Apr 98

bool.c:7: Return value type bool does not match declared type int: b1
bool.c:6: Test expression for if is assignment expression: i = 3
bool.c:6: Test expression for if not bool, type int: I = 3
bool.c:8: Operand of ! is non-boolean (int): !I
bool.c:8: Right operand of || is non-boolean (char *): !i || s
bool.c:10: Test expression for if not bool, type char *: s

Not reported without +predboolptr.
bool.c:12: Use of == with bool variables (risks inconsistency because
 of multiple true values): b1 == b2

Finished LCLint checking --- 7 code errors found
Figure 3. Boolean checking.

3.4 Primitive C Types
LCLint supports stricter checking of primitive C types. The char and enum types can be checked as
distinct types, and the different numeric types can be type-checked strictly.

3.4.1 Characters
The primitive char type can be type-checked as a distinct type. If char is used as a distinct type,
common errors involving assigning ints to chars are detected.

8 To change the names of TRUE and FALSE, use -booltrue and -boolfalse. The LCLint
distribution includes an implementation of bool, in lib/bool.h. However, it isn’t necessary to use
this implementation to get the benefits of boolean checking.

Two types
have
compatible
type if their
types are the
same.

 ANSI C,
3.1.2.6.

10 LCLint User’s Guide

The +charint flag can be used for checking legacy programs where char and int are used
interchangeably. If charint is on, char types indistinguishable from ints. To keep char and
int as distinct types, but allow chars to be used to index arrays, use +charindex.

3.4.2 Enumerators
Standard C treats user-declared enum types just like integers. An arbitrary integral value may be
assigned to an enum type, whether or not it was listed as an enumerator member. LCLint checks each
user-defined enum type as distinct type. An error is reported if a value that is not an enumerator
member is assigned to the enum type, or if an enum type is used as an operand to an arithmetic
operator.

If the enumint flag is on, enum and int types may be used interchangeably. Like charindex, if
the enumindex flag is on, enum types may be used to index arrays.

3.4.3 Numeric Types
LCLint reports where numeric types are used in dangerous or inconsistent ways. With the strictest
checking, LCLint will report an error anytime numeric types do not match exactly. If the relax-
quals flag is on, only those inconsistencies that may corrupt values are reported. For example, if an
int is assigned to a variable of type long (or passed as a long formal parameter), LCLint will not
report an error if relax-quals is on since a long must have at least enough bits to store an int
without data loss. On the other hand, an error would be reported if the long were assigned to an
int, since the int type may not have enough bits to store the long value.

Similarly, if a signed value is assigned to an unsigned, LCLint will report an error since an
unsigned type cannot represent all signed values correctly. If the ignore-signs flag is on,
checking is relaxed to ignore all sign qualifiers in type comparisons (this is not recommended, since it
will suppress reporting of real bugs, but may be necessary for quickly checking certain legacy code).

3.4.4 Arbitrary Integral Types
Some types are declared to be integral types, but the concrete type may be implementation dependent.
For example, the standard library declares the types size_t, ptr_diff and wchar_t, but does
not constrain their types other than limiting them to integral types. Programs may rely on them being
integral types (e.g., can use + operator on two size_t operands), but should not rely on a particular
representation (e.g., long unsigned).

LCLint supports three different kinds of arbitrary integral types:

/*@integraltype@*/
An arbitrary integral type. The actual type may be any one of short, int, long,
unsigned short, unsigned, or unsigned long.

/*@unsignedintegraltype@*/
An arbitrary unsigned integral type. The actual type may be any one of unsigned short,
unsigned, or unsigned long.

/*@signedintegraltype@*/
An arbitrary signed integral type. The actual type may be any one of short, int, or long.

LCLint reports an error if the code depends on the actual representation of a type declared as an
arbitrary integral. The match-any-integral flag relaxes checking and allows an arbitrary
integral type is allowed to match any integral type.

Two types
need not be
identical to be
compatible.

 ANSI C,
footnote to

3.1.2.6.

Function Interfaces 11

Other flags set the arbitrary integral types to a concrete type. These should only be used if portability
to platforms that may use different representations is not important. The long-integral and
long-unsigned-integral flags set the type corresponding to /*@integraltype@*/ to be
unsigned long and long respectively. The long-unsigned-unsigned-integral flag
sets the type corresponding to /*@unsignedintegraltype@*/ to be unsigned long. The
long-signed-integral flag sets the type corresponding to /*@signedintegraltype@*/
to be long.

12 LCLint User’s Guide

4. Function Interfaces
Functions communicate with their calling environment through an interface. The caller communicates
the values of actual parameters and global variables to the function, and the function communicates to
the caller through the return value, global variables and storage reachable from the actual parameters.
By keeping interfaces narrow (i.e., restricting the amount of information visible across a function
interface), we can understand and implement functions independently.

A function prototype documents the interface to a function. It serves as a contract between the
function and its caller. In early versions of C, the function “prototype” was very limited. It described
the type returned by the function but nothing about its parameters. The main improvement provided
by ANSI C was the ability to add information on the number and types of parameter to a function.
LCLint provides the means to express much more about a function interface: what global variable the
function may use, what values visible to the caller it may modify, if a pointer parameter may be a null
pointer or point to undefined storage, if storage pointed to by a parameter is deallocated before the
function returns, if the function may create new aliases to a parameter, can the caller modify or
deallocate the return value, etc.

The extra interface information places constraints on both how the function may be called and how it
may be implemented. LCLint reports places where these constraints are not satisfied. Typically,
these indicate bugs in the code or errors in the interface documentation.

This section describes syntactic comments that may be added to a function declaration to document
what global variables the function implementation may use and what values visible to its caller it may
modify. Sections 4-7 describe annotations may be added to parameters to constrain valid arguments
to a function and how these arguments may be used after the call and to the return value to constrain
results.

4.1 Modifications
The modifies clause lists what values visible to the caller may be modified by a function. Modifies
clauses limit what values a function may modify, but they do not require that listed values are always
modified. The declaration,

int f (int *p, int *q) /*@modifies *p@*/;

declares a function f that may modify the value pointed to by its first argument but may not modify
the value of its second argument or any global state.

LCLint checks that a function does not modify any caller-visible value not encompassed by its
modifies clause and does modify all values listed in its modifies clause on some possible execution of
the function. Figure 4 shows an example of modifies checking done by LCLint.

4.1.1 Special Modifications
A few special names are provided for describing function modifications:

internalState
The function modifies some internal state (that is, the value of a static variable). Even
though a client cannot access the internal state directly, it is important to know that something
may be modified by the function call both for clear documentation and for checking undefined
order of evaluation (Section 10.1) and side-effect free parameters (Section 8.2.1).

Function Interfaces 13

fileSystem
The function modifies the file system. Any modification that may change the system state is
considered a file system modification. All functions that modify an object of type pointer to
FILE also modify the file system. In addition, functions that do not modify a FILE pointer
but modify some state that is visible outside this process also modify the file system (e.g.,
rename). The flag mod-file-system controls reporting of undocumented file system
modifications.

nothing
The function modifies nothing (i.e., it is side-effect free).

The syntactic comment, /*@*/ in a function declaration or definition (after the parameter list, before
the semi-colon or function body) denotes a function that modifies nothing and does not use any global
variables (see Section 4.2).

modify.c Running LCLint
void setx (int *x, int *y)
 /*@modifies *x@*/
{
4 *y = *x;
}

void sety (int *x, int *y)
 /*@modifies *y@*/
{
 setx (y, x);
 }
No errors for sety – the call to setx
modifies the value pointed to by its first
parameter (y) as documented by the
modifies clause.

> lclint modify.c +checks
LCLint 2.4 --- 10 Apr 98

modify.c:4: Undocumented modification of *y: *y = *x
modify.c:5: Suspect object listed in modifies of setx
 not modified: *x
 modify.c:1: Declaration of setx

Finished LCLint checking --- 2 code errors found

The +checks flag is a mode flag for selecting moderately
strict checking. It turns on mustmod checking, so the
second error concerning missing documented modifications
is reported.

Figure 4. Modifies checking.

4.1.2 Missing Modifies Clauses
LCLint is designed so programs with many functions that are declared without modifies clauses can
be checked effectively. Unless modnomods is in on, no modification errors are reported checking a
function declared with no modifies clause.

A function with no modifies clause is an unconstrained function since there are no documented
constraints on what it may modify. When an unconstrained function is called, it is checked differently
from a function declared with a modifies clause. To prevent spurious errors, no modification error is
reported at the call site unless the mod-uncon flag is on. Flags control whether errors involving
unconstrained functions are reported for other checks that depend on modifications (side-effect free
macro parameters (Section 8.2.1), undefined evaluation order (Section 10.1), and likely infinite loops
(Section 10.2.1).)

14 LCLint User’s Guide

4.1.3 Limitations
Determining whether a function modifies a particular parameter or global is in general an
undecidable9 problem. To enable useful checking, certain simplifying assumptions are necessary.
LCLint assumes an object is modified when it appears on the left hand side of an assignment or it is
passed to a function as a parameter which may be modified by that function (according to the called
function's modifies clause). Hence, LCLint will report spurious modification errors for assignments
that do not change the value of an object or modifications that are always reversed before a procedure
returns. The /*@-mods@*/ and /*@=mods@*/ control comments can be used around these
modifications to suppress the message.

4.2 Global Variables
Another aspect of a function’s interface, is the global variables it uses. A globals list in a function
declaration lists external variables that may be used in the function body. LCLint checks that global
variables used in a procedure match those listed in its globals list. A global is used in a function if it
appears in the body directly, or it is in the globals list of a function called in the body. LCLint reports
if a global that is used in a procedure is not listed in its globals list, and if a listed global is not used in
the function implementation. Figure 5 shows an example function definition with a globals list and
associated checking done by LCLint.

globals.c Running LCLint
int glob1, glob2;

3 int f (void) /*@globals glob1;@*/
{
5 return glob2;
}

> lclint globals.c +checks
LCLint 2.4 --- 10 Apr 98

globals.c:5: Undocumented use of global glob2
globals.c:3: Global glob1 listed but not used

Finished LCLint checking --- 2 code errors found

Figure 5. Globals checking.

4.2.1 Controlling Globals Checking
Whether on not an error is reported for a use of a global variable in a given function depends on the
scope of the variable (file static or external), the checking annotation used in the variable
declaration or the implicit annotation if no checking annotation is used, whether or not the function is
declared with a globals list, and flag settings.

A global or file static variable declaration may be preceded by an annotation to indicate how the
variable should be checked. In order of decreasing checks, the annotations are:

/*@checkedstrict@*/
Strictest checking. Undocumented uses and modifications of the variable are reported in all
functions whether or not they have a globals list (unless check-strict-globs is off).

/*@checked@*/
Undocumented use of the variable is reported in a function with a globals list, but not in a
function declared with no globals (unless glob-noglobs is on).

9 This means that theoreticians can prove that no algorithm exists that solves the problem correctly for
all possible programs.

Function Interfaces 15

/*@checkmod@*/
Undocumented uses of the variable are not reported, but undocumented modifications are
reported. (If mod-globs-nomods is on, errors are reported even in functions declared with
no modifies clause or globals list.)

/*@unchecked@*/
No messages are reported for undocumented use or modification of this global variable.

If a variable has none of these annotations, an implicit annotation is determined by the flag settings.

Different flags control the implicit annotation for variables declared with global scope and variables
declared with file scope (i.e., using the static storage qualifier). To set the implicit annotation for
global variables declared in context (globs for external variables or statics for file static
variable) to be annotation (checked, checkmod, checkedstrict) use
imp<annotation><context> . For example, +imp-checked-strict-statics makes
the implicit checking on unqualified file static variables checkedstrict. (See Appendix C for a
complete list of globals checking flags.)

4.3 Declaration Consistency
LCLint checks that function declarations and definitions are consistent. The general rule is that the
first declaration of a function implies all later declarations and definitions. If a function is declared in
a header file, the first declaration processed is its first declaration (if it is declared in more than one
header file an error is reported if redecl is set). Otherwise, the first declaration in the file defining
the function is its first declaration.

Later declarations may not include variables in the globals list that were not included in the first
declaration. The exception to this is when the first declaration is in a header file and the later
declaration or definition includes file static variables. Since these are not visible in the header file,
they can not be included in the header file declaration. Similarly, the modifies clause of a later
declaration may not include objects that are not modifiable in the first declaration. The later
declaration may be more specific. For example, if the header declaration is:

extern void setName (employee e, char *s) /*@modifies e@*/;

the later declaration could be,
 void setName (employee e, char *) /*@modifies e->name@*/;

If employee is an abstract type, the declaration in the header should not refer to a particular
implementation (i.e., it shouldn’t rely on there being a name field), but the implementation
declaration can be more specific.

This rule also applies to file static variables. The header declaration for a function that modifies a file
static variable should use modifies internalState since file static variables are not visible to
clients. The implementation declaration should list the actual file static variables that may be
modified.

16 LCLint User’s Guide

5. Memory Management
About half the bugs in typical C programs can be attributed to memory management problems.
Memory management bugs are notoriously difficult to detect through traditional techniques. Often,
the symptom of the bug is far removed from its actual source. Memory management bugs often only
appear sporadically and some bugs may only be apparent when compiler optimizations are turned on
or the code is compiled on a different platform. Run-time tools offer some help, but are cumbersome
to use and limited to detecting errors that occur when test cases are run. By detecting these errors
statically, we can be confident that certain types of errors will never occur and provide verified
documentation on the memory management behavior of a program.

LCLint can detect many memory management errors at compile time including:

• using storage that may have been freed (Section 5.2)
• failing to deallocate memory (Section 5.2)
• returning a pointer to stack-allocated storage (Section 5.2.6)
• undocumented or dangerous aliasing or storage sharing (Section 6)
• passing or returning storage that is not completely defined (Section 7.1)
• dereferencing a null pointer (Section 7.2)

Most of these checks rely heavily on annotations added to programs to document assumptions related
to memory management and pointer values. By documenting these assumptions for function
interfaces, variables, type definitions and structure fields, memory management bugs can be detected
at their source — where an assumption is violated. In addition, precise documentation about memory
management decisions makes it easier to change code.

5.1 Storage Model10

This section describes execution-time concepts for describing the state of storage more precisely than
can be done using standard C terminology. Certain uses of storage are likely to indicate program
bugs, and are reported as anomalies.

LCL assumes a CLU-like object storage model.11 An object is a typed region of storage. Some
objects use a fixed amount of storage that is allocated and deallocated automatically by the compiler.
Other objects use dynamic storage that must be managed by the program.

Storage is undefined if it has not been assigned a value, and defined after it has been assigned a
value. An object is completely defined if all storage that may be reached from it is defined. What
storage is reachable from an object depends on the type and value of the object. For example, if p is a
pointer to a structure, p is completely defined if the value of p is NULL, or if every field of the
structure p points to is completely defined.

When an expression is used as the left side of an assignment expression we say it is used as an
lvalue. Its location in memory is used, but not its value. Undefined storage may be used as an lvalue
since only its location is needed. When storage is used in any other way, such as on the right side of

10 This section is largely based on [Evans96]. It semi-formally defines some of the terms needed to
describe memory management checking; if you are satisfied with an intuitive understanding of these
terms, this section may be skipped.
11 This is similar to the LISP storage model, except that objects are typed.

Yea, from the
table of my
memory I'll
wipe away all
trivial fond
records, all
saws of
books, all
forms, all
pressures
past, that
youth and
observation
copied there.

 Hamlet
prefers

 garbage
 collection

(Shakespeare,
 Hamlet.

Act I,
 Scene v)

Memory Management 17

an assignment, as an operand to a primitive operator (including the indirection operator, *),12 or as a
function parameter, we say it is used as an rvalue. It is an anomaly to use undefined storage as an
rvalue.

A pointer is a typed memory address. A pointer is either live or dead. A live pointer is either NULL
or an address within allocated storage. A pointer that points to an object is an object pointer. A
pointer that points inside an object (e.g., to the third element of an allocated block) is an offset
pointer. A pointer that points to allocated storage that is not defined is an allocated pointer. The
result of dereferencing an allocated pointer is undefined storage. Hence, it is an anomaly to use it as
an rvalue. A dead (or “dangling”) pointer does not point to allocated storage. A pointer becomes
dead if the storage it points to is deallocated (e.g., the pointer is passed to the free library function.)
It is an anomaly to use a dead pointer as an rvalue.

There is a special object null corresponding to the NULL pointer in a C program. A pointer that may
have the value NULL is a possibly-null pointer. It is an anomaly to use a possibly-null pointer where
a non-null pointer is expected (e.g., certain function arguments or the indirection operator).

5.2 Deallocation Errors
There are two kinds of deallocation errors with which we are concerned: deallocating storage when
there are other live references to the same storage, or failing to deallocate storage before the last
reference to it is lost. To handle these deallocation errors, we introduce a concept of an obligation to
release storage. Every time storage is allocated, it creates an obligation to release the storage. This
obligation is attached to the reference to which the storage is assigned.13 Before the scope of the
reference is exited or it is assigned to a new value, the storage to which it points must be released.
Annotations can be used to indicate that this obligation is transferred through a return value, function
parameter or assignment to an external reference.

5.2.1 Unshared References
The only annotation is used to indicate a reference is the only pointer to the object it points to. We
can view the reference as having an obligation to release this storage. This obligation is satisfied by
transferring it to some other reference in one of three ways:

• pass it as an actual parameter corresponding to a formal parameter declared with an only
annotation

• assign it to an external reference declared with an only annotation
• return it as a result declared with an only annotation

After the release obligation is transferred, the original reference is a dead pointer and the storage it
points to may not be used.

All obligations to release storage stem from primitive allocation routines (e.g., malloc), and are
ultimately satisfied by calls to free. The standard library declared the primitive allocation and
deallocation routines.

12 Except sizeof, which does not need the value of its argument.
13 If the storage is not assigned to a reference, an internal reference is created to track the storage.

‘Tis in my
memory
lock’d, and
you yourself
shall keep the
key of it.

Ophelia
prefers

 explicit
deallocation

(Hamlet.
Act I,

 Scene iii)

18 LCLint User’s Guide

The basic memory allocator, malloc, is declared:14

/*@only@*/ void *malloc (size_t size);

It returns an object that is referenced only by the function return value.

The deallocator, free, is declared:15

void free (/*@only@*/ void *ptr);

The parameter to free must reference an unshared object. Since the parameter is declared using
only, the caller may not use the referenced object after the call, and may not pass in a reference to a
shared object. There is nothing special about malloc and free — their behavior can be described
entirely in terms of the provided annotations.

only.c Running LCLint
1 extern /*@only@*/ int *glob;

/*@only@*/ int *
f (/*@only@*/ int *x, int *y,
 int *z)
 /*@globals glob;@*/
{
 8 int *m = (int *)
 9 malloc (sizeof (int));

11 glob = y; Memory leak
12 free (x);
13 *m = *x; Use after free
14 return z; Memory leak detected
}

> lclint only.c
LCLint 2.4 --- 10 Apr 98

only.c:11: Only storage glob not released before
 assignment: glob = y
 only.c:1: Storage glob becomes only
only.c:11: Implicitly temp storage y assigned to only:
 glob = y
only.c:13: Dereference of possibly null pointer m: *m
 only.c:8: Storage m may become null
only.c:13: Variable x used after being released
 only.c:12: Storage x released
only.c:14: Implicitly temp storage z returned as only: z
only.c:14: Fresh storage m not released before return
 only.c:9: Fresh storage m allocated

Finished LCLint checking --- 6 code errors found
Figure 6. Deallocation errors.

5.2.2 Temporary Parameters
The temp annotation is used to declare a function parameter that is used temporarily by the function.
An error is reported if the function releases the storage associated with a temp formal parameter or

14 The full declaration of malloc also includes a null annotation (Section 7.2) to indicate that the
result may be NULL (as it is when the requested storage cannot be allocated) and an out annotation
(Section 7.1) to indicate that the result points to undefined storage.
15 The full declaration of free also has out and null annotations on the parameter to indicate that
the argument may be NULL and need not point to defined storage. According to [ANSI, 4.10.3.2],
NULL may be passed to free without an error. On some UNIX platforms, passing NULL to free causes
a program crash so the UNIX version of the standard library (Appendix F) specifies free without the
null annotation on its parameter. To check that allocated objects are completely destroyed (e.g., all
unshared objects inside a structure are deallocated before the structure is deallocated), LCLint checks
that any parameter passed as an out only void * does not contain references to live, unshared
objects. This makes sense, since such a parameter could not be used sensibly in any way other than
deallocating its storage.

