LCLInt User Guide

Version 2.4
April 1998

David Evans
Software Devices and Systems Group
MIT Laboratory for Computer Science

ii LCLint User's Guide

Acknowledgments

John Guttag and Jim Horning had the original ideafor LCLint, have provided valuable advice on its
functionality and design, and been instrumental in its development. Thiswork has also benefited
greatly from discussions with Mike Burrows, Stephen Garland, Colin Godfrey, Steve Harrison,
Daniel Jackson, Angelika Leeb, Ulana Legedza, Anya Pogosyants, Navneet Singh, Raymie Stata,
Yang Meng Tan, and Mark Vandevoorde. | especialy thank Angelika Leeb for many constructive
comments on improving this document, Raymie Stata for help designing and setting up the LCLint
web site and Mark Vandevoorde for technical assistance.

Much of LCLint’s development has been driven by feedback from usersin academia and industry.
Many more people than | can mention here have made contributions by suggesting improvements,
reporting bugs, porting early versions of LCLint to other platforms. Particularly heroic contributions
have been made by Eric Bloodworth, Jutta Degener, Rick Farnbach, Chris Flatters, Huver Hu, John
Gerard Malecki, Thomas G. McWilliams, Michagl Meskes, Richard O’ Keefe, Jens Schwelkhardt,
and Albert L. Ting. Martin "Herbert" Dietze and Mike Smith performed valiantly in producing the
origina Win32 and OS2 ports.

LCLint incorporates the original LCL checker developed by Yang Meng Tan. Thiswas built on the
DECspec Project (Joe Wild, Gary Feldman, Steve Garland, and Bill McKeeman). The LSL checker
used by LCLint was developed by Steve Garland. The origina C grammar for LCLint was provided
by Nate Osgood.

This research was supported by grants from ARPA (N0014-92-31795), NSF (9115797-CCR) and
DEC ERP. David Evans was supported by an Intel Foundation Fellowship. LCLint was devel oped
on DEC Alpha and DECmips machines provided by Digital Equipment Corporation and Pentium I1™
machines donated by Intel. The Win32 version of LCLint was produced using Visua Studio™
software donated by Microsoft. This document was produced using Pentium [I™ Computers donated
by Intel Corporation and Microsoft Office™ software donated by Microsoft.

Contents

Contents

L OVEINVIBIW ettt ettt b bbbt bbbt e bt e bt e Rt e bt e bt e bt e Rt e bt e b e e bt e b e e bt e n e e an e e b e nneenre s 2
A O o= - 11 o] o [PPSR 3
A Y (=S T [PP PP OPPPPOPPI 4
A o - o TSRO 4
ARCRS Y 1= o l @00 1 0 00 0| KT TSR PPR 5
2.3 1 ANNOLBLIONS. ...ttt ettt ettt r bbbt bbb e b b e e b e r e e r e e an e e n e e neenre e 5
2.3.2 CONEIOl COMIMENEStiiieeite ettt ettt ettt b e bt bbbt r e e b e n e b e neer e e reeneeneene e 6

O o1 = Yo A 1Y 1= TSP ROTR 6
L L ACCESS ...ttt a e 8
T Y 1U =T o 1 11 2SR 9
3.3 BOOIEAN TYPES ...ttt ettt ettt ettt ettt ettt h et e be e st e e e be e e ahb e e enbe e e be e e be e e ehee e enbe e enbe e e beeenaeeas 10
A PIIMITIVE € TYPES ..t ee ettt e iuteeeteeetee e sttt st et e ettt eaee e sate e s abe e e be e e abbe e smbeesabeeabeeeaaseesmbeesnbeeanbaeeanneas 11
I O 4T = o1 = = TSRO O PP OUROTROPRO 11
4.2 ENUMEIEIONS. ...ttt ittt sb et s e ab e s e sbae e s e e sr e s s ar e s e snae e sane e e 11
e, 3 NUMEIIC TY S ottt ettt ettt ettt ettt et e ettt s h e e s bt e e bt e e ebe e e ehbeesabeeaabe e e abeeesateesabeesabeeeabeeesaneesnbeans 11