Memory Management 19

creates new aliases it that are visible after the function returns. Any storage may be passed as a
temp parameter, and it satisfies its original memory constraints after the function returns.

5.2.3 Owned and Dependent References
In real programs it is sometimes necessary to have storage that is shared between several possibly
references. The owned and dependent annotations provide a more flexible way of managing
storage, at the cost of less checking. The owned annotation denotes a reference with an obligation to
release storage. Unlike only, however, other external references marked with dependent
annotations may share this object. It is up to the programmer to ensure that the lifetime of a
dependent reference is contained within the lifetime of the corresponding owned reference.

5.2.4 Kept Parameters
The keep annotation is similar to only, except the caller may use the reference after the call. The
called function must assign the keep parameter to an only reference, or pass it as a keep parameter
to another function. It is up to the programmer to make sure that the calling function does not use this
reference after it is released. The keep annotation is useful for adding an object to a collection (e.g.,
a symbol table), where it is known that it will not be deallocated until the collection is.

5.2.5 Shared References
If LCLint is used to check a program designed to be used in a garbage-collected environment, there
may be storage that is shared by one or more references and never explicitly released. The shared
annotation declares storage that may be shared arbitrarily, but never released.

5.2.6 Stack References
Local variables that are not allocated dynamically are stored on a call stack. When a function
returns, its stack frame is deallocated, destroying the storage associated with the function’s local
variables. A memory error occurs if a pointer into this storage is live after the function returns.
LCLint detects errors involving stack references exported from a function through return values or
assignments to references reachable from global variables or actual parameters. No annotations are
needed to detect stack reference errors, since it is clear from a declaration if storage is allocated on
the function stack.

Figure 7 gives and example of errors reported involving stack-allocated storage.

5.2.7 Inner Storage
An annotation always applies to the outermost level of storage. For example,

/*@only@*/ int **x;

declares x as an unshared pointer to a pointer to an int. The only annotation applies to x, but not
to *x. To apply annotations to inner storage a type definition may be used:

 typedef /*@only@*/ int *oip;
 /*@only@*/ oip *x;

Now, x is an only pointer to an oip, which is an only pointer to an int.

20 LCLint User’s Guide

stack.c Running LCLint
int *glob;

/*@dependent@*/ int *
 f (int **x)
{
 int sa[2] = { 0, 1 };
 int loc = 3;

 9 glob = &loc;
10 *x = &sa[0];

12 return &loc;
}

A dependent annotation is used on the
return value. Without this, several other
errors would be reported, since the result
would have an implicit only annotation.

> lclint stack.c
LCLint 2.4 --- 10 Apr 98

stack.c: (in function f)
stack.c:12: Stack-allocated storage &loc reachable
 from return value: &loc
stack.c:12: Stack-allocated storage *x reachable from
 parameter x
 stack.c:10: Storage *x becomes stack
stack.c:12: Stack-allocated storage glob reachable
 from global glob
 stack.c:9: Storage glob becomes stack

Finished LCLint checking --- 3 code errors found

Figure 7. Stack references.

When annotations are used in type definitions, they may be overridden in instance declarations. For
example,

/*@dependent@*/ oip x;

makes x a dependent pointer to an int.

Another way to apply annotations to inner storage is to use a special clause (see Section 7.4).

5.3 Implicit Memory Annotations
Since it is important that LCLint can check unannotated programs effectively, the meaning of
declarations with no memory annotations is chosen to minimize the number of annotations needed to
get useful checking on an unannotated program.

An implicit memory management annotation may be assumed for declarations with no explicit
memory management annotation. Implicit annotations are checked identically to the corresponding
explicit annotation, except error messages indicate that they result from an implicit annotation.

Unannotated function parameters are assumed to be temp. This means if memory checking is turned
on for an unannotated program, all functions that release storage referenced by a parameter or assign
a global variable to alias the storage will produce error messages. (Controlled by paramimptemp.)

Unannotated return values, structure fields and global variables are assumed to be only. With
implicit annotations (on by default), turning on memory checking for an unannotated program will
produce errors for any function that does not return unshared storage or assignment of shared storage

Memory Management 21

to a global variable or structure field.16 (Controlled by retimponly, structimponly and
globimponly. The allimponly flag sets all of the implicit only flags.)

implicit.c
typedef struct {
 only char *name;
 int val;
} *rec;

extern only rec rec_last ;

extern only rec
 rec_create (temp char *name,
 int val) ;
Annotations in italics are not present in
the code, but may be implied.

Implicit only annotation on mutable structure
field if structimponly is on.

Implicit only annotation on mutable global
variables if globimponly is on.

Implicit only annotation on mutable function
result if retimponly is set. Implicit temp
annotation on mutable parameter if
paramimptemp is set.

Figure 8. Implicit annotations.

5.4 Reference Counting
Another approach to memory management is to add a field to a type to explicitly keep track of the
number of references to that storage. Every time a reference is added or lost the reference count is
adjusted accordingly; if it would become zero, the storage is released. Reference counting it difficult
to do without automatic checking since it is easy to forget to increment or decrement the reference
count, and exceedingly difficult to track down these errors.

LCLint supports reference counting by using annotations to constrain the use of reference counted
storage in a manner similar to other memory management annotations.
A reference counted type is declared using the refcounted annotation. Only pointer to struct
types may be declared as reference counted, since reference counted storage must have a field
to count the references. One field in the structure (or integral type) is preceded by the refs
annotation to indicate that the value of this field is the number of live references to the structure.

For example (in rstring.h),

typedef /*@abstract@*/ /*@refcounted@*/ struct {
 /*@refs@*/ int refs;

 char *contents;
 } *rstring;

declares rstring as an abstract, reference-counted type. The refs field counts the number of
references and the contents field holds the contents of a string.

All functions that return refcounted storage must increase the reference count before returning.
LCLint cannot determine if the reference count was increased, so any function that directly returns a
reference to refcounted storage will produce an error. This is avoided, by using a function to
return a new reference (e.g., rstring_ref in Figure 9).

16 If an exposure qualifier is used (see Section 6.2), the implied dependent annotation is used instead
of the more generally implied only annotation.

22 LCLint User’s Guide

A reference counted type may be passed as a temp or dependent parameter. It may not be passed
as an only parameter. Instead, the killref annotation is used to denote a parameter whose
reference is eliminated by the function call. Like only parameters, an actual parameter
corresponding to a killref formal parameter may not be used in the calling function after the call.
LCLint checks that the implementation of a function releases all killref parameters, either by
passing them as killref parameters, or assigning or returning them without increasing the
reference count.

rstring.c Running LCLint
include "rstring.h"

static rstring rstring_ref (rstring r)
{
 r->refs++;
6 return r;
}

rstring rstring_first (rstring r1, rstring r2)
{
 if (strcmp (r1->contents, r2->contents) < 0)
 {
13 return r1;
 }
 else
 {
17 return rstring_ref (r2);
 }
}

> lclint rstring.c
LCLint 2.4 --- 10 Apr 98

rstring.c: (in function rstring_first)
rstring.c:13: Reference counted storage
 returned without modifying reference
 count: r1

Finished LCLint checking --- 1 code
 error found

No error is reported for line 6
since the reference count was
incremented. No error is reported
for line 17, since rstring_ref
returns a new reference.

 Figure 9. Reference counting.

Macros 23

6. Sharing
Errors involving unexpected sharing of storage can cause serious problems. Undocumented sharing
may lead to unpredictable modifications, and some library calls (e.g., strcpy) have undefined
behavior if parameters share storage. Another class of sharing errors occurs when clients of an
abstract type may obtain a reference to mutable storage that is part of the abstract representation.
This exposes the representation of the abstract type, since clients may modify an instance of the
abstract type indirectly through this shared storage.

6.1 Aliasing
LCLint detects errors involving dangerous aliasing of parameters. Some of these errors are already
detected through the standard memory annotations (e.g., only parameters may not be aliases.) Two
additional annotations are provided for constraining aliasing of parameters and return values.

6.1.1 Unique Parameters
The unique annotation denotes a parameter that may not be aliased by any other storage reachable
from the function implementation — that is, any storage reachable through the other parameters or
global variables used by the function. The unique annotation places similar constraints on function
parameters as the only annotation, but it does not transfer the obligation to release storage.
LCLint will report an error if a unique parameter may be aliased by another parameter or global
variable.

unique.c Running LCLint
include <string.h>

void
capitalize (/*@out@*/ char *s,
 char *t)
{
 7 strcpy (s, t);
 *s = toupper (*s);
}

The out qualifier is explained in Section 7.1.1.

> lclint unique.c
LCLint 2.4 --- 10 Apr 98

unique.c: (in function capitalize)
unique.c:7: Parameter 1 (s) to function strcpy is
 declared unique but may be aliased externally by
 parameter 2 (t)

Finished LCLint checking --- 1 code error found
An error is reported since the first parameter to
the library function strcpy is declared with
unique. If a unique qualifier were added to the
parameter declaration for s or t, no error would
be reported.

 Figure 10. Unique parameters.

6.1.2 Returned Parameters
LCLint reports an error if a function returns a reference to storage reachable from one of its
parameters (if retalias is on) since this may introduce unexpected aliases in the body of the
calling function when the result is assigned.

The returned annotation denotes a parameter that may be aliased by the return value. LCLint
checks the call assuming the result may be an alias to the returned parameter. Figure 11 shows an
example use of a returned annotation.

24 LCLint User’s Guide

returned.c
include "intSet.h"

extern intSet intSet_insert (/*@returned@*/ intSet s, int x);

intSet intSet_singleton (int x)
{
7 return (intSet_insert (intSet_new (), x));
}

Without the returned qualifier, a memory leak error would be reported for line 7, since the
only storage returned by intSet_new is not released. Because of the returned qualifier on
the first parameter to intSet_insert, LCLint assumes the result of intSet_insert is the
same storage as its first parameter, in this case the storage returned by intSet_new. No error
is reported, since the only storage is then transferred through the return value (which has an
implicit only annotation, see Section 5.3).

Figure 11. Returned parameters.

6.2 Exposure
LCLint detects places where the representation of an abstract type is exposed. This occurs if a client
has a pointer to storage that is part of the representation of an instance of the abstract type. The client
can then modify or examine the storage this points to, and manipulate the value of the abstract type
instance without using its operations.

There are three ways a representation may be exposed:

1. Returning (or assigning to a global variable) an object that includes a pointer to a mutable
component of an abstract type representation. (Controlled by ret-expose).

2. Assigning a mutable component of an abstract object to storage reachable from an actual
parameter or a global variable that may be used after the call. This means the client may
manipulate the abstract object using the actual parameter after the call. Note that if the
corresponding formal parameter is declared only, the caller may not use the actual parameter
after the call so the representation is not exposed. (Controlled by assign-expose).

3. Casting mutable storage to or from an abstract type. (Controlled by cast-expose).

Annotations may be used to allow exposed storage to be returned safely by restricting how the caller
may use the returned storage.

6.2.1 Read-Only Storage
It is often useful for a function to return a pointer to internal storage (or an instance of a mutable
abstract type) that is intended only as an observer. The caller may use the result, but should not
modify the storage it points to. For example, consider a naïve implementation of the
employee_getName operation for the abstract employee type:

Macros 25

 typedef /*@abstract@*/ struct {
 char *name;
 int id;
 } *employee;
 …
 char *employee_getName (employee e) { return e->name; }

LCLint produces a message to indicate that the return value exposes the representation. One solution
would be to return a fresh copy of e->name. This is expensive, though, especially if we expect
employee_getName is used mainly just to get a string for searching or printing. Instead, we could
change the declaration of employee_getName to:

extern /*@observer@*/ char *employee_getName (employee e);

Now, the original implementation is correct. The declaration indicates that the caller may not modify
the result, so it is acceptable to return shared storage.17 LCLint checks that the caller does not modify
the return value. An error is reported if observer storage is modified directly, passed as a function
parameter that may be modified, assigned to a global variable or reference derivable from a global
variable that is not declared with an observer annotation, or returned as a function result or a
reference derivable from the function result that is not annotation with an observer annotation.

String Literals
A program that attempts to modify a string literal has undefined behavior [ANSI, Section 3.1.4]. This
is not enforced by most C compilers, and can lead to particularly pernicious bugs that only appear
when optimizations are turned on and the compiler attempts to minimize storage for string literals.
LCLint can be used to check that string literals are not modified, by treating them as -observer
storage. If read-only-strings is on (default in standard mode), LCLint will report an error if a
string literal is modified.

6.2.2 Exposed Storage
Sometimes it is necessary to expose the representation of an abstract type. This may be evidence of a
design flaw, but in some cases is justified for efficiency reasons. The exposed annotation denotes
storage that is exposed. It may be used on a return value for results that reference storage internal to
an abstract representation, on a parameter value to indicate a parameter that may be assigned directly
to part of an abstract representation,18 or on a field of an abstract representation to indicate that
external references to the storage may exist. An error is reported if exposed storage is released, but
unlike an observer, no error is reported if it is modified.

Figure 12 shows examples of exposure problems detected by LCLint.

17 Strictly, we should also check that the returned observer storage is not used again after any other calls
to the abstract type module using the same parameter. LCLint does not attempt to check this, and in
practice it is not usually a problem.
18 Note that if the parameter is annotated with only, it is not an error to assign it to part of an abstract
representation, since the caller may not use the storage after the call returns.

26 LCLint User’s Guide

exposure.c Running LCLint
include "employee.h"

char *
employee_getName (employee e)
{
6 return e->name;
}

/*@observer@*/ char *
employee_obsName (employee e)
{ return e->name; }

/*@exposed@*/ char *
employee_exposeName (employee e)
{ return e->name; }

void
employee_capName (employee e)
{
 char *name;

 name = employee_obsName (e);
23 *name = toupper (*name);
}

> lclint exposure.c +checks
LCLint 2.4 --- 10 Apr 98

exposure.c: (in function employee_getName)
exposure.c:6: Function returns reference to parameter
 e: e->name
exposure.c:6: Return value exposes rep of employee:
 e->name
exposure.c:6: Released storage e->name reachable from
 parameter
 exposure.c:6: Storage e->name is released
exposure.c: (in function employee_capName)
exposure.c:23: Suspect modification of observer name:
 *name = toupper(*name)

Finished LCLint checking --- 4 code errors found
Three messages are reported for line 6 where a
mutable field of an abstract type is returned with
no sharing qualifier (without +checks only the
third one would be reported.)

The error for line 23 reports a modification of an
observer. If the call in line 22 were changed to
call employee_exposeName, no error would
be reported.

Figure 12. Exposure checking.

7. Value Constraints
LCLint can be used to constrain values of parameters, function results, global variables, and derived
storage such as structure fields. These constraints are checked at interface points — where a function
is called or returns. Section 7.1 describes how to constrain parameters, return values and structures to
detect use before definition errors. A similar approach is used for restricting the use of possibly null
pointers in Section 7.2. To do both well, and avoid spurious errors, information about when and if a
function returns if useful. Annotations for documenting execution control are described in Section
7.3.

7.1 Use Before Definition
Like many static checkers, LCLint detects instances where the value of a location is used before it is
defined. This analysis is done at the procedural level. If there is a path through the procedure that
uses a local variable before it is defined, a use before definition error is reported. The usedef flag
controls use before definition checking.

LCLint can do more checking than standard checkers though, because the annotations can be used to
describe what storage must be defined and what storage may be undefined at interface points.
Unannotated references are expected to be completely defined at interface points. This means all

Macros 27

storage reachable from a global variable, parameter to a function, or function return value is defined
before and after a function call.

7.1.1 Undefined Parameters
Sometimes, function parameters or return values are expected to reference undefined or partially
defined storage. For example, a pointer parameter may be intended only as an address to store a
result, or a memory allocator may return allocated but undefined storage. The out annotation
denotes a pointer to storage that may be undefined.

LCLint does not report an error when a pointer to allocated but undefined storage is passed as an out
parameter. Within the body of a function, LCLint will assume an out parameter is allocated but not
necessarily bound to a value, so an error is reported if its value is used before it is defined.

LCLint reports an error if storage reachable by the caller after the call is not defined when the
function returns. This can be suppressed by -must-define. After a call returns, an actual
parameter corresponding to an out parameter is assumed to be completely defined.

When checking unannotated programs, many spurious use before definition errors may be reported If
impouts is on, no error is reported when an incompletely-defined parameter is passed to a formal
parameter with no definition annotation, and the actual parameter is assumed to be defined after the
call. The /*@in@*/ annotation can be used to denote a parameter that must be completely defined,
even if imp-outs is on. If imp-outs is off, there is an implicit in annotation on every parameter
with no definition annotation.

usedef.c Running LCLint
extern void
 setVal (/*@out@*/ int *x);
extern int
 getVal (/*@in@*/ int *x);
extern int mysteryVal (int *x);

int
dumbfunc (/*@out@*/ int *x, int i)
{
 if (i > 3)
11 return *x;
 else if (i > 1)
13 return getVal (x);
 else if (i == 0)
15 return mysteryVal (x);
 else
 {
18 setVal (x);
19 return *x;
 }
}

> lclint usedef.c
LCLint 2.4 --- 10 Apr 98

usedef.c: (in function dumbfunc)
usedef.c:11: Value *x used before definition
usedef.c:13: Passed storage x not completely defined
 (allocated only): getVal (x)
usedef.c:15: Passed storage x not completely defined
 (allocated only): mysteryVal (x)

Not reported if impouts is on since
there is no in annotation on the
parameter to mysteryVal.

Finished LCLint checking --- 3 code errors found

No error is reported for line 18, since the
incompletely defined storage x is passed as an
out parameter. After the call, x may be
dereferenced, since setVal is assumed to
completely define its out parameter.

 Figure 13. Use before definition.

28 LCLint User’s Guide

7.1.2 Relaxing Checking
The reldef annotation relaxes definition checking for a particular declaration. Storage declared
with a reldef annotation is assumed to be defined when it is used, but no error is reported if it is
not defined before it is returned or passed as a parameter.

It is up to the programmer to check reldef fields are used correctly. They should be avoided in
most cases, but may be useful for fields of structures that may or may not be defined depending on
other constraints.

7.1.3 Partially Defined Structures
The partial annotated can be used to relax checking of structure fields. A structure with
undefined fields may be passed as a partial parameter or returned as a partial result. Inside a
function body, no error is reported when the field of a partial structure is used. After a call, all
fields of a structure that is passed as a partial parameter are assumed to be completely defined.

7.1.4 Global Variables
Special annotations can be used in the globals list of a function declaration (Section 4.2) to describe
the states of global variables before and after the call.

If a global is preceded by undef, it is assumed to be undefined before the call. Thus, no error is
reported if the global is not defined when the function is called, but an error is reported if the global is
used in the function body before it is defined.

annotglobs.c Running LCLint
int globnum;

struct {
 char *firstname;
 char *lastname;
 int id;
} globname;

void
initialize (/*@only@*/ char *name)
 /*@globals undef globnum,
 undef globname @*/
{
14 globname.id = globnum;
 globname.lastname = name;
16}

void finalize (void)
 /*@globals killed globname@*/
{
 free (globname.firstname);
22 }

> lclint annotglobs.c
LCLint 2.4 --- 10 Apr 98

annotglobs.c: (in function initialize)
annotglobs.c:14: Undef global globnum used before
 definition
annotglobs.c:16: Global storage globname contains
 1 undefined field when call returns: firstname
annotglobs.c: (in function finalize)
annotglobs.c:22: Only storage globname.firstname
 (type char *) derived from killed global is
 not released (memory leak)

Finished LCLint checking --- 3 code errors found

Figure 14. Annotated globals lists.