3. 4.4 ArDItrary INEEOral TYPES ... ettt ettt ettt et et e e e sete e sabe e sbe e e sbe e e saneesabeeas 12

4. FUNCHION INEEINTACESc.vi ittt r e bbb e r e e n e e r e n e e 13
Y oo [} T or= 1 o g TP PP P TP PSPPI 13
4.1.1 SpeCial MOAITICAIIONS........ciiiieiiiiieeee ettt sbe et e b e e be e snee s 13
4.1.2 MiSSING MOQIfIES ClAUSES......ceiiuiieiiee ittt ettt ettt sttt sae e et et eebe e saee s 14
G B I 1] = o T TP PP TP PR 15

4.2 GlODEl Vari@blESeoiueiiieiieee e 15
4.2.1 Controlling GlobalS CheCKiNgcoiiiiiiiie e 15

4.3 DeClaration CONSISIENCYcciuueeiteteiteeeiteeeaieesteasteeeateeeaaeeesateesabeesbeeaabeeaaaeeesaseesnbeeabeeesbeeesneeas 17

5. MEMOrY MaNAGEMENL ... ittt e e s et e e e e s aab e e e e sabbe e e e abee e e e aabeeeesanbeeeeanneaans 18
S (o] 2= To T 1Yo [PR UTRR 18
5.2 DEAIIOCALION EFTONS....cctiiitieiteeitie ittt sttt ettt sttt b e b e b sb e s b e sbe e sbe e sne e sbeesbeesneenneas 19
5.2.1UNShared REFEIENCEScoiuiiiieiie e 19
5.2.2 TEMPOrary PalraMELENS.ueiiiiiiei ettt ettt ettt e e e s sab e e e e sbbe e e s sbeeeessnreeeeaans 20
5.2.3 Owned and Dependent REFEIENCES.........couii ittt saee e saae e 21
5.2.4 KEPE PAr8IMELEIScoiieiiii ettt ettt et e e e s rab e e e e s bbe e e s sabbe e e s snrneeeanns 21
5.2.5 Shared REFEIENCEScoiiiiiiiieeee bbb 21
5.2.6 STBCK REFEIEINCES......coteeitieitieitee ettt sb e sb e sae e 21
5.2.7 INNEE SLOFAGR. ... ettt ettt e e e s bt e e e e et e e e e s aabe e e e abbe e e s snbeeeesanreeaeanns 21

5.3 ImMplicit MemMOrY ANNOLALIONS.cooiueieiieeiiee ettt et e et e st e e sbe e e sbee e sabe e smbeeasbeeesaeeas 22
5.4 REFEIENCE COUNLING ...ttt ittt ettt sttt ettt et e e et e e e sbe e e sabe e sabe e e be e e ebee e smbeesnbeeabeeeanneas 23

vi LCLint User's Guide

Lo =TS o PSPPI 25
B.1.1 UNIQUE PaIraMELEIS ..ot iieeeiteeertte ettt et e te e sbe e sate e s abe e sbe e e abee e sateesabeesbeeanbeeesnseesnbenns 25
6.1.2 REIUINE Par@MELErS.........ueei s 25

B.2 EXPOSUIE ...ttt ettt ettt ettt ettt oottt e e ek bt e e e et bt e e e aabe e e e o R Ee e e e aabee e e eREe e e e e bae e e e anbeeeeanreaans 26
6.2.1 REA-ONIY SEOFBOEeeeeeeeeeee ittt ettt et et et sate e be e st e e e sbe e e sbte e sabeesnbeeeabeeesaneesabeans 26
B.2.2 EXPOSEA SEOFBOE. ... veeeeeeeiuteeeteeetee e stee ettt e bt ettt rbee e saee e sabe e ebe e e abee e sateesabeesnbeeeabeeesaneesnbeaans 28