The killed annotation denotes a global variable that may be undefined when the call returns. For
globals that contain dynamically allocated storage, a killed global variable is similar to an only
parameter (Section 5.2). An error is reported if it contains the only reference to storage that is not
released before the call returns.

Macros 29

7.2 Null Pointers
A common cause of program failures is when a null pointer is dereferenced. LCLint detects these
errors by distinguishing possibly NULL pointers at interface boundaries.

The null annotation is used to indicate that a pointer value may be NULL. A pointer declared with
no null annotation, may not be NULL. If null checking is turned on (controlled by null), LCLint
will report an error when a possibly null pointer is passed as a parameter, returned as a result, or
assigned to an external reference with no null qualifier.

If a pointer is declared with the null annotation, the code must check that it is not NULL on all paths
leading to a dereference of the pointer (or the pointer being returned or passed as a value with no
null annotation). Dereferences of possibly null pointers may be protected by conditional statements
or assertions (to see how assert is declared see Section 7.3) that check the pointer is not NULL.

Consider two implementations of firstChar in Figure 15. For firstChar1, LCLint reports an
error since the pointer that is dereferenced is declared with a null annotation. For firstChar2,
no error is reported since the true branch of the s == NULL if statement returns, so the dereference
of s is only reached if s is not NULL.

null.c Running LCLint
char firstChar1 (/*@null@*/ char *s)
{
3 return *s;
}

char firstChar2 (/*@null@*/ char *s)
{
 if (s == NULL) return ‘\0’;
9 return *s;
}

> lclint null.c
LCLint 2.4 --- 10 Apr 98

null.c:3: Dereference of possibly null pointer s: *s
 null.c:1: Storage s may become null

Finished LCLint checking --- 1 code error found

No error is reported for line 9, since the
dereference is reached only if s is non-null.

Figure 15. Null checking.

7.2.1 Predicate Functions
Another way to protect null dereference, is to declare a function using falsenull or truenull
and call the function in a conditional statement before the null-annotated pointer is dereferenced.
The falsenull and truenull annotations may only be used on return values for functions that
return a boolean19 result and whose first argument is a possibly null pointer.

A function is annotated with truenull is assumed to return TRUE if its first parameter is NULL and
FALSE otherwise. For example, if isNull is declared as,

 /*@truenull@*/ bool isNull (/*@null@*/ char *x);

we could write firstChar2:

19 That is, the return type is bool, or int if +boolint is used.

30 LCLint User’s Guide

 char firstChar2 (/*@null@*/ char *s)
 {

if (isNull (s)) return '\0';
return *s;

 }

No error is reported since the dereference of s is only reached if isNull(s) is false, and since
isNull is declared with the truenull annotation this means s must not be null.

The falsenull annotation is not quite the opposite of truenull. If a function declared with
falsenull returns TRUE, it means its parameter is not NULL. If it returns FALSE, the parameter
may or may not be NULL.

For example, we could define isNonEmpty to return TRUE if its parameter is not NULL and has
least one character before the NUL terminator:

 /*@falsenull@*/ bool isNonEmpty (/*@null@*/ char *x)
 {
 return (x != NULL && *x != ‘\0’);
 }

LCLint does not check that the implementation of a function declared with falsenull or
truenull is consistent with its annotation, but assumes the annotation is correct when code that
calls the function is checked.

7.2.2 Overriding Null Types
The null annotation may be used in a type definition to indicate that all instances of the type may be
NULL. For declarations of a type declared using null, the null annotation in the type definition
may be overridden with notnull. This is particularly useful for parameters to hidden static
operations of abstract types where the null test has already been done before the function is called, or
function results of the type which are never NULL. For an abstract type, notnull may not be used
for parameters to external functions, since clients should not be aware of when the concrete
representation may by NULL. Parameters to static functions in the implementation module, however,
may be declared using notnull, since they may only be called from places where the representation
is accessible. Return values for static or external functions may be declared using notnull.

Figure 16 gives an example showing the use of notnull.

7.2.3 Relaxing Null Checking
An additional annotation, relnull may be used to relax null checking (relnull is analogous to
reldef for definition checking). No error is reported when a relnull value is dereferenced, or
when a possibly null value is assigned to an identifier declared using relnull.

This is generally used for structure fields that may or may not be null depending on some other
constraint. LCLint does not report and error when NULL is assigned to a relnull reference, or
when a relnull reference is dereferenced. It is up to the programmer to ensure that this constraint
is satisfied before the pointer is dereferenced.

Macros 31

mstring.c
typedef /*@abstract@*/ /*@null@*/ char *mstring;
static /*@notnull@*/ mstring mstring_createNew (int x) ;

mstring mstring_space (void)
{
 mstring m = mstring_createNew (1);

Because of notnull qualifier on mstring_createNew, can assume m is not null.
 *m = ' '; *(m + 1) = '\0';
 return m;
}

Figure 16. Using notnull.

7.3 Execution
To detect certain errors and avoid spurious errors, it is important to know something about the control
flow behavior of called functions. Without additional information, LCLint assumes that all functions
eventually return and execution continues normally at the call site.

The exits annotation is used to denote a function that never returns. For example,
extern /*@exits@*/ void fatalerror (/*@observer@*/ char *s);

declares fatalerror to never return. This allows LCLint to correctly analyze code like,

 if (x == NULL) fatalerror ("Yikes!");
 *x = 3;

Other functions may exit, but sometimes (or usually) return normally. The mayexit annotation
denotes a function that may or may not return. This doesn’t help checking much, since LCLint must
assume that a function declared with mayexit returns normally when checking the code.

To be more precise, the trueexit and falseexit annotations may be used. Similar to
truenull and falsenull (see Section 7.2.1), trueexit and falseexit mean that a
function always exits if the value of its first argument is TRUE or FALSE respectively. They may be
used only on functions whose first argument has a boolean type.

A function declared with trueexit must exit if the value of its argument is TRUE, and a function
declared with falseexit must exit if the value of its argument is FALSE. For example, the
standard library declares assert as20:

/*@falseexit@*/ void assert (/*@sef@*/ bool /*@alt int@*/ pred);

This way, code like,
 assert (x != NULL);
 *x = 3;

20The sef annotation denotes a parameter as side-effect free (see Section 8.2.1). By declaring the
argument to assert to be side-effect free, LCLint will report errors if the parameter to assert
produces a side-effect. This is especially pertinent if assertions are turned off when the production
version is compiled. The bool /*@alt int@*/ type specifier for the parameter means the
parameter type must match either bool or int. Alternate types are described in Section 8.2.2.

32 LCLint User’s Guide

is checked correctly, since the falseexit annotation on assert means the deference of x is not
reached is x != NULL is false.

7.4 Special Clauses
Sometimes it is necessary to specify function interfaces at a lower level than is possible with the
standard annotations. For example, if a function defines some fields of a returned structure but does
not define all the fields. The /*@special@*/ annotation is used to mark a parameter, global
variable, or return value that is described using special clauses. The usual implicit definition rules do
not apply to a special declaration.

Special clauses may be used to constrain the state of a parameter or return value before or after a call.
One or more special clauses may appear in a function declaration, before the modifies or globals
clauses. Special clauses may be listed in any order, but the same special clause should not be used
more than once. Parameters used in special clauses must be annotated with /*@special@*/ in the
function header. In a special clause list, result is used to refer to the return value of the function.
If result appears in a special clause, the function return value must be annotated with
/*@special@*/.

The following special clauses are used to describe the definition state or parameters before and after
the function is called and the return value after the function returns:

/*@uses <references>@*/
References in the uses clause must be completely defined before the function is called. They
are assumed to be defined at function entrance when the function is checked.

/*@sets <references>@*/
References in the sets clause must be allocated before the function is called. They are
completely defined after the function returns. When the function is checked, they are assumed
to be allocated at function entrance and an error is reported if there is a path on which they are
not defined before the function returns.

/*@defines <references>@*/
References in the defines clause must not refer to unshared, allocated storage before the
function is called. They are completely defined after the function returns. When the function is
checked, they are assumed to be undefined at function entrance and an error is reported if there
is a path on which they are not defined before the function returns.

/*@allocates <references>@*/
References in the allocates clause must not refer to unshared, allocated storage before the
function is called. They are allocated but not necessarily defined after the function returns.
When the function is checked, they are assumed to be undefined at function entrance and an
error is reported if there is a path on which they are not allocated before the function returns.

/*@releases <references>@*/
References in the releases clause are deallocated by the function. They must correspond to
storage that could be passed as an only parameter before the function is called, and are dead
pointers after the function returns. When the function is checked, they are assumed to be
allocated at function entrance and an error is reported if they refer to live, allocated storage at
any return point.

Additional generic special clauses can be used to describe other aspects of the state of inner storage
before or after a call. Generic special clauses have the form state:constraint . The state is

Macros 33

either pre (before the function is called), or post (after the function is called). The constraint is
similar to an annotation. The following constraints are supported:

Aliasing Annotations
pre:only, post:only
pre:shared, post:shared
pre:owned, post:owned
pre:dependent, post:dependent

References refer to only, shared, owned or dependent storage before (pre) or after
(post) the call.

Exposure Annotations
pre:observer, post:observer
pre:exposed, post:exposed

References refer to observer or exposed storage before (pre) or after (post) the call.

Null State Annotations
pre:isnull, post:isnull

References have the value NULL before (pre) or after (post) the call. Note, this is not the
same name or meaning as the null annotation (which means the value may be NULL.)

pre:notnull, post:notnull
References do not have the value NULL before (pre) or after (post) the call.

Some examples of special clauses are shown in Figure 17. The defines clause for record_new
indicates that the id field of the structure pointed to by the result is defined, but the name field is not.
So, record_create needs to call record_setName to define the name field. Similarly, the
releases clause for record_clearName indicates that no storage is associated with the name field
of its parameter after the return, so no failure to deallocate storage message is produced for the call to
free in record_free.

34 LCLint User’s Guide

special.c
typedef struct
{
 int id;
 /*@only@*/ char *name;
} *record;

static /*@special@*/ record record_new (void)
 /*@defines result->id@*/
{
 record r = (record) malloc (sizeof (*r));

 assert (r != NULL);
 r->id = 3;
 return r;
}

static void
 record_setName (/*@special@*/ record r, /*@only@*/ char *name)
 /*@defines r->name@*/
{
 r->name = name;
}

record record_create (/*@only@*/ char *name)
{
 record r = record_new ();
 record_setName (r, name);
 return r;
}

void record_clearName (/*@special@*/ record r)
 /*@releases r->name@*/
 /*@post:isnull r->name@*/
{
 free (r->name);
 r->name = NULL;
}

void record_free (/*@only@*/ record r)
{
 record_clearName (r);
 free (r);
}

 Figure 17. Special Clauses.

Macros 35

8. Macros
Macros are commonly used in C programs to implement constants or to mimic functions without the
overhead of a function call. Macros that are used to implement functions are a persistent source of
bugs in C programs, since they may not behave like the intended function when they are invoked with
certain parameters or used in certain syntactic contexts.

LCLint eliminates most of the potential problems by detecting macros with dangerous
implementations and dangerous macro invocations. Whether or not a macro definition is checked or
expanded normally depends on flag settings and control comments (see Section 8.3). Stylized macros
can also be used to define control structures for iterating through many values (see Section 8.4).

8.1 Constant Macros
Macros may be used to implement constants. To get type-checking for constant macros, use the
constant syntactic comment:

/*@constant null char *mstring_undefined@*/

Declared constants are not expanded and are checked according to the declaration. A constant with a
null annotation may be used as only storage.

8.2 Function-like Macros
Using macros to imitate functions is notoriously dangerous. Consider this broken macro for squaring
a number:

define square(x) x * x

This works fine for a simple invocation like square(i). It behaves unexpectedly, though, if it is
invoked with a parameter that has a side effect.

For example, square(i++) expands to i++ * i++. Not only does this give the incorrect result, it
has undefined behavior since the order in which the operands are evaluated is not defined. (See
Section 10.1 for more information on how expressions exhibiting undefined evaluation order behavior
are detected by LCLint.) To correct the problem we either need to rewrite the macro so that its
parameter is evaluated exactly once, or prevent clients from invoking the macro with a parameter that
has a side-effect.

Another possible problem with macros is that they may produce unexpected results because of
operator precedence rules. The invocation, square(i+1) expands to i+1*i+1, which evaluates to
i+i+1 instead of the square of i+1. To ensure the expected behavior, the macro parameter should
be enclosed in parentheses where it is used in the macro body.

Macros may also behave unexpectedly if they are not syntactically equivalent to an expression.
Consider the macro definition,

define incCounts() ntotal++; ncurrent++;

This works fine, unless it is used as a statement. For example,
if (x < 3) incCounts();

increments ntotal if x < 3 but always increments ncurrent.

36 LCLint User’s Guide

One solution is to use the comma operator to define the macro:
define incCounts() (ntotal++, ncurrent++)

More complicated macros can be written using a do … while construction:

 # define incCounts() \
 do { ntotal++; ncurrent++; } while (FALSE)

LCLint detects these pitfalls in macro definitions, and checks that a macro behaves as much like a
function as possible. A client should only be able to tell that a function was implemented by a macro
if it attempts to use the macro as a pointer to a function.

LCLint does these checks on a macro definition corresponding to a function:

• Each parameter to a macro (except those declared to be side-effect free, see Section 8.2.1) must be
used exactly once in all possible executions of the macro, so side-effecting arguments behave as
expected.21 (Controlled by macroparams.)

• A parameter to a macro may not be used as the left-hand side of an assignment expression or as
the operand of an increment or decrement operator in the macro text, since this produces non-
functional behavior. (Controlled by macroassign.)

• Macro parameters must be enclosed in parentheses when they are used in potentially dangerous
contexts. (Controlled by macroparens.)

• A macro definition must be syntactically equivalent to a statement when it is invoked followed by
a semicolon. (Controlled by macrostmt.)

• The type of the macro body must match the return type of the corresponding function. If the macro
is declared with type void, its body may have any type but the macro value may not be used.

• All variables declared in the body of a macro definition must be in the macro variable namespace,
so they do not conflict with variables in the scope where the macro is invoked (which may be used
in the macro parameters). By default, the macro namespace is all names prefixed by m_. (See
Section 9.2 for information on controlling namespaces.)

At the call site, a macro is checked like any other function call.

8.2.1 Side-Effect Free Parameters
Suppose we really do want to implement square as a macro, but want do so in a safe way. One way
to do this is to require that it is never invoked with a parameter that has a side-effect. LCLint will
check that this constraint holds, if the parameter is annotated to be side-effect free. That is, the
expression corresponding to this parameter must not modify any state, so it does not matter how many
times it is evaluated. The sef annotation is used to denote a parameter that may not have any side-
effects:
 extern int square (/*@sef@*/ int x);
 # define square(x) ((x) *(x))

Now, LCLint will not report an error checking the definition of square even though x is used more
than once.

A message will be reported, however, if square is invoked with a parameter that has a side-effect.
For the code fragment,

square (i++)

21 To be completely correct, all the macro parameters should be evaluated before the macro has any
side-effects. Since checking this would require extensive analysis for occasional modest gain, it was not
considered worth implementing.

Macros 37

LCLint produces the message:

 Parameter 1 to square is declared sef, but the argument may modify i: i++

It is also an error to pass a non-sef macro parameter as a sef macro parameter in the body of a
macro definition. For example,
 extern int sumsquares (int x, int y);
 # define sumsquares(x,y) (square(x) + square(y))

Although x only appears once in the definition of sumsquares it will be evaluated twice since
square is expanded. LCLint reports an error when a non-sef macro parameter is passed as a sef
parameter.

A parameter may be passed as a sef parameter without an error being reported, if LCLint can
determine that evaluating the parameter has no side-effects. For function calls, the modifies clause is
used to determine if a side-effect is possible.22 To prevent many spurious errors, if the called
function has no modifies clause, LCLint will report an error only if sef-uncon is on. Justifiably
paranoid programmers will insist on setting sef-uncon on, and will add modifies clauses to
unconstrained functions that are used in sef macro arguments.

8.2.2 Polymorphism
One problem with our new definition of square is that while the original macro would work for
parameters of any numeric type, LCLint will now report an error is the new version is used with a
non-integer parameter.

We can use the /*@alt <type>,+@> syntax to indicate that an alternate type may be used. For
example,
 extern int /*@alt float@*/ square (/*@sef@*/ int /*@alt float@*/ x);
 # define square(x) ((x) *(x))

declares square for both ints and floats.

Alternate types are also useful for declaring functions for which the return value may be safely
ignored (see Section 10.3.2).

8.3 Controlling Macro Checking
By default, LCLint expands macros normally and checks the resulting code after macros have been
expanded. Flags and control comments may be used to control which macros are expanded and which
are checked as functions or constants.

If the fcn-macros flag is on, LCLint assumes all macros defined with parameter lists implement
functions and checks them accordingly. Parameterized macros are not expanded and are checked as
functions with unknown result and parameter types (or using the types in the prototype, if one is
given). The analogous flag for macros that define constants is const-macros. If it is on, macros
with no parameter lists are assumed to be constants, and checked accordingly. The all-macros
flag sets both fcn-macros and const-macros. If the macro-fcn-decl flag is set, a
message reports parameterized macros with no corresponding function prototype. If the macro-

22 Note that functions which do not produce to the same result each time they are called with the same
arguments should be declared to modify internalState so they will lead to errors if they are
passed as sef parameters.

38 LCLint User’s Guide

const-decl flag is set, a similar message reports macros with no parameters that have no
corresponding constant declaration.

The macro checks described in the previous sections make sense only for macros that are intended to
replace functions or constants. When fcnmacros or constmacros is on, more general macros
need to be marked so they will not be checked as functions or constants, and will be expanded
normally. Macros which are not meant to behave like functions should be preceded by the
/*@notfunction@*/ comment. For example,
 /*@notfunction@*/
 # define forever for(;;)

Macros preceded by notfunction are expanded normally before regular checking is done. If a
macro that is not syntactically equivalent to a statement without a semi-colon (e.g., a macro which
enters a new scope) is not preceded by notfunction, parse errors may result when fcn-macros
or const-macros is on.

8.4 Iterators
It is often useful to be able to execute the same code for many different values. For example, we may
want to sum all elements in an intSet that represents a set of integers. If intSet is an abstract
type, there is no easy way of doing this in a client module without depending on the concrete
representation of the type. Instead, we could provide such a mechanism as part of the type’s
implementation. We call a mechanism for looping through many values an iterator.

The C language provides no mechanism for creating user-defined iterators. LCLint supports a
stylized form of iterators declared using syntactic comments and defined using macros.

Iterator declarations are similar to function declarations except instead of returning a value, they
assign values to their yield parameters in each iteration. For example, we could add this iterator
declaration to intSet.h:

/*@iter intSet_elements (intSet s, yield int el);@*/

The yield annotation means that the variable passed as the second actual argument is declared as a
local variable of type int and assigned a value in each loop iteration.

Defining Iterators
An iterator is defined using a macro. Here’s one (not particularly efficient) way of defining
intSet_elements:

 typedef /*@abstract@*/ struct {
 int nelements;
 int *elements;
 } intSet;
 …
 # define intSet_elements(s,m_el) \
 { int m_i; \
 for (m_i = (0); m_i <= ((s)->nelements); m_i++) { \
 int m_el = (s)->elements[(m_i)];

 # define end_intSet_elements }}

Each time through the loop, the yield parameter m_el is assigned to the next value. After each value
has been assigned to m_el for one iteration, the loop terminates. Variables declared by the iterator

Macros 39

macro (including the yield parameter) are preceded by the macro variable namespace prefix m_
(see Section 8.2) to avoid conflicts with variables defined in the scope where the iterator is used.

Using Iterators
The general structure for using an iterator is,

iter (<params>) stmt; end_iter

For example, a client could use intSet_elements to sum the elements of an intSet:

 intSet s;
 int sum = 0;
 ...
 intSet_elements (s, el) {

sum += el;
 } end_intSet_elements;

The actual parameter corresponding to a yield parameter, el, is not declared in the function scope.
Instead, it is declared by the iterator and assigned to an appropriate value for each iteration.