T.VAUE CONSITAINES......ccoeeiieeeeeeeee e 29

7.1 USE BEfOre DEfiNMITION ... s 29
T7.1. 1 UNAEfINEA PAramELErS...... . e 30
7.1.2 RelaXing CheCKingc.coo ettt et b e sb e saee e saae e 31
7.1.3 Partially DEfiNed SIIUCIUIES.......coiuiieiiiee ettt et sabe e st sbe e e saee e saneens 31
T.1.4 GlODAl VaTADIES.......eee s 31

T2 INUI POINEEIS .. s 32
7. 2.1 PrediCate FUNCLIONSueie s 33
7.2.2 OVETidiNg NUI TYPES. ...ttt ettt b et sate e s be e sbe e e sbe e e sane e snbeaas 34
7.2.3 Relaxing NUI CheCKinNgcooceiiiiieii et 34

TS EXECULION ... anan 35

T4 FPECIAI CIAUSESteieeeie ittt ettt ettt h et et et e e be e e ehb e e sabe e sabe e e be e e eaee e smbeesabeeanbaeeanneas 36

LT AV, 1= Tox LT 39

T 00 1S =1 | W 1Y, F= Lo 0 TRTRR 39

8.2 FUNCLION-ITKE IMACT DS 39
8.2.1 SIdE-EffECt FIrEE PalraMELENS.. s 41
8.2.2 POIYMOIPRIST ...ttt et be e b e sbe e e saee e saaeen 42

8.3 Controlling Macro ChECKINGeieieieiieaiiee ettt ettt st et e s sbee e saee s 42

SR b (< = (o] TSR 43

9. NAMING CONVENTIONS......eeiitieitiietee ettt e ettt et sabe e st e e e bt e et e e e saee e sabeesabeesbeeaabaeesabeesnbeesnbeeanees 45

9.1 Type-Based Naming CONVENTIONS.........couiaiieiiiiiariieesieesieeestee et e sbe e sbe e saee e sebeesbeeesbeeesaeeas 45
O0.1.1 CZECN NAIMES.....eeeeiiii s sssssssssnnsnnnan 45
O.1.2 SIOVAK NAIMIES......uuiiiii s ssssssssnnsnnaan 46
9.1.3 CZEChOS OVAK NAIMES......eueiii s 46

0.2 NAMESPACE PrEfiIXES. ... ettt ettt ettt she e sa e e st e e e b et e sbee e sabe e sabeeenbeeesnneas 46

9.3 NAMING RESITICHIONS ...ttt ettt et e e sbe e sabe e s be e e sbe e e sbee e snbeesnbeeebeeesnneas 48
O.3.1 RESEIVEU NAIMIES.....euiiiiii s sssannnnnan 49
O.3.2 DiIStiNCE THBNT T TEIS. ... s 49

J0. O BT CECK S .. sanan 51

10.1 UNAEfINEO EVAIUALION OF TN ... euveeieeiieieeiieeereesssesssssssssssessnns 51

10.2 ProblematiC CONLIOl SITUCEUINESvveveeereereseessnes 52
10.2.1 LiKElY INfINITE LOOPS ...eeiteietieeiiteesiee ettt ettt ettt sae e st e et e ebe e e saee e sabe e s beeenees 53
O VYL (o 1TSS 53
10.2.3 DEEP BIEAKS ..ottt ettt a et a et e e eae e nabe e nabe e e beeeees 55
10.2.4 LoOP @NA If BOGIESeeiieiieieiee ettt ettt ae e e saae e sabe e s beeeees 55
10.2.5 COMPIELE if-B1S2 LOGIC .. .teieeeeeieieeetee ettt ettt ettt ettt e et e sbe e e sate e snbe e e beeenees 55

10.3 SUSPICIOUS STALEIMENES......ceeeeeeiuteeeteeeteeestee ettt et e e s be e e stee e saeeesabeesbeeeabeeesaeeesabeesabeeaabaeesaseesnneaans 56

10.3.1 StAEMENES With NO Eff@CES...eeiiiiiiiiiiiiiieiiiiiieieeieeeeeeseeeeeeeeseesesssssssssssssssssssssssssssssssssssssssnnnns 56