LCLint will do the following checks for uses of stylized iterators:

• An invocation of the iterator iter must be balanced by a corresponding end, named end_iter.
• All actual parameters must be defined, except those corresponding to yield parameters.
• Yield parameters must be new identifiers, not declared in the current scope or any enclosing scope.

Iterators are a bit awkward to implement, but they enable compact, easily understood client code. For
abstract collection types, an iterator can be used to enable clients to operate on elements of the
collection without breaking data abstraction.

40 LCLint User’s Guide

9. Naming Conventions
Naming conventions tend to be a religious issue. Generally, it doesn't matter too much what naming
convention is followed as long as one is chosen and followed religiously. There are two kinds of
naming conventions supported by LCLint. Type-based naming conventions (Section 9.1) constrain
identifier names according to the abstract types that are accessible where the identifier is defined.
Prefix naming conventions (Section 9.2) constrain the initial characters of identifier names according
to what is being declared and its scope. Naming conventions may be combined or different
conventions may be selected for different kinds of identifiers. In addition, LCLint supports checking
that names do not conflict with names reserved for the standard library or implementation (Section
9.3) and that names are sufficiently distinguishable from other names.

9.1 Type-Based Naming Conventions
Generic naming conventions constrain valid names of identifiers. By limiting valid names,
namespaces may be preserved and programs may be more easily understood since the name gives
clues as to how and where the name is defined and how it should be used.

Names may be constrained by the scope of the name (external, file static, internal), the file in which
the identifier is defined, the type of the identifier, and global constraints.

9.1.1 Czech Names
Czech23 names denote operations and variables of abstract types by preceding the names by
<type>_. The remainder of the name should begin with a lowercase character, but may use any
other character besides the underscore. Types may be named using any non-underscore characters.

The Czech naming convention is selected by the czech flag. If access-czech is on, a function,
variable, constant or iterator named <type>_<name> has access to the abstract type <type>.

Reporting of violations of the Czech naming convention is controlled by different flags depending on
what is being declared:

czech-fcns
Functions and iterators. An error is reported for a function name of the form
<prefix>_<name> where <prefix> is not the name of an accessible type. Note that if
accessczech is on, a type named <prefix> would be accessible in a function beginning
with <prefix>_ . If access-czech is off, an error is reported instead. An error is
reported for a function name that does not have an underscore if any abstract types are
accessible where the function is defined.

23 The most renowned C naming convention is the Hungarian naming convention, introduced by
Charles Simonyi [Simonyi, Charles, and Martin Heller. “The Hungarian Revolution.” BYTE, August
1991, p. 131-38]. The names for LCLint naming conventions follow the tradition of using Central
European nationalities as mnemonics for naming conventions. The LCLint conventions are similar to
the Hungarian naming convention in that they encode type information in names, except that the
LCLint conventions encode the names of accessible abstract types instead of the type of the declaration
of return value. Prefixes used in the Hungarian naming convention are not supported by LCLint.

Naming Conventions 41

czech-vars
czech-constants
czech-macros

Variables, constants and expanded macros. An error is reported if the identifier name starts
with <prefix>_ and prefix is not the name of an accessible abstract type, or if an
abstract type is accessible and the identifier name does not begin with <type>_ where type
is the name of an accessible abstract type. If access-czech is on, the representation of the
type is visible in the constant or variable definition.

czech-types
User-defined types. An error is reported if a type name includes an underscore character.

9.1.2 Slovak Names
Slovak names are similar to Czech names, except they are spelled differently. A Slovak name is of
the form <type><Name> . The type prefix may not use uppercase characters. The remainder of the
name starts with the first uppercase character.

The slovak flag selects the Slovak naming convention. Like Czech names, it may be used with
access-slovak to control access to abstract representations. The slovak-fcns, slovak-
vars, slovak-constants, and slovak-macros flags are analogous to the similar Czech
flags. If slovak-type is on, an error is reported if a type name includes an uppercase letter.

9.1.3 Czechoslovak Names
Czechoslovak names are a combination of Czech names and Slovak names. Operations may be
named either <type>_ followed by any sequence of non-underscore characters, or <type> followed
by an uppercase letter and any sequence of characters. Czechoslovak names have been out of favor
since 1993, but may be necessary for checking legacy code. The czechoslovak-fcns,
czechoslovak-vars, czechoslovak-macros, and czechoslovak-constants flags
are analogous to the similar Czech flags. If czechoslovak-type is on, an error is reported if a
type name contains either an uppercase letter or an underscore character.

9.2 Namespace Prefixes
Another way to restrict names is to constrain the leading character sequences of various kinds of
identifiers. For example, the names of all user-defined types might begin with “T” followed by an
uppercase letter and all file static names begin with an uppercase letter. This may be useful for
enforcing a namespace (e.g., all names exported by the X-windows library should begin with “X”) or
just making programs easier to understand by establishing an enforced convention. LCLint can be
used to constrain identifiers in this way to detect identifiers inconsistent with prefixes.

All namespace flags are of the form, -<context>prefix <string>. For example, the macro
variable namespace restricting identifiers declared in macro bodies to be preceded by “m_” would be
selected by -macrovarprefix "m_". The string may contain regular characters that may appear
in a C identifier. These must match the initial characters of the identifier name. In addition, special
characters (shown in Table 1) can be used to denote a class of characters.24 The * character may be
used at the end of a prefix string to specify the rest of the identifier is zero or more characters

24 Namespace prefixes should probably be described by regular expressions. LCLint uses a simpler,
more limited means for describing names, which is believed to be adequate for describing most useful
naming conventions. If there is sufficient interest, regular expressions may be supported in a future
version of LCLint.

Of course, this
is a complete
jumble to the
uninitiated,
and that’s the
joke.

Charles
Simonyi, on

the Hungarian
naming

convention

42 LCLint User’s Guide

matching the character immediately before the *. For example, the prefix string “T&*” matches “T”
or “TWINDOW” but not “Twin”.

^ Any uppercase letter, A-Z
& Any lowercase letter, a-z
% Any character that is not an uppercase letter (allows lowercase letters, digits and underscore)
~ Any character that is not a lowercase letter (allows uppercase letters, digits and underscore)
$ Any letter (a-z, A-Z)
/ Any letter or digit (A-Z, a-z, 0-9)
? Any character valid in a C identifier
Any digit, 0-9

Table 1. Prefix character codes.

Different prefixes can be selected for the following identifier contexts:
macro-var-prefix Any variable declared inside a macro body
unchecked-macro-prefix Any macro that is not checked as a function or constant

(see Section 8.4)
tag-prefix Tags for struct, union and enum declarations
enum-prefix Members of enum types
type-prefix Name of a user-defined type
file-static-prefix Any identifier with file static scope
glob-var-prefix Any variable (not of function type) with global scope
const-prefix Any constant (see Section 8.1)
iter-prefix An iterator (see Section 8.4)
proto-param-prefix A parameter in a function declaration prototype
external-prefix Any exported identifier

If an identifier is in more than one of the namespace contexts, the most specific defined namespace
prefix is used (e.g., a global variable is also an exported identifier, so if global-var-prefix is
set, it is checked against the variable name; if not, the identifier is checked against the external-
prefix.)

For each prefix flag, a corresponding flag named <prefixname>exclude controls whether
errors are reported if identifiers in a different namespace match the namespace prefix. For example,
if macro-var-prefix-exclude is on, LCLint checks that no identifier that is not a variable
declared inside a macro body uses the macro variable prefix.

Here is a (somewhat draconian) sample naming convention:

-unchecked-macro-prefix "~*" unchecked macros have no lowercase letters
-type-prefix "T^&*" all type names begin with T followed by an uppercase

letter. The rest of the name is all lowercase letters.
+type-prefix-exclude no identifier that does no name a user-defined type

name begin with the type name prefix (set above)
-file-static-prefix "^&&&" file static scope variables begin with an uppercase

letter and three lowercase letters
-proto-param-prefix "p_" all parameters in prototypes must begin with P_
-glob-var-prefix "G" all global variables start with G
+glob-var-prefix-exclude no identifier that is not a global variable starts with G

Naming Conventions 43

The prefix for parameters in function prototypes is useful for making sure parameter names are not in
conflict with macros defined before the function prototype. In most cases, it may be preferable to not
name prototype parameters. If the proto-param-name flag is set, an error is reported for any
named parameter in a prototype declaration. If a proto-param-prefix is set, no error is
reported for unnamed parameters.

It may also be useful to check the names of prototype parameters correspond to the names in
definitions.25 If proto-param-match is set, LCLint will report an error if the name of a
definition parameter does not match the corresponding prototype parameter (after removing the
protoparamprefix).

9.3 Naming Restrictions
Additional naming restrictions can be used to check that names do no conflict with names reserved for
the standard library, and that identifier are sufficiently distinct (either for the compiler and linker, or
for the programmer.) Restrictions may be different for names that are needed by the linker (external
names) and names that are only needed during compilations (internal names). Names of non-
static functions and global variables are external; all other names are internal.

9.3.1 Reserved Names
Many names are reserved for the implementation and standard library. A complete list of reserved
names can be found in [vdL, p. 126-128] or [ANSI, Section 4]. Some name prefixes such as str
followed by a lowercase character are reserved for future library extensions. Most C compilers do
not detect naming conflicts, and they can lead to unpredictable program behavior. If ansi-
reserved is on, LCLint reports errors for external names that conflict with reserved names. If
ansi-reserved-internal is on, errors are also reported for internal names.

If the cpp-names flag is set, LCLint will report identifier names that are keywords or reserved
words in C++. This is useful if the code may later be compiled with a C++ compiler (of course, this
is not enough to ensure the meaning of the code is not changed when it is compiled as C++.)

9.3.2 Distinct Identifiers
LCLint can check that identifiers differ within a given number of characters, optionally ignoring
alphabetic case and differences between characters that look similar. The number of significant
characters may be different for external and internal names.

Using +distinct-external-names sets the number of significant characters for external
names to six and makes alphabetical case insignificant for external names. This is the minimum
significance acceptable in an ANSI-conforming compiler. Most modern compilers exceed these
minimums (which are particularly hard to follow if one uses the Czech or Slovak naming convention).
The number of significant characters can be changed using the external-name-length
<number> flag. If external-name-case-insensitive is on, alphabetical case is ignored
in comparing external names. LCLint reports identifiers that differ only in alphabetic case.

For internal identifiers, a conforming compiler must recognize at least 31 characters and treat
alphabetical cases distinctly. Nevertheless, it may still be useful to check that internal names are
more distinct then required by the compiler to minimize the likelihood that identifiers are confused in

25 While using header files as documentation is not generally recommended, it is common enough
practice that it makes sense to check that parameter names are consistent. A discrepancy may indicate
an error in the parameter order in the function prototype.

44 LCLint User’s Guide

the program. Analogously to external names, the internal-name-length <number> flag
sets the number of significant characters in an internal name and internal-name-case-
insensitive sets the case sensitivity. The internal-name-look-alike flag further
restricts distinctions between identifiers. When set, similar-looking characters match — the
lowercase letter “l” matches the uppercase letter “I” and the number “1”; the letter “O” or “o”
matches the number “0”; “5” matches “S”; and “2” matches “Z”. Identifiers that are not distinct
except for look-alike characters will produce an error message. External names are also internal
names, so they must satisfy both the external and internal distinct identifier checks.

names.c Running LCLint
1 char *stringrev (char *s);

3 int f (int x)
 {
5 int lookalike = 1;
6 int looka1ike = 2;

 if (x > 3)
 {
10 int x = lookalike;
 x += looka1ike;
 }

 return x;
}

> lclint names.c +distinctinternalnames +internalnamelookalike
 +ansireserved
LCLint 2.4 --- 10 Apr 98

names.c:1: Name stringreverse is reserved for future ANSI library
 extensions. Functions that begin with "str" and a lowercase
 letter may be added to <stdlib.h> or <string.h>. (See ANSI,
 Section 4.13.7)
names.c:6: Internal identifier looka1ike is not distinguishable from
 lookalike except by lookalike characters
 names.c:5: Declaration of lookalike
names.c:10: Variable x shadows outer declaration
 names.c:3: Previous declaration of x: int

Finished LCLint checking --- 3 code errors found

 Figure 18. Naming checks.

The decision
to retain the
old six-
character
case-
insensitive
restriction on
significance
was most
painful.

ANSI C
Rationale

Other Checks 45

10. Other Checks
The section describes other errors detected by LCLint that are not directly related to extra information
provided in annotations. Many of the checks are significantly improved, however, because of the
extra information that is known about the program.

10.1 Undefined Evaluation Order
The order in which side effects take place in a C program is not entirely defined by the code. Certain
execution points are known as sequence points — a function call (after the arguments have been
evaluated), the end of a full expression (an initializer, expression in an expression statement, the
control expression of an if, switch, while or do statement, each expression of a for statement,
and the expression in a return statement), and after the first operand or a &&, ||, ? or , operand.

All side effects before a sequence point must be complete before the sequence point, and no
evaluations after the sequence point shall have taken place [ANSI, Section 2.1.2.3]. Between
sequence points, side effects and evaluations may take place in any order. Hence, the order in which
expressions or arguments are evaluated is not specified. Compilers are free to evaluate function
arguments and parts of expressions (that do not contain sequence points) in any order. The behavior
of code is undefined if it uses a value that is modified by another expression that is not required to be
evaluated before or after the other use.

LCLint detects instances where undetermined order of evaluation produces undefined behavior. If
modifies clauses and globals lists are used, this checking is enabled in expressions involving function
calls. Evaluation order checking is controlled by the eval-order flag.

order.c Running LCLint
extern int glob;

extern int mystery (void);

extern int modglob (void)
 /*@globals glob@*/
 /*@modifies glob@*/ ;

int f (int x, int y[])
{
11 int i = x++ * x;

13 y[i] = i++;
14 i += modglob() * glob;
15 i += mystery() * glob;
16 return i;
}

> lclint order.c +evalorderuncon
LCLint 2.4 --- 10 Apr 98

order.c:11: Expression has undefined behavior (value of right
 operand modified by left operand): x++ * x
order.c:13: Expression has undefined behavior (left operand uses
 i, modified by right operand): y[i] = i++
order.c:14: Expression has undefined behavior (value of right
 operand modified by left operand): modglob() * glob
 From the modifies clause, modglob may modify glob.
 The behavior is undefined since we don’t know if glob
 is evaluated before, after or during the modification.
order.c:15: Expression has undefined behavior (unconstrained
 function mystery used in left operand may set global variable
 glob used in right operand): mystery() * glob
 Not reported without +evalorderuncon.

Finished LCLint checking --- 4 code errors found

Figure 19. Evaluation order

When checking systems without modifies and globals information, evaluation order checking may
report errors when unconstrained functions are called in procedure arguments. Since LCLint has no
annotations to constrain what these functions may modify, it cannot be guaranteed that the evaluation

46 LCLint User’s Guide

order is defined if another argument calls an unconstrained function or uses a global variable or
storage reachable from a parameter to the unconstrained function. Its best to add modifies and globals
clauses to constrain the unconstrained functions in ways that eliminate the possibility of undefined
behavior. For large legacy systems, this may require too much effort. Instead, the -eval-order-
uncon flag may be used to prevent reporting of undefined behavior due to the order of evaluation of
unconstrained functions.

10.2 Problematic Control Structures
A number of control structures that are syntactically legal may indicate likely bugs in programs.
LCLint can detect errors involving likely infinite loops (Section 10.2.1), fall through cases and
missing cases in switch statements (Section 10.2.2), break statements within deeply nested loops
or switches (Section 10.2.3), clauses of if, while or for statements that are empty statements or
unblocked single statements (Section 10.2.4) and incomplete if-else logic (Section 10.2.5). Although
any of these may appear in a correct program, depending on the programming style used they may
indicate likely bugs or style violations that should be detected and eliminated.

10.2.1 Likely Infinite Loops
LCLint reports an error if it detects a loop that appears to be infinite. An error is reported for a loop
that does not modify any value used in its condition test inside the body of the loop or in the condition
test itself. This checking is enhanced by modifies clauses and globals lists since they provide more
information about what global variable may be used in the condition test and what values may be
modified by function calls in the loop body.

Figure 20 shows examples of infinite loops detected by LCLint. An error is reported for the loop in
line 14, since neither of the values used in the loop condition (x directly and glob1 through the call
to f) is modified by the body of the loop. If the declaration of g is changed to include glob1 in the
modifies clause no error is reported. (In this example, if we assume the annotations are correct, then
the programmer has probably called the wrong function in the loop body. This isn’t surprising, given
the horrible choices of function and variable names!)

If an unconstrained function is called within the loop body, LCLint will assume that it modifies a
value used in the condition test and not report an infinite loop error, unless infloopsuncon is on.
If infloopsuncon is on, LCLint will report infinite loop errors for loops where there is no explicit
modification of a value used in the condition test, but where they may be an undetected modification
through a call to an unconstrained function (e.g., line 15 in Figure 20).

10.2.2 Switches
The automatic fall-through of C switch statements is almost never the intended behavior.26 LCLint
detects case statements with code that may fall through to the next case. The casebreak flag
controls reporting of fall through cases. A single fall through case may be marked by preceding the
case keyword with /*@fallthrough@*/ to indicate explicitly that execution falls through to this
case.

26 Peter van der Linden estimates that default fall through is the wrong behavior 97% of the time.
[vdL95, p. 37]

Other Checks 47

loop.c Running LCLint
extern int glob1, glob2;

extern int f (void)
 /*@globals glob1@*/
 /*@modifies nothing@*/ ;

extern void g (void)
 /*@modifies glob2@*/ ;

extern void h (void) ;

void upto (int x)
{
14 while (x > f()) g();
15 while (f() < 3) h();
}

> lclint loop.c +infloopsuncon
LCLint 2.4 --- 10 Apr 98

loop.c: (in function upto)
loop.c:14: Suspected infinite loop. No value used in loop test (x,
 glob1) is modified by test or loop body.
loop.c:15: Suspected infinite loop. No condition values modified.
 Modification possible through unconstrained calls: h

Finished LCLint checking --- 2 code errors found

An error is reported for line 14 since the only value
modified by the loop test or body if glob2 and the value
of the loop test does not depend on glob2.

The error for line 15 would not be reported if
+infloopsuncon wasn’t used.

Figure 20. Infinite loop checking

For switches on enum types, LCLint reports an error if a member of the enumerator does not appear
as a case in the switch body (and there is no default case). (Controlled by misscase.)

switch.c Running LCLint
typedef enum {
 YES, NO, DEFINITELY,
 PROBABLY, MAYBE } ynm;

void decide (ynm y)
{
 switch (y)
 {
 case PROBABLY:
 case NO: printf ("No!");
11 case MAYBE: printf ("Maybe");
 /*@fallthrough@*/
 case YES: printf ("Yes!");
14 }
}

> lclint switch.c
LCLint 2.4 --- 10 Apr 98

switch.c: (in function decide)
switch.c:11: Fall through case (no preceding break)
switch.c:14: Missing case in switch: DEFINITELY

Finished LCLint checking --- 2 code errors found

No fall through error is reported for the NO case,
since there are no statements associated with the
previous case. The /*@fallthrough@*/
comment prevents a message from being
produced for the YES case.

Figure 21. Switch checking.

10.2.3 Deep Breaks
There is no syntax provided by C (other than goto) for breaking out of a nested loop. All break
and continue statements act only on the innermost surrounding loop or switch. This often leads to
serious problems27 when a programmer intends to break the outer loop or switch instead. LCLint
optionally reports errors for break and continue statements in nested contexts.

27 “Software Glitch Cripples AT&T Network”, Telephony, 22 January 1990.

48 LCLint User’s Guide

Four types of break errors are reported:

• break inside a loop (while or for) that is inside a loop. Controlled by looploopbreak. To
indicate that a break is inside an inner loop, precede the break by /*@innerbreak@*/.

• break inside a loop that is inside a switch statement. Controlled by switchloopbreak. To
mark the break as a loop break, precede the break by /*@loopbreak@*/.

• break inside a switch statement that is inside a loop. Controlled by loopswitchbreak. To
mark the break as a switch break, precede the break by /*@switchbreak@*/.

• break inside a switch inside another switch. Controlled by switchswitchbreak. To
indicate that the break is for the inner switch, use /*@innerbreak@*/.

Since continue only makes sense within loops, errors are only reported for continue statements
within nested loops. (Controlled by looploopcontinue.) A safe inner continue may be
preceded by /*@innercontinue@*/ to suppress error messages locally. The deepbreak flag
sets all nested break and continue checking flags.

LCLint reports an error if the marker preceding a break is not consistent with its effect. An error is
reported if innerbreak precedes a break that is not breaking an inner loop, switchbreak
precedes a break that is not breaking a switch, or loopbreak precedes a break that is not
breaking a loop.

10.2.4 Loop and If Bodies
An empty statement after an if, while or for often indicates a potential bug. A single statement
(i.e., not a compound block) after an if, while or for is not likely to indicate a bug, but make the
code harder to read and edit. LCLint can report errors for if or loop statements with empty bodies or
bodies that are not compound statements. Separate flags control checking for statements following an
if, while or for:

• [if, while, for]empty — report errors for empty bodies (e.g., if (x > 3) ;)
• [if, while, for]block — report errors for non-block bodies (e.g., if (x > 3) x++;)

The if statement checks also apply to the body of the else clause. An ifblock error is not
reported if the body of the else clause is an if statement, to allow else if chains.

10.2.5 Complete if-else Logic
Although it may be perfectly reasonable in many contexts, an if-else chain with no final else may
indicate missing logic or forgetting to check error cases. If elseif-complete is on, LCLint
reports errors when an if statement that is the body of an else clause does not have a matching
else clause. For example, the code,

 if (x == 0) { return "nil"; }
 else if (x == 1) { return "many"; }

produces an error message since the second if has no matching else branch.

10.3 Suspicious Statements
LCLint detects errors involving statements with no apparent effects (Section 10.3.1) and statements
that ignore the result of a called function (Section 10.3.2).

10.3.1 Statements with No Effects
LCLint can report errors for statements that have no effect. (Controlled by no-effect.) Because
of modifies clauses, LCLint can detect more errors than traditional checkers. Unless the no-

Other Checks 49

effect-uncon flag is on, errors are not reported for statements that involve calls to unconstrained
functions since the unconstrained function may cause a modification.

noeffect.c Running LCLint
extern void
 nomodcall (int *x) /*@*/;

Recall that /*@*/ is shorthand for
modifies nothing and use no globals.

extern void mysterycall (int *x);

int noeffect (int *x, int y)
{
 y == *x;
 nomodcall (x);
 mysterycall (x);
 return *x;
}

> lclint noeffect.c +noeffectuncon
LCLint 2.4 --- 10 Apr 98

noeffect.c:6: Statement has no effect: y == *x
noeffect.c:7: Statement has no effect: nomodcall(x)
noeffect.c:8: Statement has no effect (possible
 undetected modification through call to
 unconstrained function mysterycall):
 mysterycall(x)

Not reported without +noeffectuncon.

Finished LCLint checking --- 3 code errors found

Figure 22. Statements with no effect.

10.3.2 Ignored Return Values
LCLint reports an error when a return value is ignored. Checking may be controlled based on the
type of the return value: ret-val-int controls reporting of ignored return values of type int, and
ret-val-bool for return values of type bool, and ret-val-others for all other types. A
function statement may be cast to void to prevent this error from being reported.

Alternate types (Section 8.2.2) can be used to declare functions that return values that may safely be
ignored by declaring the result type to alternately by void. Several functions in the standard library
are specified to alternately return void to prevent ignored return value errors for standard library
functions (e.g., strcpy) where the result may be safely ignored (see Appendix F).

Figure 23 shows example of ignored return value errors reported by LCLint.

10.4 Unused Declarations
LCLint detects constants, functions, parameters, variables, types, enumerator members, and structure
or union fields that are declared but never used. The flags constuse, fcnuse, paramuse,
varuse, typeuse, enummemuse and fielduse control whether unused declaration errors are
reported for each kind of declaration. Errors for exported declarations are reported only if topuse is
on (see Section 10.5).

The /*@unused@*/ annotation can be used before a declaration to indicate that the item declared
need not be used. Unused declaration errors are not reported for identifiers declared with unused.

50 LCLint User’s Guide

ignore.c Running LCLint
extern int fi (void);
extern bool fb (void);
extern int /*@alt void@*/
 fv (void);

int ignore (void)
{
 8 fi ();
 9 (void) fi ();
10 fb ();
11 fv ();
12 return fv ();
}

> lclint ignore.c
LCLint 2.4 --- 10 Apr 98

ignore.c: (in function ignore)
ignore.c:8: Return value (type int) ignored: fi()
ignore.c:10: Return value (type bool) ignored: fb()

Finished LCLint checking --- 2 code errors found

The message for line 8 would not be reported if
-retvalint is set; for line 10, if -retvalbool is set.
No message is reported for line 9 because the result is cast
to void, and no message is reported for line 11 because fv
is declared to alternately return void.

Figure 23. Ignored return values.

10.5 Complete Programs
LCLint can be used on both complete and partial programs. When checking complete programs,
additional checks can be done to ensure that every identifier declared by the program is defined and
used, and that functions that do not need to be exported are declared static.

LCLint checks that all declared variables and functions are defined (controlled by compdef).
Declarations of functions and variables that are defined in an external library, may be preceded by
/*@external@*/ to suppress undefined declaration errors.

LCLint reports external declarations that are unused (controlled by topuse). Which declarations
are reported also depends on the declaration use flags (see Section 10.4).

The partial flag sets flags for checking a partial system. Top-level unused declarations, undefined
declarations, and unnecessary external names are not reported if partial is set.

10.5.1 Unnecessary External Names
LCLint can report variables and functions that are declared with global scope (i.e., without using
static), that are not used outside the file in which they are defined. In a stand-alone system, these
identifiers should usually be declared using static to limit their scope. If the export-static
flag is on, LCLint will report declarations that could have file scope. It should only be used when all
relevant source files are listed on the LCLint command line; otherwise, variables and functions may
be incorrectly identified as only used in the file scope since LCLint did not process the other file in
which they are used.

10.5.2 Declarations Missing from Headers
A common practice in C programming styles, is that every function or variable exported by M.c
is declared in M.h. If the export-header flag is on, LCLint will report exported declarations in
M.c that are not declared in M.h.

Other Checks 51

10.6 Compiler Limits
The ANSI Standard includes limits on minimum numbers that a conforming compiler must support.
Whether of not a particular compiler exceeds these limits, it is worth checking that a program does not
exceed them so that other compilers may safely compile it. In addition, exceeding a limit may
indicate a problem in the code (e.g., it is too complex if the control nest depth limit is exceeded) that
should be fixed regardless of the compiler. LCLint checks the following limits. For each limit, the
maximum value may be set from the command line (or locally using a stylized comment). If the
ansi-limits flag is on, all limits are checked with the minimum values of a conforming compiler.

include-nest
Maximum nesting depth of file inclusion (#include). (ANSI minimum is 8)

control-nest-depth
Maximum nesting of compound statements, control structures. (ANSI minimum is 15)

num-enum-members
Number of members in an enum declaration. (ANSI minimum is 127)

num-struct-fields
Number of fields in a struct or union declaration. (ANSI minimum is 127)

Since human
beings
themselves
are not fully
debugged yet,
there will be
bugs in your
code no matter
what you do.

Chris
Mason,

Zero-defects
memo

(Microsoft
Secrets,

Cusumano
and Selby)

From bnelson@netcom.com (Bob Nelson)
Subject Re: NT vs. Linux
Date Fri, 5 Jul 1996 05:11:22 GMT
Newsgroups comp.os.linux.advocacy,comp.sys.ibm.pc.hardware,

comp.os.ms-windows.win95.misc, comp.os.mswindows.nt.misc,
alt.flame,alt.fan.bill-gates,alt.destroy.microsoft

--
Toni Anzlovar (toni.anzlovar@kiss.uni-lj.si) wrote:

> Why does everybody want to RUN WORD? Why does nobody want to write and edit
> text?

Simple. A *tremendous* number of documents are written using Microsoft Word. One that is
particularly ironic is the guide to LCLint -- a very popular lint tool -- often the lint of choice in the
linux world.

52 LCLint User’s Guide Appendix

Appendix A Availability
The web home page for LCLint is

http://www.sds.lcs.mit.edu/lclint/

It includes this guide in HTML format, samples demonstrating LCLint, and links to related web sites.

LCLint can be downloaded from
http://www.sds.lcs.mit.edu/lclint/download.html

or obtained via anonymous ftp from

ftp://sds.lcs.mit.edu/pub/lclint/

Win32 and several UNIX platforms are supported. Source code is freely available.

Appendix B Communication
LCLint development is largely driven by suggestions and comments from users. We are also very
interested in hearing about your experiences using LCLint in developing or maintaining programs,
enforcing coding standards, or teaching courses. For general information, suggestions, and questions
on LCLint send mail to lclint@sds.lcs.mit.edu.

To report a bug in LCLint send a message to lclint-bug@sds.lcs.mit.edu.

There are two mailing lists associated with LCLint:
lclint-announce@sds.lcs.mit.edu

Reserved for announcements of new releases and bug fixes. (Everyone who sends mail
regarding LCLint is added to this list.)

lclint-interest@sds.lcs.mit.edu
Informal discussions on the use and development of LCLint. To subscribe, send a (human-
readable) message to lclint-request@sds.lcs.mit.edu or use the form at
http://www.sds.mit.edu/lclint/lists.html. The mailing list is archived at
http://www.sds.mit.edu/lclint/lclint-interest/

LCLint discussions relating to checks enabled by specifications or annotations are welcome in the
comp.specification.larch Usenet group. Messages more focused on C-specific checking
would be more appropriate for the lclint-interest list of one of the C language groups.

Annotations 53

Appendix C Flags
Flags can be grouped into four major categories:

• Global flags for controlling initializations and global behavior
• Message format flags for controlling how messages are displayed
• Mode selectors for coarse control of LCLint checking
• Checking flags that control checking and what classes of messages are reported.

Global flags can be used in initialization files and at the command line; all other flags may also be
used in control comments.

Global Flags
Global flags can be set at the command line or in an options file, but cannot be set locally using
stylized comments. These flags control on-line help, initialization files, pre-processor flags, libraries
and output.

Help
On-line help provides documentation on LCLint operation and flags. When a help flag is used, no
checking is done by LCLint. Help flags may be preceded by - or +.

help
Display general help overview, including list of additional help topics.

help <topic>
Display help on <topic>. Available topics:

annotations describe annotations
comments describe control comments
flags describe flag categories
flags <category> all flags pertaining to <category> (one of the categories listed by

lclint -help flags)
flags alpha all flags in alphabetical order
flags full print a full description of all flags
mail print information on mailing lists
modes flags settings in modes
prefixcodes character codes for setting namespace prefixes
references print references to relevant papers and web sites
vars describe environment variables
version print maintainer and version information

help <flag>
Describe flag <flag>. (May list several flags.)

warn-flags
Display a warning when a flag is set in a surprising way. An error is reported if an obsolete
(LCLint Version 1.4 or earlier) flag is set, a flag is set to its current value (i.e., the + or - may
be wrong), or a mode selector flag is set after mode checking flags that will be reset by the
mode were set. By default, warn-flags is on. To suppress flag warnings, use -warn-
flags.

54 LCLint User’s Guide Appendix

Initialization
These flags control directories and files used by LCLint. They may be used from the command line or
in an options file, but may not be used as control comments in the source code. Except where noted.
they have the same meaning preceded by - or +.

tmpdir <directory>
Set directory for writing temp files. Default is /tmp/.

I<directory>
Add directory to path searched for C include files. Note there is no space after the I, to be
consistent with C preprocessor flags.

S<directory>
Add directory to path search for .lcl specification files.

f <file>
Load options file <file>. If this flag is used from the command line, the default
~/.lclintrc file is not loaded. This flag may be used in an options file to load
in another options file.

nof
Prevents the default options files (./.lclintrc and ~/.lclintrc) from being
loaded. (Setting -nof overrides +nof, causing the options files to be loaded normally.)

sys-dirs
Set directories for system files (default is "/usr/include"). Separate directories with
colons (e.g., "/usr/include:/usr/local/lib"). Flag settings propagate to files in a
system directory. If -sys-dir-errors is set, no errors are reported for files in system
directories.

Pre-processor
These flags are used to define or undefine pre-processor constants. The -I<directory> flag is
also passed to the C pre-processor.

D<initializer>
Passed to the C pre-processor.

U<initializer>
Passed to the C pre-processor.

Libraries
These flags control the creation and use of libraries.

dump <file>
Save state in <file> for loading. The default extension .lcd is added if <file> has no
extension.

load <file>
Load state from <file> (created by -dump). The default extension .lcd is added if <file>
has no extension. Only one library file may be loaded.

By default, the standard library is loaded if the -load flag is not used to load a user library. If no
user library is loaded, one of the following flags may be used to select a different standard library.
Precede the flag by + to load the described library (or to prevent a library from being loaded using
no-lib). See Appendix F for information on the provided libraries.

no-lib
Do not load any library. This prevents the standard library from being loaded.

Annotations 55

ansi-lib
Use the ANSI standard library (selected by default).

strict-lib
Use strict version of the ANSI standard library.

posix-lib
Use the POSIX standard library.

posix-strict-lib
Use the strict version of the POSIX standard library.

unix-lib
Use UNIX version of standard library.

unix-strict-lib
Use the strict version of the UNIX standard library.

Output
These flags control what additional information LCLint prints. Setting +<flag> causes the
described information to be printed; setting -<flag> prevents it. By default, all these flags are off.

use-stderr
Send error messages to standard error (instead of standard output).

show-summary
Show a summary of all errors reported and suppressed. Counts of suppressed errors are not
necessarily correct since turning a flag off may prevent some checking from being done to save
computation, and errors that are not reported may propagate differently from when they are
reported.

show-scan
Show file names are they are processed.

show-all-uses
Show list of uses of all external identifiers sorted by number of uses.

stats
Display number of lines processed and checking time.

time-dist
Display distribution of where checking time is spent.

quiet
Suppress herald and error count. (If quiet is not set, LCLint prints out a herald with version
information before checking begins, and a line summarizing the total number of errors
reported.)

which-lib
Print out the standard library filename and creation information.

limit <number>
At most <number> similar errors are reported consecutively. Further errors are suppressed,
and a message showing the number of suppressed messages is printed.

Expected Errors
Normally, LCLint will expect to report no errors. The exit status will be success (0) if no errors are
reported, and failure if any errors are reported. Flags can be used to set the expected number of
reported errors. Because of the provided error suppression mechanisms, these options should
probably not be used for final checking real programs but may be useful in developing programs using
make.

expect <number>
Exactly <number> code errors are expected. LCLint will exit with failure exit status unless
<number> code errors are detected.

56 LCLint User’s Guide Appendix

Message Format
These flags control how messages are printed. They may be set at the command line, in options files,
or locally in syntactic comments. The line-len and limit flags may be preceded by + or - with
the same meaning; for the other flags, + turns on the describe printing and - turns it off. The box to
the left of each flag gives its default value.

show-column
Show column number where error is found.

show-func
Show name of function (or macro) definition containing error. The function name is printed
once before the first message detected in that function.

show-all-conjs
Show all possible alternate types (see Section 8.2.2).

paren-file-format
Use <file>(<line>) format in messages.

hints
Provide hints describing an error and how a message may be suppressed for the first error
reported in each error class.

force-hints
Provide hints for all errors reported, even if the hint has already been displayed for the same
error class.

line-len <number>
Set length of maximum message line to <number> characters. LCLint will split messages
longer than <number> characters long into multiple lines.

Mode Selector Flags
Mode selects flags set the mode checking flags to predefined values. They provide a quick coarse-
grain way of controlling what classes of errors are reported. Specific checking flags may be set after a
mode flag to override the mode settings. Mode flags may be used locally, however the mode settings
will override specific command line flag settings. A warning is produced if a mode flag is used after a
mode checking flag has been set.

These are brief descriptions to give a general idea of what each mode does. To see the complete flag
settings in each mode, use lclint -help modes. A mode flag has the same effect when used with
either + or -.

weak
Weak checking, intended for typical unannotated C code. No modifies checking, macro
checking, rep exposure, or clean interface checking is done. Return values of type int may be
ignored. The types bool, int, char and user-defined enum types are all equivalent. Old
style declarations are unreported.

standard
The default mode. All checking done by weak, plus modifies checking, global alias checking,
use all parameters, using released storage, ignored return values or any type, macro checking,
unreachable code, infinite loops, and fall-through cases. The types bool, int and char are
distinct. Old style declarations are reported.

+

+

-

-

+

-

80

Annotations 57

 checks
Moderately strict checking. All checking done by standard, plus must modification
checking, rep exposure, return alias, memory management and complete interfaces.

strict
Absurdly strict checking. All checking done by checks, plus modifications and global
variables used in unspecified functions, strict standard library, and strict typing of C operators.
A special reward will be presented to the first person to produce a real program that produces
no errors with strict checking.

Checking Flags
These flags control checking done by LCLint. They may be set locally using syntactic comments,
from the command line, or in an options file. Some flags directly control whether a certain class of
message is reported. Preceding the flag by + turns reporting on, and preceding the flag by - turns
reporting off. Other flags control checking less directly by determining default values (what
annotations are implicit), making types equivalent (to prevent certain type errors), controlling
representation access, etc. For these flags, the effect of + is described, and the effect of - is the
opposite (or explicitly explained if there is no clear opposite). The organization of this section
mirrors Sections 3-10.

Key
To the left of each flag name is a flag descriptor encoding what kind of flag it is and its default value.
The descriptions are:

A plain flag. The value after the colon gives the default setting (e.g., this flag is off.)
A mode checking flag. The value of the flag is set by the mode selector. The four signs give the
setting in the weak, standard, checks and strict modes. (e.g., this flag is off in the weak and standard
modes, and on in the checks and strict modes.)
A shortcut flag. This flag sets other flags, so it has no default value.

Types

Abstract Types
imp-abstract

Implicit abstract annotation for type declarations that do not use concrete.
mut-rep

Representation of mutable type has sharing semantics.

Access (Section 3.1)
access-module

An abstract type defined in M.h (or specified in M.lcl) is accessible in M.c.
access-file

An abstract type named type is accessible in files named type.<extension> .
access-czech

An abstract type named type may be accessible in a function named type_name. (see
Section 9.1.1)

access-slovak
An abstract type named type may be accessible in a function named typeName. (see
Section.9.1.2)

plain: -
m:--++

shortcut

plain: -

m:-+++

plain: +

plain: +

plain: +

plain: -

58 LCLint User’s Guide Appendix

access-czechoslovak
An abstract type named type may be accessible in a function named type_name or
typeName. (see Section 9.1.3)

access-all
Sets access-module, access-file and access-czech.

Boolean Types (Section 3.3)
These flags control the type name used to represent booleans, and whether the boolean type is
abstract.

bool
Boolean type is an abstract type.

booltype <name>
Set name of boolean type to <name>.

boolfalse <name>
Set name of boolean false to <name>.

booltrue <name>
Set name of boolean true to <name>.

Predicates
pred-bool-ptr

Type of condition test is a pointer.
pred-bool-int

Type of condition test is an integral type.
pred-bool-others

Type of condition test is not a boolean, pointer or integral type.
pred-bool

Sets predboolint, predboolptr and preboolothers.
pred-assign

The condition test is an assignment expression. If an assignment is intended, add an extra
parentheses nesting (e.g., if ((a = b)) ...).

Primitive Operations
ptr-arith

Arithmetic involving pointer and integer.
ptr-negate

Allow the operand of the ! operator to be a pointer.
bitwise-signed

An operand to a bitwise operator is not an unsigned value. This may have unexpected results
depending on the signed representations.

shift-signed
The left operand to a shift operator is not an unsigned value.

strict-ops
Primitive operation does not type check strictly.

sizeof-type
Operand of sizeof operator is a type. (Safer to use expression, int *x = sizeof
(*x); instead of sizeof (int).)

plain: -

shortcut

plain: -

plain:
unset
plain:
FALSE
plain:
TRUE

m:--++

m:-+++

m:++++

shortcut

plain: +

m:---+

m:++--

m:---+

m:-+++

m:---+

m:---+

Annotations 59

Format Codes
format-code

Invalid format code in format string for printflike or scanflike function.
format-type

Type-mismatch in parameter corresponding to format code in a printflike or scanflike
function.