Contents

10.3.2 1gN0red REIUMN VAIUES......cooeiieiiee ettt ettt be e et e s b e e 56

10.4 UNUSEA DECIAIALIONSveeveeiteeiteeitee sttt ettt sttt sr et sb e s b sr e sr e e sb e e sreesneesneenreenreens 57
10.5 COMPIELE PrOGraMSeei ettt ettt ettt e bt sat et e e sbe e e sbe e e sabeesabeesnbeeaabeeesaeeesnreaaas 58
10.5.1 Unnecessary EXernal NAIMES..........c.ciiiiiiiiieiie ettt e e e e 58
10.5.2 Declarations Missing from HEAEISc.eoiieiieiierieree e 58

10.6 COMPIEE LIMETS. ...eiitiiiitiie ittt ettt ettt e e sbe e e sat e e st e e sbe e e nbe e e sabe e smbeesabeeaabeeesaeeesnbeaaa 59
APPENdiX A AVAIHTADITITYeoeeeieeeeee e 60
APPENdiX B COMMUNICALION......coitiiitieiteeitiestee sttt ettt ettt sr e sb e b e b e e b e e sreesreesbeesbeesreesreenreenreens 60
PN o] 1< o To | D O = o LT USROS 61
(€] 7= | I o =T PP UPRR 61

[1= o TP PP P PP PR PRRPRRPRRTRIN 61
INITTAITIZALION ..t r et e b e et n e 62
PrE-PIOCESSOttt ettt ettt e ettt e e sttt e e s b e e e e aabe e e e e ehbe e e e anbbe e e e aabee e e s nbe e e e anre e e e anres 62
[0 = L= OO PP PR P PR PR URPPRRPRRTRIN 62

L0 811 o L1 | S U TT PP UUPRPTRPPRRN 63
(0= ot (= o [g o RPN 64
MESSAGE FOIMIAL ...ttt ettt et b et e e s bt e e e s st e e e e s bbe e e e aabee e e e anbeeeesanbeeaeannneaans 64
MOOE SEIECLON FIAGS. ... ettt ettt et e b e e sabe e s abe e s be e e sbe e e saneesnbeaaas 64
10101501 (1 o [=T PR 66
= TP PP P PR PR PRRPRRPRRURIN 66

[< T PO TP UUPRTI 66
FUNCLION TNEEITACES. ...ttt r e bt esr e sreesreenre e 70
MEMOrY MEBNAGEIMENL ...ttt e et e e e st e e e e sabe e e e abbe e e e aabee e e s nbeeeeannbeeeeanreas 75

S = 1 o U RRRUPRURI 77

Use Before Definition (SECHION 7.0) ...c..eee ittt 78

NUII POINEEIS (SECHION 7.2) ...ttt sttt e et et e rbe e e saae e b e e s beeenees 78
Y=o Y S = e o g I) R 79

10 = o PO P PP R PR 80
NAMING CONVENTIONS.teitiietii ettt ettt e et e bt e e be e e saee e saee e sabeeabeeaabeeesabeesnbesanbeesnees 80
OFNEN CRNECKS ...ttt b b bt e b e s b e sb e sb e e sb e sbe e sbe e sne e b e nneennes 85

Flag Name ADDIEVIALTONS.........coeiiiiee ettt ettt ettt e sb e saee e s abe e s be e e rbee e saeeesnreaaas 92
APPENIX D ANNOLALIONS.......eieiieiitie ettt ettt ettt e bt sae e e s abe e s be e e abe e e sbeeesabeesnbeesnbeeesneeas 93
FFUNCHIONS ...ttt b bbbt b e s bt s bt e s b e e sb e e s b e e s b e e sb e e sbeesbeenbeenreenreenreens 93
[LEIOrS (SECLION 8.4) ...ttt ettt ettt e et e e e be e e sae e e sabe e s abeeebe e e abeeeanneas 94
CONSLANES (SECHION 8. 1) ...ueeiiiiie ittt ettt ettt ettt et sa e e be e et et e sbe e e sate e sabeesabeeeabeeeanneesnneans 94
Alternate TYPES (SECHION 8.2.2)ueiiiii ettt ettt sb et e st e b e sbe e saee s 94
Declarator ANNOBLIONSciueeirieitieiiesee sttt st sr e reesr e e sbeesreesreesreesreenreens 94
Appendix E CoNtrol COMMEBNTS.......coiiiiiiiiaiiieiiee ettt ettt et e e sbe e saee e sabe e sbe e e sbe e e sbee e sabeesbeessbeeesneeas 99
[(o S T o] o] Ko o H TR 99
YD AACCESS ...ttt ettt ettt ettt ettt ettt oo e sttt e ook bt e e ook be e e e oa b et e e e R b et e e e R Re e e e e REe e e e anbee e e e nreeeeanreaans 99
Y=o foJ T o= K o o ORI 99
Traditional Lint COMIMENTS.cciiiiiiieiieiie ettt s sr e sr e sr e sreesreesreenreens 100

PN o] o1 gl D I 1 o] = L= RPN 101

SEANAAINA LIDIAITES. ... aanas 101

vi LCLint User's Guide

USEN LIDIAITES ...ttt 103
Header File INCIUSION ...t 103
APPENdiX G SPECITICALIONS.cueeeiieiitii ettt ettt saee e st e s be e e sbe e e saee e snbe e snbeeenees 104
SPECIHTICALION FIAOS ... ettt ettt sb e sate e sabe e st e e e be e e eneeas 106
APPENAIX H EMACS ...ttt ettt rb et s et e e s abe e st e e e be e e saee e snbe e snbeeenees 108
RUNNING LCLINT.....ciiiiieiie e Error! Bookmark not defined.
Editing ADDIEVIBLIONSooiiiiiii ettt bt e b e sabe e 108
REFEI BNCES. ...ttt b e e bt bt E e Rt Rt bRt E e E e re e re e re e re s 108

Figuresand Tables

Figure 1. Effort/benefit curve for LCLINL........ccoii it 3
Figure 2. Violations using aDStraCt tYPES. ..oveceeieieiiee ettt 8
Figure 3. BOOIEaN CHECKING.c.iiiiieeieie sttt sttt st st e b e sresneennesrennas 11
Figure 4. ModifieS CECKING........ciiiiieici sttt s nnas 14
Figure5. GlIobalS ChECKING.coiviiiiiiicece st re e e e e 15
Figure 6. DEallOCALION EITOIS.cciveeeeiesiesteeiee e sesee e e st e et s e e e s tesresse e tesbesreesaestesresreenneseennes 20
Yo U I S o = = (= 0= 22
Figure 8. ImpliCit @nNNOLELIONS.cceeeeiieieieeie et resre e e e nnas 23
Figure 9. REFErENCE COUNLING.cceivieieie i ceee sttt se et st sre e e e tesresneenaesrennas 24
Figure 10. UNIiQUE PAraMELErS.eiueeeeiiesiesteeite s e steseeste e stesaestestesreesaestesbesseetestesseenaessestesseenseseeses 25
Figure 11. RetUrNEd PAraMELEN'S.ccveiueiieeieeie e seseeste e ste e e te e sre e e e s tesresseetesbesreesaesbesresneenseseennes 26
Figure 12. EXPOSUrE CHECKING.eiveeieiesiesteeie s ste st et e et e e st sbesse e tesresreenaeseesresneenneseennas 29
Figure 13. Use before definitioN..........c.ccviiieeie it 31
Figure 14. Annotated globalS lIStS......c.ciiiiieeii e ens 32
Figure 15. NUI ChECKING. ..cveivieieie ettt s re e e et e sresreenaesrenns 33
o = G T £ oo o1 35
Yo L S o o O = T S 38
Figure 18. NamiNg CHECKS........ciuiiiiiieieie sttt sttt se et s besre e e e besresneenneseenns 50
Figure 19. EVAlUBLION OFAENcceiueeieie e ceesee sttt sttt sse et e st s re e e e besresnaennesrenns 52
Figure 20. Infinite 100P ChECKING.......cccveiiieceee s 54
Figure 21, SWiItCh ChECKING.cviiiiiicc e re e 54
Figure 22. StatementSWith NO EffECt.ocv e e s 56
Figure 23. 1gnored retUrN VAIUES.ooviiieeie ettt sttt st resneenae e e 58
Table 1. Prefix CharaCter COUES. ... bbb bbb b e 47