Main
main-type

Type of main does not match expected type (function returning an int, taking no parameters
or two parameters of type int and char **.)

Comparisons
bool-compare

Comparison between boolean values. This is dangerous since there may be multiple TRUE
values if any non-zero value is interpreted as TRUE.

real-compare
Comparison involving float or double values. This is dangerous since it may produce
unexpected results because floating point representations are inexact.

ptr-compare
Comparison between pointer and number.

Type Equivalence
void-abstract

Allow void * to match pointers to abstract types. (Casting a pointer to an abstract type to a
pointer to void is okay if +void-abstract is set.)

cast-fcn-ptr
 A pointer to a function is cast to (or used as) a pointer to void (or vice versa).

forward-decl
Forward declarations of pointers to abstract representation match abstract type.

imp-type
A variable declaration has no explicit type. The type is implicitly int.

incomplete-type
A formal parameter is declared with an incomplete type (e.g., int[][]).

char-index
Allow char to index arrays.

enum-index
Allow members of enum type to index arrays.

bool-int
Make bool and int are equivalent. (No type errors are reported when a boolean is used
where an integral type is expected and vice versa.)

char-int
Make char and int types equivalent

enum-int
Make enum and int types equivalent

float-double
Make float and double types equivalent

ignore-quals
Ignore type qualifiers (long, short, unsigned).

plain: +

plain: +

plain: +

m:-+++

m:-+++

m:-+++

m:+---

plain: +

m:+---

m:-+++

plain: +

m:+---

m:----

m:+---

m:+---

m:++--

m:+---

m:----

60 LCLint User’s Guide Appendix

relax-quals
Report qualifier mismatches only if dangerous (information may be lost since a larger type is
assigned to (or passed as) a smaller one or a comparison uses signed and unsigned
values.)

ignore-signs
Ignore signs in type comparisons (unsigned matches signed).

long-integral
Allow long type to match an arbitrary integral type (e.g., dev_t).

long-unsigned-integral
Allow unsigned long type to match an arbitrary integral type (e.g., dev_t).

match-any-integral
Allow any integral type to match an arbitrary

long-unsigned-unsigned-integral
Allow unsigned long type to match an arbitrary unsigned integral type (e.g., size_t).

long-signed-integral
Allow long type to match an arbitrary signed integral type (e.g., ssize_t).

num-literal
Integer literals can be used as floats.

char-int-literal
A character constant may be used as an int.

zero-ptr
Literal 0 may be used as a pointer.

relax-types
Allow all numeric types to match.

Function Interfaces

Modification (Section 4.1)
modifies

Undocumented modification of caller-visible state. Without +moduncon, modification errors
are only reported in the definitions of functions declared with a modifies clause (or specified).

must-mod
Documented modification is not detected. An object listed in the modifies clause for a
function, is not modified by the implementation.

mod-uncon
Report modification errors in functions declared without a modifies clause.(Sets mod-
nomods, mod-globs-nomods and mod-strict-globs-nomods.)

mod-nomods
Report modification errors (not involving global variables) in functions declared without a
modifies clause.

mod-uncon-nomods
An unconstrained function is called in a function body where modifications are checked.
Since the unconstrained function may modify anything, there may be undetected modifications
in the checked function.

mod-internal-strict
A function that modifies internalState is called from a function that does not list
internalState in its modifies clause.

mod-file-sys
A function modifies the file system but does not list fileSystem in its modifies clause.

m:++--

m:----

plain: -

m:+---

plain: -

plain: -

m:+---

plain: +

plain: -

plain: +

plain: -

plain: +

m:--++

shortcut

m:---+

m:---+

m:---+

m:---+

Annotations 61

Global Variables (Section 4.2)
Errors involving the use and modification of global and file static variables are reported depending on
flag settings, annotations where the global variable is declared, and whether or not the function where
the global is used was declared with a globals clause.

globs
Undocumented use of a checked global variable in a function with a globals list.

glob-use
A global listed in the globals list is not used in the implementation.

glob-noglobs
Use of a checked global in a function with no globals list.

internal-globs
Undocumented use of internal state (should have globals internalState).

internal-globs-noglobs
 Use of internal state in function with no globals list.
glob-state

A function returns with global in inconsistent state (null or undefined)
all-globs

Report use and modification errors for globals not annotated with unchecked.
check-strict-globs

Report use and modification errors for checkedstrict globals.

Modification of Global Variables
mod-globs

Undocumented modification of a checked global variable.
mod-globs-unchecked

Undocumented modification of an unchecked global variable.
mod-globs-nomods

Undocumented modification of a checked global variable in a function with no modifies clause.
mod-strict-globs-nomods

Undocumented modification of a checkedstrict global variable in a function declared
with no modifies clause.

Globals Lists and Modifies Clauses
warn-missing-globs

Global variable used in modifies clause is not listed in globals list. (The global is added to the
globals list.)

warn-missing-globs-noglobs
Global variable used in modifies clause of a function with no globals list.

globs-imp-mods-nothing
A function declared with a globals list but no modifies clause is assumed to modify nothing.

mods-imp-noglobs
A function declared with a modifies clause but no globals list is assumed to use no globals.

plain: +

m:++++

m:---+

m:---+

m:---+

m:-+++

m:--++

m:++++

m:-+++

m:---+

m:---+

m:---+

m:---+

m:---+

m:--++

m:----

62 LCLint User’s Guide Appendix

Implicit Checking Qualifiers
imp-checked-globs

Implicit checked qualifier on global variables with no checking annotation.
imp-checked-statics

Implicit checked qualifier file static scope variables with no checking annotation.
imp-checkmod-globs

Implicit checkmod qualifier on global variables with no checking annotation.

imp-checkmod-statics
Implicit checkmod qualifier file static scope variables with no checking annotation.

imp-checkedstrict-globs
Implicit checked qualifier on global variables with no checking annotation.

imp-checkedstrict-statics
Implicit checked qualifier file static scope variables with no checking annotation.

imp-checkmod-internals
Implicit checkmod qualifier on function scope static variables with no checking annotation.
imp-globs-weak

Global Aliasing
glob-alias

Function returns with global aliasing external state (sets checkstrict-glob-alias,
checked-glob-alias, checkmod-glob-alias and unchecked-glob-alias).

checkstrict-glob-alias
Function returns with a checkstrict global aliasing external state.

checked-glob-alias
Function returns with a checked global aliasing external state.

checkmod-glob-alias
Function returns with a checkmod global aliasing external state.

unchecked-glob-alias
Function returns with an unchecked global aliasing external state.

Declaration Consistency (Section 4.3)
incon-defs

Identifier redeclared or redefined with inconsistent type.
incon-defs-lib

Identifier defined in a library is redefined with inconsistent type
overload

Standard library function overloaded.
match-fields

A struct or enum type is redefined with inconsistent fields or members.

m:----

m:----

m:----

m:----

m:---+

m:---+

m:--++

m:-+++

shortcut

m:-+++

m:-+++

m:-+++

m:--++

m:-+++

m:-+++

m:----

m:-+++

Annotations 63

Memory Management
Reporting of memory management errors is controlled by flags setting checking and implicit
annotations and code annotations.

Deallocation Errors (Section 5.2)
use-released

Storage used after it may have been released.
strict-use-released

An array element used after it may have been released.

Inconsistent Branches
branch-state

Storage has inconsistent states of alternate paths through a branch (e.g., it is released in the
true branch of an if-statement, but there is no else branch.)

strict-branch-state
Storage through array fetch has inconsistent states of alternate paths through a branch. Since
array elements are not checked accurately, this may lead to spurious errors.

dep-arrays
Treat array elements as dependent storage. Checking of array elements cannot be done
accurately by LCLint. If dep-arrays is not set, array elements are assumed to be
independent, so code that releases the same element more than once will produce no error. If
dep-arrays is set, array elements are assumed to be dependent, so code that releases the
same element more that once will produce an error, but so will code that releases different
elements correctly will produce a spurious error.

Memory Leaks
must-free

Allocated storage was not released before return or scope exit Errors are reported for only,
fresh or owned storage.

comp-destroy
All only references derivable from out only parameter of type void * must be released.
(This is the type of the parameter to free, but may also be used for user-defined deallocation
functions.)

strict-destroy
Report complete destruction errors for array elements that may have been released. (If
strict-destroy is not set, LCLint will assume that if any array element was released, the
entire array was correctly released.)

m:-+++

m:---+

m:-+++

m:---+

m:--++

m:-+++

m:-+++

m:---+

64 LCLint User’s Guide Appendix

Transfer Errors
A transfer error is reported when storage is transferred (by an assignment, passing a parameter, or
returning) in a way that is inconsistent.

mem-trans
Sets all memory transfer errors flags.

only-trans
Only storage transferred to non-only reference (memory leak).

ownedtrans
Owned storage transferred to non-owned reference (memory leak).

fresh-trans
Newly-allocated storage transferred to non-only reference (memory leak).

shared-trans
Shared storage transferred to non-shared reference

dependent-trans
Inconsistent dependent transfer. Dependent storage is transferred to a non-dependent
reference.

temp-trans
Temporary storage (associated with a temp formal parameter) is transferred to a non-
temporary reference. The storage may be released or new aliases created.

kept-trans
Kept storage transferred to non-temporary reference.

keep-trans
Keep storage is transferred in a way that may add a new alias to it, or release it.

refcount-trans
Reference counted storage is transferred in an inconsistent way.

newref-trans
A new reference transferred to a reference counted reference (reference count is not set
correctly).

immediate-trans
An immediate address (result of &) is transferred inconsistently.

static-trans
Static storage is transferred in an inconsistent way.

expose-trans
Inconsistent exposure transfer. Exposed storage is transferred to a non-exposed, non-
observer reference.

observer-trans
Inconsistent observer transfer. Observer storage is transferred to a non-observer reference.

unqualified-trans
Unqualified storage is transferred in an inconsistent way.

Initializers
only-unq-global-trans

Only storage transferred to an unqualified global or static reference. This may lead to a
memory leak, since the new reference is not necessarily released.

static-init-trans
Static storage is used as an initial value in an inconsistent way.

unqualified-init-trans
Unqualified storage is used as an initial value in an inconsistent way.

shortcut

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:-+++

m:--++

m:--++

m:--++

Annotations 65

Derived Storage
comp-mem-pass

Storage derivable from a parameter does not match the alias kind expected for the formal
parameter.

Stack References
stack-ref

A stack reference is pointed to by an external reference when the function returns. Since the
call frame will be destroyed when the function returns the return value will point to dead
storage. (Section 5.2.6)

Implicit Memory Annotations (Section 5.3)
glob-imp-only

Assume unannotated global storage is only.
param-imp-temp

Assume unannotated parameter is temp.
ret-imp-only

Assume unannotated returned storage is only.
struct-imp-only

Assume unannotated structure or union field is only.
code-imp-only

Sets glob-imp-only, ret-imp-only and struct-imp-only.
mem-imp

Report memory errors for unqualified storage.
pass-unknown

Passing a value as an unannotated parameter clears its annotation. This will prevent many
spurious errors from being report for unannotated programs, but eliminates the possibility of
detecting many errors.

Sharing

Aliasing (Section 6)
alias-unique

An actual parameter that is passed as a unique formal parameter is aliased by another
parameter or global variable.

may-alias-unique
An actual parameter that is passed as a unique formal parameter may be aliased by another
parameter or global variable.

must-not-alias
An alias has been added to a temp-qualifier parameter or global that is visible externally
when the function returns.

ret-alias
A function returns an alias to parameter or global.

m:-+++

m:++++

plain: +

plain: +

plain: +

plain: +

shortcut

m:-+++

m:----

m:-+++

m:-+++

m:-+++

m:--++

66 LCLint User’s Guide Appendix

Exposure (Section 6.2)
rep-expose

The internal representation of an abstract type is visible to the caller. This means clients may
have access to a pointer into the abstract representation. (Sets assign-expose, ret-
expose, and cast-expose.)

assign-expose
Abstract representation is exposed by an assignment or passed parameter.

cast-expose
Abstract representation is exposed through a cast.

ret-expose
Abstract representation is exposed by a return value.

Observer Modifications
mod-observer

Possible modification of observer storage.
mod-observer-uncon

Storage declared with observer may be modified through a call to an unconstrained function.

String Literals (Section 6.2.1)
read-only-trans

Report memory transfer errors for initializations to read-only string literals
read-only-strings

String literals are read-only (ANSI semantics). An error is reported if a string literal may be
modified or released.

Use Before Definition (Section 7.1)
use-def

The value of a location that may not be initialized on some execution path is used.
imp-outs

Allow unannotated pointer parameters to functions to be implicit out parameters.
comp-def

Storage derivable from a parameter, return value or global variable is not completely defined.
union-def

No field of a union is defined. (No error is reported if at least one union field is defined.)
must-define

Parameter declared with out is not defined before return or scope exit.

Null Pointers (Section 7.2)
null

A possibly null pointer may be dereferenced, or used somewhere a non-null pointer is
expected.

shortcut

m:--++

m:--++

m:--++

plain: +

m:---+

m:--++

m:-+++

m:-+++

m:----

m:-+++

m:-+++

m:-+++

m:-+++

Annotations 67

Macros (Section 8)
These flags control expansion and checking of macro definitions and invocations.

Macro Expansion
These flags control which macros are checked as functions or constants, and which are expanded in
the pre-processing phase. Macros preceded by /*@notfunction@*/ are never expanded
regardless of these flag settings. These flags may be used in source-file control comments.

fcn-macros
Macros defined with parameter lists are not expanded and are checked as functions.

const-macros
Macros defined without parameter lists are not expanded and are checked as constants.

all-macros
Sets fcn-macros and const-macros.

lib-macros
Macros defining identifiers declared in a loaded library are not expanded and are checked
according to the library information.

Macro Definitions
These flags control what errors are reported in macro definitions.

macro-stmt
Macro definition is not syntactically equivalent to function. This means if the macro is used as
a statement (e.g., if (test) macro();) unexpected behavior may result. One fix is to
surround the macro body with do { … } while (FALSE).

macro-params
A macro parameter is not used exactly once in all possible invocations of the macro.

macro-assign
A macro parameter is used as the left side of an assignment expression.

macro-parens
A macro parameter is used without parentheses (in potentially dangerous context).

macro-empty
Macro definition of a function is empty.

macro-redef
Macro is redefined. There is another macro defined with the same name.

macro-unrecog
An unrecognized identifier appears in a macro definition. Since the identifier may be defined
where the macro is used, this could be okay, but LCLint will not be able to check the
unrecognized identifier appropriately.

plain: -

plain: -

shortcut

plain: -

m:-+++

m:-+++

m:-+++

m:-+++

m:---+

m:-+++

m:-+++

68 LCLint User’s Guide Appendix

Corresponding Declarations
macro-match-name

An iter or constant macro is defined using a different name from the one used in the
previous syntactic comment

macro-decl
A macro definition has no corresponding declaration. (Sets macrofcndecl and
macroconstdecl.)

macro-fcn-decl
Macro definition with parameter list has no corresponding function prototype. Without a
prototype, the types of the macro result and parameters are unknown.

macro-const-decl
A macro definition without parameter list has no corresponding constant declaration.

next-line-macros
A constant or iter declaration is not immediately followed by a macro definition.

Side-Effect Free Parameters (Section 8.2.1)
These flags control error reporting for parameters with inconsistent side-effects in invocations of
checked function macros and function calls.

sef-params
An actual parameter with side-effects is passed as a formal parameter declared with sef.

sef-uncon
An actual parameter involving a call to an unconstrained function (declared without modifies
clause) that may modify anything is passed as a sef parameter.

Iterators
has-yield

An iterator has been declared with no parameters annotated with yield.

Naming Conventions
name-checks

 Turns all name checking on or off without changing other settings.

Type-Based Naming Conventions (Section 9.1)

Czech Naming Convention
czech

Selects complete Czech naming convention (sets access-czech, czech-fcns, czech-
vars, czech-consts, czech-macros, and czech-types).

access-czech
Allow access to abstract types following Czech naming convention. The representation of an
abstract type named t is accessible in the definition of a function or constant named t_name.

czech-fcns
Function or iterator name is not consistent with Czech naming convention.

czech-vars
 Variable name is not consistent with Czech naming convention.

czech-macros
 Expanded macro name is not consistent with Czech naming convention.

czech-consts

m:++++

shortcut

m:-+++

m:-+++

plain: +

m:-+++

m:--++

plain: -

plain: +

shortcut

plain: +

plain: -

plain: -

plain: -

plain: -

Annotations 69

Constant name is not consistent with Czech naming convention.
czech-types

 Type name is not consistent with Czech naming convention. Czech type names must not use
the underscore character.

Slovak Naming Convention
slovak

Selects complete Slovak naming convention (sets access-slovak, slovak-fcns,
slovak-vars, slovak-consts, slovak-macros, and slovak-types).

access-slovak
Allow access to abstract types following Slovak naming convention. The representation of an
abstract type named t is accessible in the definition of a function or constant named tName.

slovak-fcns
Function or iterator name is not consistent with Slovak naming convention.

slovak-macros
Expanded macro name is not consistent with Slovak naming convention.

slovak-vars
 Variable name is not consistent with Slovak naming convention.

slovak-consts
 Constant name is not consistent with Slovak naming convention.

slovak-types
Type name is not consistent with Slovak naming convention. Slovak type names may not
include uppercase letters.

Czechoslovak Naming Convention
czechoslovak

Selects complete Czechoslovak naming convention (sets access-czechoslovak,
czechoslovak-fcns, czechoslovak-vars, czechoslovak-consts,
czechoslovak-macros, and czechoslovak-types).

access-czechoslovak
Allow access to abstract types by Czechoslovak naming convention. The representation of an
abstract type named t is accessible in the definition of a function or constant named t_name
or tName.

czechoslovak-fcns
 Function name is not consistent with Czechoslovak naming convention.

czechoslovak-macros
Expanded macro name is not consistent with Czechoslovak naming convention.

czechoslovak-vars
Variable name is not consistent with Czechoslovak naming convention.

czechoslovak-consts
Constant name is not consistent with Czechoslovak naming convention.

czechoslovak-types
Type name is not consistent with Czechoslovak naming convention. Czechoslovak type names
may not include uppercase letters or the underscore character.

Namespace Prefixes (Section 9.2)
macro-var-prefix <prefix string>

Set namespace prefix for variables declared in a macro body. (Default is m_.)
macro-var-prefix-exclude

A variable declared outside a macro body starts with the macro-var-prefix.
tag-prefix <prefix string>

Set namespace prefix of struct, union or enum tag identifiers.

plain: -

shortcut

plain: -

plain: -

plain: -

plain: -

plain: -

plain: -

shortcut

plain: -

plain: -

plain: -

plain: -

plain: -

plain: -

plain: +

70 LCLint User’s Guide Appendix

tag-prefix-exclude
An identifier that is not a tag starts with the tagprefix.

enum-prefix <prefix string>
Set namespace prefix for enum members.

enum-prefix-exclude
An identifier that is not an enum member starts with the enumprefix.

file-static-prefix <prefix string>
Set namespace prefix for file static declarations.

file-static-prefix-exclude
An identifier that is not file static starts with the filestaticprefix.

global-prefix <prefix string>
Set namespace prefix for global variables.

global-prefix-exclude
An identifier that is not a global variable starts with the globalprefix.

type-prefix <prefix string>
Set namespace prefix for user-defined types.

type-prefix-exclude
An identifier that is not a type name starts with the typeprefix.

external-prefix <prefix string>
Set namespace prefix for external identifiers.

external-prefix-exclude
An identifier that is not external starts with the externalprefix.

local-prefix <prefix string>
Set namespace prefix for local variables.

local-prefix-exclude
 An identifier that is not a local variable starts with the localprefix.

unchecked-macro-prefix <prefix string>
Set namespace prefix for unchecked macros.

unchecked-macro-prefix-exclude
An identifier that is not the name of an unchecked macro starts with the
uncheckedmacroprefix.

const-prefix <prefix string>
Set namespace prefix for constants.

const-prefix-exclude
An identifier that is not a constant starts with the constantprefix.

iter-prefix <prefix string>
Set namespace prefix for iterators.

iter-prefix-exclude
An identifier that is not an iter starts with the iterprefix.

plain: -

plain: -

plain: -

plain: -

plain: -

plain: -

plain: -

plain: -

plain: -

plain: -

Annotations 71

proto-param-prefix <prefix string>
Set namespace prefix for parameters in function prototypes.

proto-param-prefix-exclude
An identifier that is not a parameter in a function prototype starts with the
protoprarmprefix.

proto-param-name
A parameter in a function prototype has a name (can interfere with macro definitions).

proto-param-match
The name of a parameter in a function definition does not match the corresponding name of the
parameter in a function prototype (after removing the protoparamprefix).