Table 2. Flag name abbreviations. ... 92

LCLint Users Guide

LCLint isatool for statically checking C programs. With minimal effort, LCLint can be used as a
better lint. If additional effort isinvested adding annotations to programs, LCLint can perform
stronger checks than can be done by any standard lint.

Some problems detected by LCLint include:

Violations of information hiding. A user-defined type can be declared as abstract, and a message
is reported where code inappropriately depends on the representation of the type. (Section 3)
Inconsistent modification of caller-visible state. Functions can be annotated with information on
what caller-visible state may be modified by the function, and an error is reported if the
modifications produced by the function contradict its declaration. (Section 4.1)

Inconsistent use of global variables. Information on what global and file scope variables a
function may use can be added to function declarations, and a message is reported if the
implementation of the function uses other global variables or does not use every global variable
listed in its declaration. (Section 4.2)

Memory management errors. Instances where storage that has been deallocated is used, or where
storage is not deallocated (memory leaks). (Section 5)

Dangerous data sharing or unexpected aliasing. Parametersto afunction share storage in away
that may lead to undefined or undesired behavior, or areference to storage within the
representation of an abstract type is created. (Section 6)

Using possibly undefined storage or returning storage that is not completely defined (except as
documented). (Section 7.1)

Dereferencing apossibly null pointer. (Section 7.2)

Dangerous macro implementations or invocations. (Section 8)

Violations of customized naming conventions. (Section 9)

Program behavior that is undefined because it depends on order of evaluation, likely infinite loops,
fall-through cases, incomplete logic, statements with no effect, ignored return values, unused
declarations, and exceeding certain standard limits. (Section 10)

LCLint checking can be customized to select what classes of errors are reported using command line
flags and stylized comments in the code.

This document isaguideto using LCLint. Section 1 isabrief overview of the design goals of
LCLint. Section 2 explains how to run LCLint, interpret messages and control checking. Sections 3—
10 describe particular checks done by LCLint.

! Lint is a common programming tool for detecting anomaliesin C programs. S. C. Johnson developed
the origina lint in the late seventies, mainly because early versions of C did not support function
prototypes.

2 LCLint User's Guide

1. Overview
The main goasfor LCLint are to:

Detect alarge number of bugsin typical C programs, without producing an unacceptable number
of spurious messages. We are willing to accept the possibility that a few spurious messages are
produced as long as it enables significantly more powerful checking and the spurious messages can
be suppressed easily.

Support a programming methodol ogy involving abstract types and clean, documented interfacesin
standard C programs.

Provide a gradual transition for programmers. LCLint can be used like a better standard lint with
minimal effort. Adding afew annotations to programs enables significantly better checking. As
more effort is put into annotating programs, better checking results. A representational
effort/benefit curve for using LCLint isshown in Figure 1. As different checks are turned on and
more information is given in code annotations the number of bugs that can be detected increases
dramatically.

Provide enough flexibility so that LCLint can be used effectively with awide range of coding
styles. Especialy important is making it easy to use LCLint effectively to maintain and modify
legacy code.

Check programs quickly and with no user interaction. LCLint runs faster than most compilers.
Libraries can be used to enable fast checking of afew modulesin alarge program.

LCLint does many of thetraditional lint checks including unused declarations, type inconsistencies,
use-before-definition, unreachable code, ignored return values, execution paths with no return, likely
infinite loops, and fall-through cases. This document focuses on more powerful checks that

Formal Verification
Tools

Modifies, Globals

Naming Conventions

Aliasing e

Checked Macros
> V\Memory Management
Definition

Annotations Null Annotations

Stricter
Type-Checking
\

Fraction of Errors Detected

~
Abstract Types

™~ .
Weak Checking

Typical C
Compilers

Amount of Effort Required

Figurel. Effort/benefit curvefor LCLint.

Operation

are made possible by additional information given in source code annotations.? Annotations are
stylized comments that document certain assumptions about functions, variables, parameters and
types. They may be used to indicate where the representation of a user-defined type is hidden, to limit
where aglobal variable may be used or modified, to constrain what a function implementation may do
to its parameters, and to express checked assumptions about variables, types, structure fields, function
parameters, and function results. In addition to the checks specifically enabled by annotations, many
of the traditional lint checks are improved by exploiting this additional information.

2. Operation

LCLint isinvoked by listing filesto be checked. Initialization files, command line flags, and stylized
comments may be used to customize checking globally and locally.

The best way to learn to use LCLint, of course, isto actualy useit (if you don't already have LCLint
installed on your system, see page 60). Before you read much further in this document, | recommend
finding asmall C program. Then, try running:

lclint *.c

For the most C programs, this will produce alarge number of messages. To turn off reporting for
some of the messages, try:

lclint -weak *.c

The - weak flag is amode flag that sets many checking parameters to select weaker checking than is
done in the default mode. Other LCLint flags will be introduced in the following sections; a
complete list is given in Appendix C.

2.1 Messages
The user can customize the format and content of messages printed by LCLint. A typical messageis:

sample.c: (in function faucet)

sample.c:11:12: Fresh storage x not released before return
A memory leak has been detected. Newly-allocated or only-qualified storage is not
released before the last reference to it is lost. (-mustfree will suppress message)
sample.c:5:47: Fresh storage x allocated

Thefirst line gives the name of the function in which the error isfound. Thisis printed before the
first message reported for afunction. (The function context is not printed if - showf unc is used.)

The second line isthe text of the message. This message reports a memory leak — storage allocated
in afunction is not deallocated before the function returns. The file name, line and column number
where the error islocated precedes the text. The column numbers are used by emacs compile mode to
jump to the appropriate line and column location. (Column numbers are not printed if - showcol is
used.)

The next lineis a hint giving more information about the suspected error. Most hints also include
information on how the message may be suppressed. For this message, setting the - must f r ee flag
would prevent the message from being reported. Hints may be turned off by using - hi nt s.
Normally, ahint is given only thefirst time a class of error isreported. To have LCLint print a hint
for every message regardless, use +f or cehi nt s.

2 Another way to provide extrainformation about code is to use formal specifications (Appendix G).

4 LCLint User's Guide

Thefinal line of the message gives additional location information. For this message, it tellswhere
the leaking storage is allocated.

The generic message format is (parts enclosed in square brackets are optional):

[<file>:<line> (in <context>)]
<file>:<line>[,<column>]: message
[hint]
<file>:<line>,<column>: extra location information, if appropriate

The text of messages and hints may be longer than one line. They are split into lines of length less
thanthevalueset using - | i nel en <nunber >. The default line length is 80 characters. LCLint
attempts to split linesin a sensible place as near to the line length limit as possible.

The+par enfi | ef or mat flag can be used to generate file locations in the format recognized by
Microsoft Developer Studio. If +par enfi | ef or mat is set, the line number follows the file name
in parentheses (e.g., sanpl e. c(11))

2.2 Flags

So that many programming styles can be supported, LCLint provides over 300 flags for controlling
checking and message reporting. Some of the flags are introduced in the body of this document.
Appendix C describes every flag. Modes and shortcut flags are provided for setting many flags at
once. Individud flags can override the mode settings.

Flags are preceded by + or - . When aflagis preceded by + we say it ison; when it is preceded by -
it is off. The precise meaning of on and off depends on the type of flag.