Naming Restrictions (Section 9.3)
shadow

Declaration reuses name visible in outer scope.

Reserved Names
ansi-reserved

External name conflicts with name reserved for the compiler or standard library.
ansi-reserved-internal

 Internal name conflicts with name reserved for the compiler or standard library.
cpp-names

Internal or external name conflicts with a C++ reserved word. (Will cause problems if
program is compiled with a C++ compiler.)

Distinct External Names
distinct-external-names

An external name is not distinguishable from another external name using
externalnamelen significant characters.

external-name-len <number>
Sets the number of significant characters in an external name (ANSI default minimum is 6).
Sets +distinct-external-names.

external-name-case-insensitive
Make alphabetic case insignificant in external names. According to ANSI standard, case need
not be significant in an external name. If +distinct-external-names is not set, sets
+distinct-external-names with unlimited external name length.

Distinct Internal Names
distinct-internal-names

An internal name is not distinguishable from another internal name using internalnamelen
significant characters. (Also effected by internal-name-case-insensitive and
internal-name-lookalike.)

internal-name-len <number>
Set the number of significant characters in an internal name. Sets +distinct-internal-
names.

internal-name-case-insensitive
Set whether case is significant an internal names (-internal-name-case-
insensitive means case is significant). If +distinct-internal-names is not set,
sets +distinct-internal-names with unlimited internal name length.

internal-name-lookalike
 Set whether similar looking characters (e.g., “1” and “l”) match in internal names.

plain: -

m:--++

m:---+

m:-+++

m:--++

m:---+

m:--++

plain: -

plain: 6

plain: -

m:----

plain: 31

plain: -

plain: -

72 LCLint User’s Guide Appendix

Other Checks

Undefined Evaluation Order (Section 10.1)
eval-order

Behavior of an expression is unspecified or implementation-dependent because sub-
expressions contain interfering side effects that may be evaluated in any order.

eval-order-uncon
An expression may be undefined because a sub-expression contains a call to an unconstrained
function (no modifies clause) that may modify something that may be modified or used by
another sub-expression.

Problematic Control Structures (Section 10.2)
inf-loops

Likely infinite loop is detected (Section 10.2.1).
inf-loops-uncon

Likely infinite loop is detected. Loop test or body calls an unconstrained function that may
produce an undetected modification.

elseif-complete
There is no finals else following an else if construct (Section 10.2.5).

case-break
There is a non-empty case in a switch not followed by a break (Section 10.2.2).

miss-case
A switch on an enum type is missing a case for a member of the enumerator.

loop-exec
Assume all loops execute at least once. This effects use-before-definition and memory
checking. It should probably not be used globally, but may be used surrounding a particular
loop that is known to always execute to prevent spurious messages.

Deep Break (Section 10.2.3)
deep-break

Report errors for break statements inside a nested while, for or switch. (Sets all nested
break and continue flags.)

loop-loop-break
There is a break inside a while, for or iterator loop that is inside a while, for or iterator
loop. Mark with /*@innerbreak@*/ to suppress the message.

switch-loop-break
There is a break inside a while, for or iterator loop that is inside a switch statement.
Mark with /*@loopbreak@*/.

loop-switch-break
There is a break inside a switch statement that is inside a while, for or iterator loop.
Mark with /*@switchbreak@*/.

m:-+++

m:---+

m:-+++

m:--++

m:---+

m:-+++

m:-+++

m:----

shortcut

m:--++

m:--++

m:---+

Annotations 73

switch-switch-break
There is a break inside a switch statement that is inside another switch statement. Mark
with /*@innerbreak@*/.

loop-loop-continue
There is a continue inside a while, for or iterator loop that is inside a while, for or iterator
loop. Mark with /*@innercontinue@*/.

Loop and if Bodies (Section 10.2.4)
all-empty

An if, while or for statement has no body (sets if-empty, while-empty and for-
empty.)

all-block
The body of an if, while or for statement is not a block (sets if-block, while-block
and for-block.)

while-empty
A while statement has no body.

while-block
 The body of a while statement is not a block

for-empty
A for statement has no body.

for-block
The body of a for statement is not a block.

if-empty
An if statement has no body.

ifblock
The body of an if statement is not a block.

Suspicious Statements (Section 10.3)
unreachable

Code is not reached on any possible execution.
noeffect

Statement has no effect.
noeffect-uncon

Statement involving call to unconstrained function may have no effect.
noret

There is a path with no return in a function declared to return a non-void value.

m:---+

m:---+

shortcut

shortcut

m:--++

m:---+

m:---+

m:---+

m:++++

m:---+

m:-+++

m:-+++

m:---+

m:-+++

74 LCLint User’s Guide Appendix

Ignored Return Values (Section 10.3.2)
These flags control when errors are reported for function calls that do not use the return value.
Casting the function call to void or declaring the called function to return /*@alt void@*/.

ret-val-bool
Return value of type bool ignored.

ret-val-int
Return value of type int ignored.

ret-val-other
Return value of type other than bool or int ignored.

ret-val
Return value ignored (Sets retvalbool, retvalint, retvalother.)

Unused Declarations (Section 10.4)
These flags control when errors are reported for declarations that are never used. The unused
annotation can be used to prevent unused errors from being report for a particular declaration.

top-use
An external declaration is not used in any file.

const-use
Constant never used.

enum-mem-use
Member of enumerator never used.

var-use
Variable never used.

param-use
Function parameter never used.

fcn-use
Function is never used.

type-use
Defined type never used.

field-use
Field of structure or union type is never used.

unused-special
Declaration in a special file (corresponding to .l or .y file) is unused.

Complete Programs (Section 10.5)
decl-undef

Function, variable, iterator or constant declared but never defined.
partial

Check as partial system (sets -decl-undef, -export-local and prevents checking of
macros in headers without corresponding .c files.)

Exports
export-local

A declaration is exported but not used outside this module. (Declaration can use the static
qualifier.)

export-header
A declaration (other than a variable) is exported but does not appear in a header file.

export-header-var
A variable declaration is exported but does not appear in a header file.

m:-+++

m:-+++

m:++++

shortcut

m:---+

m:-+++

m:-+++

m:++++

m:-+++

m:++++

m:++++

m:-+++

m:---+

m:--++

shortcut

m:---+

m:--++

m:--++

Annotations 75

Unrecognized Identifiers
unrecog

An unrecognized identifier is used.
sys-unrecog

Report unrecognized identifiers that start with the system prefix, __ (two underscores).
repeat-unrecog

Report multiple messages for unrecognized identifiers. If repeatunrecog is not set, an
error is reported only the first time a particular unrecognized identifier appears in the file.

Multiple Definition and Declarations
redef

A function or variable is defined more than once.
redecl

An identifier is declared more than once.
nested-extern

An extern declaration is used inside a function body.

ANSI C Conformance
noparams

A function is declared without a parameter list prototype.
old-style

Function definition is in old style syntax. Standard prototype syntax is preferred.
exit-arg

Argument to exit has implementation defined behavior. The only valid arguments to exit
are EXIT_SUCCESS, EXIT_FAILURE and 0. An error is reported if LCLint can detect
statically that the argument to exit is not one of these.

use-var-args
Report if <varargs.h> is used (should use stdarg.h).

Limits (Section 10.6)
ansi-limits

Check for violations of standard limits (Sets control-nest-depth, string-
literal-len, include-nest, num-struct-fields, and num-enum-members).

control-nest-depth <number>
Set maximum nesting depth of compound statements, iteration control structures, and selection
control structures (ANSI minimum is 15).

string-literal-len <number>
Set maximum length of string literals (ANSI minimum is 509).

num-struct-fields <number>
Set maximum number of fields in a struct or union (ANSI minimum is 127).

num-enum-members <number>
Set maximum number of members of an enum type (ANSI minimum is 127).

include-nest <number>
Set maximum number of nested #include files (ANSI minimum is 8).

Header Inclusion (Appendix F)
skip-ansi-headers

Prevent inclusion of header files in a system directory with names that match standard ANSI
headers. The symbolic information in the standard library is used instead. In effect only if a
library that includes the ANSI library is used. The ANSI headers are: assert, ctype,

plain: +

plain: +

plain: -

plain: +

m:--++

m:-+++

m:--++

m:---+

m:-+++

plain: +

shortcut

m:---+
15

m:---+
509

m:---+
127

m:---+
127

m:--++
8

plain: +

76 LCLint User’s Guide Appendix

errno, float, limits, locale, math, setjmp, signal, stdarg, stddef, stdio,
stdlib, strings, string, time, and wchar.

skip-posix-headers
Prevent inclusion of header files in a system directory with names that match standard POSIX
headers. The symbolic information in the standard library is used instead. In effect only if a
library that includes the POSIX library is used. The POSIX headers are: dirent, fcntl,
grp, pwd, termios, sys/stat, sys/times, sys/types, sys/utsname, sys/wait,
unistd, and utime.

warn-posix-headers
Report use of a POSIX header when checking a program with a non-POSIX library.

skip-sys-headers
Prevent inclusion of all header files in system directories.

sys-dir-expand-macros
Expand macros in system directories regardless of other settings, except for macros
corresponding to names defined in a load library.

sys-dir-errors
Report errors in files in system directories (set by -sys-dirs).

single-include
Optimize header inclusion to only include each header file once.

never-include
Use library information instead of including header files.

Comments
These flags control how syntactic comments are interpreted (see Appendix E).

comment-char <char>
Set the marker character for syntactic comments. Comments beginning with /*<char> are
interpreted by LCLint.

noaccess
Ignore access comments.

nocomments
Ignore all stylized comments.

sup-counts
Actual number of errors does not match number in /*@i<n>@*/

lint-comments
Interpret traditional lint comments (/*FALLTHROUGH*/, /*NOTREACHED*/,
/*PRINTFLIKE*/).

warn-lint-comments
Print a warning and suggest an alternative when a traditional lint comment is used.

unrecog-comments
Stylized comment is unrecognized.

plain: +

plain: +

plain: -

plain: +

m:---+

global: -

global: -

plain: @

plain: -

plain: -

plain: +

plain: +

m:-+++

plain: +

Annotations 77

Parsing
continue-comment

A line continuation marker (\) appears inside a comment on the same line as the comment
close. Preprocessors should handle this correctly, but it causes problems for some
preprocessors.

nest-comment
A comment open sequence (/*) appears inside a comment. This usually indicates that an
earlier comment was not closed.

duplicate-quals
Report duplicate type qualifiers (e.g., long long). Duplicate type qualifiers not supported
by ANSI, but some compilers (e.g., gcc) do support duplicate qualifiers.

gnu-extensions
Support some GNU (gcc) and Microsoft language extensions.

Array Formal Parameters
These flags control reporting of common errors caused by confusion about the semantics of array
formal parameters.
sizeof-formal-array

The sizeof operator is used on a parameter declared as an array. (In many instances this has
unexpected behavior, since the result is the size of a pointer to the element type, not the number
of elements in the array.)

fixed-formal-array
An array formal parameter is declared with a fixed size (e.g., int x[20]). This is likely to
be confusing, since the size is ignored.

formal-array
A formal parameter is declared as an array. This is probably not a problem, but can be
confusing since it is treated as a pointer.

General Checks
These flags should probably not be set globally since they turn off general checks that should always
be done. They may be used locally to suppress spurious errors.

abstract
A data abstraction barrier is violated.

control
A control flow error is detected.

syntax
Parse error.

try-to-recover
Try to recover from a parse error. If trytorecover is not set, LCLint will abort checking
after a parse error is detected. If it is set, LCLint will attempt to recover, but LCLint does
performs only minimal error recovery. It is likely that trying to recover after a parse error will
lead to an internal assertion failing.

type
Type mismatch.

plain: -

plain: +

plain: +

plain: +

plain: +

plain: +

plain: -

plain: +

plain: +

plain: +

plain: -

plain: +

78 LCLint User’s Guide Appendix

Flag Name Abbreviations
Within a flag name, abbreviations may be used. Table 2 shows the flag name abbreviations. The
expanded and short forms are interchangeable in flag names.

For example, globsimpmodsnothing and globalsimpliesmodifiesnothing denote the
same flag. Abbreviations in flag names allow pronounceable, descriptive names to be used without
making flag names excessively long (although one must admit even globsimpmodsnothing is a
bit of a mouthful.)

To make flag names more readable, the space, dash (-), and underscore (_) characters may be used
inside a flag name. So, globals-implies-modifies-nothing,
glob_imps_modsnothing and globsimpmodsnothing are equivalent.

Expanded Form Short Form
constant const
declaration decl
function fcn
global glob
implicit, implied imp
iterator iter
length len
modifies mods
modify mod
memory mem
parameter param
pointer ptr
return ret
variable var
unconstrained, unconst uncon

Table 2. Flag name abbreviations.

Annotations 79

Appendix D Annotations
The grammar below is the C syntax from [K&R,A13] modified to show the syntax of syntactic
comments. Only productions effected by LCLint annotations are shown. In the annotations, the @
represents the comment marker char, set by -commentchar (default is @).

Functions
direct-declarator:

 direct-declarator (parameter-type-listopt) specialsopt globalsopt modifiesopt

| direct-declarator (identifier-listopt) specialsopt globalsopt modifiesopt

specials: (Section 7.4)
 /*@special-tag specitem,+ ;opt @*/

special-tag: uses | sets | defines | allocates | releases | state-tag:state-clause

state-tag: pre | post

state-clause: only | shared | owned | dependent | observer | exposed
 | isnull | notnull

globals: (Section 4.2)
 /*@globals globitem,+ ;opt @*/
| /*@globals declaration-listopt ;opt @*/

globitem:
 globannot*

 identifier
| internalState
| fileSystem

globannot: undef | killed

modifies: (Section 4.1)
 /*@modifies moditem,+ ;opt @*/
| /*@modifies nothing ;opt @*/
| /*@*/ (Abbreviation for no globals and modifies nothing.)

moditem:
 expression
| internalState
| fileSystem

80 LCLint User’s Guide Appendix

Iterators (Section 8.4)
The globals and modifies clauses for an iterator are the same as those for a function, except they are
not enclosed by a comment, since the iterator is already a comment.

direct-declarator:
/*@iter identifier (parameter-type-listopt) iter-globalsopt iter-modifiesopt @*/

iter-globals:
 globals declaration-listopt ;opt

iter-modifies:
 modifies moditem,+ ;opt

| modifies nothing ;opt

Constants (Section 8.1)
external-declaration:

/*@constant declaration ;opt @*/

Alternate Types (Section 8.2.2)
Alternate types may be used in the type specification of parameters and return values.

extended-type:
type-specifier alt-typeopt

alt-type:
/*@alt basic-type,+ @*/

Declarator Annotations
General annotations appear after storage-class-specifiers and before type-specifiers. Multiple
annotations may be used in any order. Here, annotations are without the surrounding comment. In a
declaration, the annotation would be surrounded by /*@ and @*/. In a globals or modifies clause or
iterator or constant declaration, no surrounding comments would be used since they are within a
comment.

Type Definitions (Section 3)
A type definition may use any either abstract or concrete, either mutable or immutable,
and refcounted. Only a pointer to a struct may be declared with refcounted. Mutability
annotations may not be used with concrete types since concrete types inherit their mutability from the
actual type.

abstract
Type is abstract (representation is hidden from clients).

concrete
Type is concrete (representation is visible to clients).

Annotations 81

immutable
Instances of the type cannot change value. (Section 3.2)

mutable
Instances of the type can change value. (Section 3.2)

refcounted
Reference counted type. (Section 5.4)

Global Variables (Section 4.2.1)
One check annotation may be used on a global or file-static variable declaration.

unchecked
Weakest checking for global use.

checkmod
Check modification by not use of global.

checked
Check use and modification of global.

checkedstrict
Check use of global, even in functions with no global list.

Memory Management (Section 1)
dependent

A reference to externally-owned storage. (Section 5.2.2)
keep

A parameter that is kept by the called function. The caller may use the storage after the call,
but the called function is responsible for making sure it is deallocated. (Section 5.2.4)

killref
A refcounted parameter. This reference is killed by the call. (Section 5.4)

only
An unshared reference. Associated memory must be released before reference is lost.
(Section 5.2)

owned
Storage may be shared by dependent references, but associated memory must be released
before this reference is lost. (Section 5.2.2)

shared
Shared reference that is never deallocated. (Section 5.2.5)

temp
A temporary parameter. May not be released, and new aliases to it may not be created.
(Section 5.2.2)

Aliasing (Section 6)
Both alias annotations may be used on a parameter declaration.

unique
Parameter that may not be aliased by any other reference visible to the function.
(Section 6.1.1)

returned
Parameter that may be aliased by the return value. (Section 6.1.2)

82 LCLint User’s Guide Appendix

Exposure (Section 6.2)
observer

Reference that cannot be modified. (Section 6.2.1)
exposed

Exposed reference to storage in another object. (Section 6.2)

Definition State (Section 7.1)
out

Storage reachable from reference need not be defined.
in

All storage reachable from reference must be defined.
partial

Partially defined. A structure may have undefined fields. No errors reported when fields are
used.

reldef
Relax definition checking. No errors when reference is not defined, or when it is used.

Global State (Section 7.1.2)
These annotations may only be used in globals lists. Both annotations may be used for the same
variable, to mean the variable is undefined before and after the call.

undef
Variable is undefined before the call.

killed
Variable is undefined after the call.

Null State (Section 7.2)
null

Possibly null pointer.
notnull

Non-null pointer.
relnull

Relax null checking. No errors when NULL is assigned to it, or when it is used as a non-null
pointer.

Null Predicates (Section 7.2.1)
A null predicate annotation may be used of the return value of a function returning a boolean type,
taking a possibly-null pointer for its first argument.

truenull
If result is TRUE, first parameter is NULL.

falsenull
If result is TRUE, first parameter is not NULL.

Annotations 83

Execution (Section 7.3)
The exits, mayexit and neverexits annotations may be used on any function. The
trueexit and falseexit annotations may only be used on functions whose first argument is a
boolean.

exits
Function never returns.

mayexit
Function may or may not return.

trueexit
Function does not return if first parameter is TRUE.

falseexit
Function does not return if first parameter if FALSE.

neverexit
Function always returns.

Side-Effects (Section 8.2.1)
sef

Corresponding actual parameter has no side effects.

Declaration
These annotations can be used on a declaration to control unused or undefined error reporting.

unused
Identifier need not be used (no unused errors reported.) (Section 10.4)

external
Identifier is defined externally (no undefined error reported.) (Section 10.5)

Case
fallthrough

Fall-through case. No message is reported if the previous case may fall-through into the one
immediately after the fallthrough.

Break (Section 10.2.3)
These annotations are used before a break or continue statement.

innerbreak
Break is breaking an inner loop or switch.

loopbreak
Break is breaking a loop.

switchbreak
Break is breaking a switch.

innercontinue
Continue is continuing an inner loop.

84 LCLint User’s Guide Appendix

Unreachable Code
This annotation is used before a statement to prevent unreachable code errors.

notreached
Statement may be unreachable.

Special Functions (Appendix E)
These annotations are used immediately before a function declaration.

printflike
Check variable arguments like printf library function.

scanflike
Check variable arguments like scanf library function.

Control Comments 85

Appendix E Control Comments

Error Suppression
Several comments are provided for suppressing messages. In general, it is usually better to use specific
flags to suppress a particular error permanently, but the general error suppression flags may be more
convenient for quickly suppressing messages for code that will be corrected or documented later.

ignore
end

No errors will be reported in code regions between /*@ignore@*/ and /*@end@*/. These
comments can be used to easily suppress an unlimited number of messages, but are dangerous
since if real errors are introduced in the ignore… end region they will not be reported. The
ignore and end comments must be matched — a warning is printed if the file ends in an
ignore region or if ignore is used inside ignore region.

i
No errors will be reported from an /*@i@*/ comment to the end of the line.

i<n>
No errors will be reported from an /*@i<n>@*/ (e.g., /*@i3@*/) comment to the end of the
line. If there are not exactly n errors suppressed from the comment point to the end of the line,
LCLint will report an error. This is more robust than i or ignore since a message is generated
if the expected number errors is not present. Since errors are not necessarily detected until after
this file is processed (for example, and unused variable error), suppress count errors are reported
after all files have been processed. The -supcounts flag may be used to suppress these
errors. This is useful when a system if being rechecked with different flag settings.

t
t<n>

Like i and i<n>, except controlled by +tmpcomments flag. These can be used to temporarily
suppress certain errors. Then, -tmpcomments can be set to find them again.

Type Access
Control comments may also be used to override type access settings. The syntax /*@access
<type>,+@*/ allows the following code to access the representation of <type>. Similarly,
/*@noaccess <type>,+@*/ restricts access to the representation of <type>. The type in a
noaccess comment must have been declared as an abstract type. Type access applies from the point
of the comment to the end of the file or the next access control comment for this type.

Macro Expansion
The /*@notfunction@*/indicates that the next macro definition is not intended to be a function,
and should be expanded in line instead of checked as a macro function definition.

86 LCLint User’s Guide Appendix

Special Types
These syntactic comments are used to represent arbitrary integral types. Syntactically, they replace the
implicit int type.

/*@integraltype@*/
An arbitrary integral type. The actual type may be any one of short, int, long, unsigned
short, unsigned, or unsigned long.

/*@unsignedintegraltype@*/
An arbitrary unsigned integral type. The actual type may be any one of unsigned short,
unsigned, or unsigned long.

/*@signedintegraltype@*/
An arbitrary signed integral type. The actual type may be any one of short, int, or long.

Traditional Lint Comments
Some of the control comments supported by most standard UNIX lints are supported by LCLint so
legacy systems can be checked more easily. These comments are not lexically consistent with LCLint
comments, and their meanings are less precise (and may vary between different lint programs), so we
recommend that LCLint comments are used instead except for checking legacy systems already
containing standard lint comments.

These standard lint comments supported by LCLint:

/*FALLTHROUGH*/ (alternate misspelling, /*FALLTHRU*/)
Prevents errors for fall-through cases. Same meaning as /*@fallthrough@*/.

/*NOTREACHED*/
Prevents errors about unreachable code (until the end of the function). Same meaning as
/*@notreached@*/.

/*PRINTFLIKE*/
Arguments similar to the printf library function (there didn’t seem to be much of a consensus
among standard lints as to exactly what this means). LCLint supports:

/*@printflike@*/
Function takes zero or more arguments of any type, an unmodified char * format string
argument and zero of more arguments of type and number dictated by the format string.
Format codes are interpreted identically to the printf standard library function. May
return a result of any type. (LCLint interprets /*PRINTFLIKE*/ as
/*@printflike@*/.)

/*@scanflike@*/
Like printflike, except format codes are interpreted as in the scanf library function.

/*ARGSUSED*/
Turns off unused parameter messages for this function. The control comment,
/*@-paramuse@*/ can be used to the same effect, or /*@unused@*/ can be used in
individual parameter declarations.

LCLint will ignore standard lint comments if -lint-comments is used. If +warn-lint-
comments is used, LCLint generates a message for standard lint comments and suggest replacements.

Libraries 87

Appendix F Libraries
Libraries can be used to record interface information. A library containing information about the
Standard C Library is used to enable checking of library calls. Program libraries can be created to
enable fast checking of single modules in a large program.

Standard Libraries
In order to check calls to library functions, LCLint uses an annotated standard library. This contains
more information about function interfaces then is available in the system header files since it uses
annotations. Further, it contains only those functions documented in the ANSI Standard. Many systems
include extra functions in their system libraries; programs that use these functions cannot be compiled
on other systems that do not provide them. Certain types defined by the library are treated as abstract
types (e.g., a program should not rely on how the FILE type is implemented). When checking source
code, LCLint does include system headers corresponding to files in the library, but instead uses the
library description of the standard library.

The LCLint distribution includes several different standard libraries: the ANSI standard library, the
POSIX standard library28, and an ad hoc UNIX library. Each library comes in two versions: the
standard version and the strict version.

ANSI Library
The default behavior of LCLint is to use the ANSI standard library (loaded from ansi.lcd). This
library is based on the standard library described in the ANSI C Standard. It includes functions and
types added by Amendment 1 to the ANSI C Standard.

POSIX Library
The POSIX library is selected by the +posixlib flag. The POSIX library is based on the IEEE Std
1003.1-1990.

UNIX Library

The UNIX library is selected by the +unixlib flag. This library is an ad hoc attempt to capture
additional functionality provided by many UNIX platforms. Unfortunately, UNIX systems vary widely
and very few are consistent with the ANSI Standard.

The differences between the standard library and the POSIX library are:

• In the UNIX library, free is declared with a non-null parameter. ANSI C specifies that free
should handle the argument NULL, but several UNIX platforms crash if NULL is passed to free.

• Extra variables, constants and functions are included in the UNIX library. Some declarations are not
part of the POSIX library, but are believed to be available on many UNIX systems. See
lib/unix.h for a list of the UNIX-only declarations.

Code checked using the UNIX library can probably be ported to some UNIX systems without difficulty.
To enhance the likelihood that a program is portable, the POSIX library should be used instead.

28 POSIX library was contributed by Jens Schweikhardt.

88 LCLint User’s Guide Appendix

Strict Libraries
Stricter versions of the libraries are used is the -ansi-strict, posix-strict-lib or unix-
strct-lib flag is used. These libraries use a stricter interpretation of the library. They will detect
more errors in some programs, but may to produce many spurious errors for typical code.

The differences between the standard libraries and the strict libraries are:

• The standard libraries declare the printing functions (fprintf, printf, and sprintf) that may
return error codes to return int or void. This prevents typical programs from leading to deluge of
ignored return value errors, but may mean some relevant errors are not detected. In the strict library,
they are declared to return int, so ignored return value errors will be reported (depending on other
flag settings). Programs should check that this return value is non-negative.

• The standard libraries declare some parameters and return values to be alternate types (int or
bool, or int or char). The ANSI standard specifies these types as int to be compatible with
older versions of the library, but logically they make more sense as bool or char. In the strict
library, the stronger type is used. The parameter to assert is int or bool in the standard library,
and bool in the strict library. The parameter to the character functions isalnum, isalpha,
iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper,
isxdigit, tolower and toupper is char or int in the standard library and char in the strict
library. The type of the return value of the character classification functions (all of the previous
character functions except tolower and toupper) is bool or int in the standard library and
bool in the strict library. The type of the first parameter to ungetc is char or int in the standard
library and char in the strict library (EOF should not be passed to ungetc). The second parameter
to strchr and strrchr is char or int in the standard library and char in the strict library.

• The global variables stdin, stdout and stderr are declared as unchecked variables (see
Section 4.2.1) in the standard libraries. In the strict libraries, they are checked.

• The global variable errno is declared unchecked in the standard libraries, but declared
checkedstrict in the strict libraries.

If no library flag is used, LCLint will load the standard library, standard.lcd. If +nolib is set, no
library is loaded. The library source files can easily be modified, and new libraries created to better suit
a particular application.

Generating the Standard Libraries
The standard libraries are generated from header files included in the LCLint distribution. Some
libraries are generated from more than one header file. Since the POSIX library includes the ANSI
library, the headers for the ANSI and POSIX libraries are combined to produce the POSIX library.
Similarly, the UNIX library is composed of the ANSI, POSIX and UNIX headers. The header files
include some sections that are conditionally selected by defining STRICT.

The commands to generate the standard libraries are:
lclint -nolib ansi.h -dump ansi
lclint -nolib -DSTRICT ansi.h -dump ansistrict
lclint -nolib ansi.h posix.h -dump posix
lclint -nolib -DSTRICT ansi.h posix.h -dump posixstrict
lclint -nolib ansi.h posix.h unix.h -dump unix
lclint -nolib -DSTRICT ansi.h posix.h unix.h -dump unixstrict

Libraries 89

User Libraries
To enable running LCLint on large systems, mechanisms are provided for creating libraries containing
necessary information. This means source files can be checked independently, after a library has been
created. The command line option -dump library stores information in the file library (the
default extension, .lcd29, is added). Then, -load library loads the library. The library contains
interface information from the files checked when the library was created.

Header File Inclusion
The standard behavior of LCLint on encountering

#include <X.h>

is to search for a file named X.h on the include search path (set using –I) and then the system base
include path (read from the include environment variable if set or using a default value, usually
/usr/include). If X.h is the name of a header file in a loaded standard library (either ANSI or
POSIX) and X.h is found in a directory that is a system directory (as set by the -sysdirs flag; the
default is /usr/include), X.h will not be included if skip-ansi-headers or skip-posix-
headers (depending on whether X.h
is an ANSI or POSIX header file) is on (both are on by default). To force all headers to be included
normally, use -skip-ansi-headers.

Sometimes headers in system directories contain non-standard syntax that LCLint is unable to parse.
The +skip-sys-headers flag may be used to prevent any include file in a system directory from
being included.

LCLint is fast enough that it can be run on medium-size (10,000 line) programs without performance
concerns. It takes about one second to process a thousand source lines on a DEC Alpha. Libraries can
be used to enable efficient checking of small modules in large programs. To further improve
performance, header file inclusion can be optimized.

When processing a complete system in which many files include the same headers, a large fraction of
processing time is wasted re-reading header files unnecessarily. If you are checking a 100-file program,
and every file includes utils.h, LCLint will have to process utils.h 100 times (as would most C
compilers). If the +single-include flag is used, each header file is processed only once. Single
header file processing produces a significant efficiency improvement when checking large programs
split into many files, but is only safe if the same header file included in different contexts always has the
same meaning (i.e., it does not depend on preprocessor variable defined differently at different inclusion
sites).

When processing a single file in a large system, a large fraction of the time is spent processing included
header files. This can be avoided if the information in the header files is stored in a library instead. If
+never-include is set, inclusion of files ending in .h is prevented. Files with different suffixes are
included normally. To do this the header files must not include any expanded macros. That is, the
header file must be processed with +all-macros, and there must be no /*@notfunction@*/
control comments in the header. Then, the +never-include flag may be used to prevent inclusion
of header files. Alternately, non-function macros can be moved to a different file with a name that does
not end in .h. Remember, that this file must be included directly from the .c file, since if it is included
from a .h file indirectly, that .h file is ignored so the other file is never included.

29 In earlier versions of LCLint, the default extension .lldmp was used. This has been shortened to
.lcd.

90 LCLint User’s Guide Appendix

These options can be used for significant performance improvements on large systems. The
performance depends on how the code is structured, but checking a single module in a large program is
several times faster if libraries and +noinclude are used.

Preprocessing Constants
LCLint defines the preprocessor constant __LCLINT__ (two underscores on each side) when
preprocessing source files. If you want to include code that is processed only when LCLint is used,
surround the code with # ifdef __LCLINT__ … #endif.

Specifications 91

Appendix G Specifications
Another way of providing more information about programs is to use formal specifications. Although
this document has largely ignored specifications, LCLint was originally designed to use the information
in LCL specifications instead of source-code annotations. This document focuses on annotations since it
takes less effort to add annotations to source code than to maintain an additional specification file.
Annotations can express everything that can be expressed in LCL specifications that is relevant to
LCLint checking. However, LCL specifications can provide more precise documentation on program
interfaces than is possible with LCLint annotations. This appendix (extracted from [Evans94]) is a very
brief introduction to LCL Specifications. For more information, consult [GH93].

The Larch family of languages is a two-tiered approach to formal specification. A specification is built
using two languages — the Larch Shared Language (LSL), which is independent of the implementation
language, and a Larch Interface Language designed for the specific implementation language. An LSL
specification defines sorts, analogous to abstract types in a programming language, and operators,
analogous to procedures. It expresses the underlying semantics of an abstraction.

The interface language specifies an interface to an abstraction in a particular programming language. It
captures the details of the interface needed by a client using the abstraction and places constraints on
both correct implementations and uses of the module. The semantics of the interface are described using
primitives and sorts and operators defined in LSL specifications. Interface languages have been
designed for several programming languages.

LCL [GH93, Tan95] is a Larch interface language for Standard C. LCL uses a C-like syntax.
Traditionally, a C module M consists of a source file, M.c, and a header file, M.h. The header file
contains prototype declarations for functions, variables and constants exported by M, as well as those
macro definitions that implement exported functions or constants, and definitions of exported types.
When using LCL, a module includes two additional files — M.lcl, a formal specification of M, and
M.lh, which is derived by LCLint (if the lh flag is on) from M.lcl. Clients use M.lcl for
documentation, and should not need to look at any implementation file. The derived file, M.lh, contains
include directives (if M depends on other specified modules), prototypes of functions and declarations of
variables as specified in M.lcl. The file M.h should include M.lh and retain the
implementation aspects of the old M.h, but is no longer used for client documentation.

The LCLint release package includes a grammar for LCL and examples of LCL specifications.

92 LCLint User’s Guide Appendix

Specification Flags
These flags are relevant only when LCLint is used with LCL specifications.

Global Flags
lcs

Generate .lcs files containing symbolic state of .lcl files (used for imports). By default
.lcs files are generated for each .lcl file processed. Use -lcs to prevent generation of
.lcs files.

lh
Generate .lh files. By default, -lh is set and no .lh files are generated. Use +lh to enable
.lh file generation.

i <file>
Set LCL initialization file to <file>. The LCL initialization file is read if any .lcl files are
listed on the command line. The default file is lclinit.lci, found on the LARCH_PATH.

lclexpect <number>
Exactly <number> specification errors are expected. Specification errors are errors detected
when checking the specifications. They do not depend on the source code.

Implicit Globals Checking Qualifiers
imp-checked-spec-globs

Implicit checked qualifier on global variables specified in an LCL file with no checking
annotation.

imp-checkmod-spec-globs
Implicit checkmod qualifier on global variables specified in an LCL file with no checking
annotation.

imp-checkedstrict-spec-globs
Implicit checked qualifier on global variables specified in an LCL file with no checking
annotation.

Implicit Annotations
spec-glob-imp-only

Implicit only annotation on global variable declaration in an LCL file with no allocation
annotation.

spec-ret-imp-only
Implicit only annotation on return value declaration in an LCL file with no allocation
annotation.

spec-struct-imp-only
Implicit only annotation on structure field declarations in an LCL file with no allocation
annotation.

spec-imp-only
Sets spec-glob-imp-only, spec-ret-imp-only and spec-struct-imp-only.

Macro Expansion
spec-macros

Macros defining specified identifiers are not expanded and are checked according to the
specification.

m:-++-

m:----

m:---+

plain: -

plain: -

plain: -

shortcut

plain: +

m:-+++

Specifications 93

Complete Programs and Specifications
spec-undef

Function, variable, iterator or constant specified but never defined.
spec-undecl

Function, variable, iterator or constant specified but never declared.
need-spec

There is information in the specification that is not duplicated in syntactic comments. Normally,
this is not an error, but it may be useful to detect it to make sure checking incomplete systems
without the specifications will still use this information.

export-any
An error is reported for any identifier that is exported but not specified. (Sets all export flags
below.)

export-const
Constant exported but not specified.

export-var
Variable exported but not specified.

export-fcn
Function exported but not specified.

export-iter
Iterator exported but not specified.

export-macro
An expanded macro exported but not specified

export-type
Type definition exported but not specified

plain: -

plain: -

shortcut

m:---+

m:---+

m:---+

m:---+

m:---+

m:---+

94 LCLint User’s Guide Appendix

Appendix H Emacs
LCLint can be used most productively with the emacs text editor. The release package includes emacs
files for running LCLint and editing code with annotations.

Editing Abbreviations
An additional file, emacs/lclint-abbrevs contains abbreviations for LCLint syntactic comments
and annotations. If it is loaded, the comment surrounding an LCLint annotation will be added
automatically. For example, typing “only” and a space, will produce “/*@only@*/ ”.
Abbreviations are provided for each LCLint syntactic comment. The abbreviation of /*@null@*/ is
nll (not null), since it is often necessary to type NULL.

Abbreviations are loaded and used when a .c or .h file is edited by adding these lines to your .emacs
file:

(quietly-read-abbrev-file "<directory>/lclint-abbrevs")
(setq c-mode-hook (function (lambda nil (abbrev-mode 1))))

References 95

References

LCLint
[Evans94] David Evans. Using specifications to check source code. MIT/LCS/TR 628, Laboratory for
Computer Science, MIT, June 1994.

SM Thesis. Describes research behind LCLint, focusing on how specifications can be exploited
to do lightweight checking. Includes case studies using LCLint.

[EGHT94] David Evans, John Guttag, Jim Horning and Yang Meng Tan. LCLint: A tool for using
specifications to check code. SIGSOFT Symposium on the Foundations of Software Engineering,
December 1994.

Introduction to LCLint. Shows how LCLint is used to find errors in a sample program.

[Evans96] David Evans. Static Detection of Dynamic Memory Errors. SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’96), Philadelphia, PA., May 1996.

Describes approach for exploiting annotations added to code to detect a wide class of errors.
Focuses on checks described in Sections 1-7 of this guide.

Larch
[GH93] Guttag, John V. and Horning, James J., with Stephen J. Garland, Kevin D. Jones, Andrés
Modet, and Jeannette M. Wing, Larch: Languages and Tools for Formal Specification, Springer-Verlag,
Texts and Monographs in Computer Science, 1993.

Overview of the Larch family of specification languages and related tools. Includes a chapter on
LCL, the Larch C interface language, on which LCLint is based.

[Tan95] Tan, Yang Meng. Formal Specification Techniques for Engineering Modular C, Kluwer
International Series in Software Engineering, Volume 1, Kluwer Academic Publishers, Boston, 1995.

Modified and updated version of MIT Ph D thesis, previously published as MIT/LCS/TR-619,
1994. Includes presentation of the semantics of LCL and a case study using LCL.

C
[ANSI] American National Standard for Information Systems, Programming Language, C. ANSI
X3.159-1989. (Believed to be identical to ISO/IEC 9899:1990).

Specification for C programming language. LCLint aims to be consistent with this document.

96 LCLint User’s Guide Appendix

[Hat95] Hatton, Les. Safer C: Developing Software for High-integrity and Safety-critical Systems.
McGraw-Hill International Series in Software Engineering, 1995.

A broad work on all aspects of developing safety-critical software, focusing on the C language.
Provides good justification for the use of C in safety-critical systems, and the necessity of tool-
supported programming standards. LCLint users will be interested to see how many of the errors
listed as only being dynamically detectable can be detected statically by LCLint.

[KR88] Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language, second edition.
Prentice Hall, New Jersey, 1988.

Standard reference for ANSI C. If you haven’t heard of this one, you probably didn’t get this far
(unless you started at the back).

[vdL94] Van der Linden, Peter. Expert C Programming: Deep C Secrets. SunSoft Press, Prentice
Hall, New Jersey, 1994.

Filled with useful information on the darker corners of C, as well as lots of industry anecdotes
and humor. LCLint’s reserved name checking is loosely based on the list of reserved names in
this book.

Abstract Types
[LG86] Liskov, Barbara. and Guttag, John V. Abstraction and Specification in Program Development,
MIT Press, Cambridge, MA, 1986.

Describes a programming methodology using abstract types and specified interfaces. Much of
the methodology upon which LCLint is based comes from this book. Uses the CLU
programming language.