The +/- flag settings are used for consistency and clarity, but contradict standard UNIX usage and it
is easy to accidentally use the wrong one. To reduce the likelihood of using the wrong flag, LCLint
issues warnings when aflag is set in an unusual way. Warnings are issued when aflag is redundantly
set to the value it aready had (these errors are not reported if the flag is set using a stylized
comment), if amode flag or special flag is set after amore specific flag that will be set by the generd
flag was aready set, if value flags are given unreasonable values, of if flags are set in an inconsistent
way. The-war nf | ags flag suppresses these warnings.

Default flag settingswill beread from~/ . | cl i ntrc if itisreadable. If thereisa. |l clintrc file
in the working directory, settingsin this file will be read next and its settings will override thosein

~/ . 1 cli nt rc. Command-line flags override settings in either file. Thesyntax of the. I clintrc
fileisthe same as that of command-line flags, except that flags may be on separate lines and the #
character may be used to indicate that the remainder of the line is acomment. The - nof flag prevents
the~/ .1 clintrc filefrombeingloaded. The-f <fil ename> flagloads options from filename.

To make flag names more readable, hyphens (-), underscores (_) and spaces in flags at the command
lineareignored. Hence, war nf | ags, war n-f 1 ags andwar n_f | ags al select the
war nf | ags option.

2.3 Stylized Comments

Stylized comments are used to provide extrainformation about atype, variable or function interface
to improve checking, or to control flag settings locally.

Operation

All stylized comments begin with / * @and are closed by the end of the comment. The role of the @
may be played by any printable character. Use- conmrent char <char > to sdect adifferent
stylized comment marker.

2.3.1 Annotations

Annotations are stylized comments that follow a definite syntax. Although they are comments, they
may only be used in fixed grammatical contexts (e.g., like atype qualifier).

Syntactic comments for function interfaces are described in Section 4; comments for declaring
congtants in Section 8.1 and comments for declaring iterators in Section 8.4. Sections 3—7 include
descriptions of annotations for expressing assumptions about variables, parameters, return values,
structure fields and type definitions. A summary of annotationsis found in Appendix D.

2.3.2 Control Comments

Unlike annotations, control comments may appear between any two tokensin a C program.®
Syntactically, they are no different from standard comments. Control comments are used to provide
source-level control of LCLint checking. They may be used to suppress spurious messages, set flags,
and control checking locally in other ways. A complete description of control commentsisfound in
Appendix E.

Most flags (all except those characterized as“ global” in Appendix C) can be set locally using control
comments. A control comment can set flags locally to override the command line settings. The
original flag settings are restored before processing the next file. The syntax for setting flagsin
control comments is the same as that of the command line, except that flags may also be preceded by
= to restore their setting to the original command-line value. For instance,

[/ *@boolint -nodifies =showfunc@/
setsbool i nt on (thismakesbool andi nt indistinguishable types), setsnodi f i es off (this

prevents reporting of modification errors), and sets showf unc to itsoriginal setting (this controls
whether or not the name of afunction is displayed before a message).

3 Unlike regular C comments, control comments should not be used within a single token. They may
introduce new separators in the code during parsing.

6 LCLint User's Guide

3. Abstract Types

Information hiding is a technique for handling complexity. By hiding implementation details,

gﬁggﬁgﬁﬂ 2; programs can be understood and devel oped in distinct modules and the effects of a change can be
books wax localized. One technique for information hiding is data abstraction. An abstract typeis used to
mathematical represent some natural program abstraction. It provides functions for manipulating instances of the
when they type. The module that implements these functionsis called the implementation module. We cdl the
f‘(;;i‘éeo?t the functions that are part of the implementation of an abstract type the operations of the type. Other
abstract data Modules that use the abstract type are called clients.

types... Such

booksmakeit Clients may use the type name and operations, but should not manipulate or rely on the actual

seem as if representation of the type. Only the implementation module may manipulate the representation of an

VOU’; l”e"er abstract type. This hides information, since implementers and maintainers of client modules should
actually usean ¢ need to know anything about how the abstract type isimplemented. It provides modularity, since

gt,);ritcggzs the representation of an abstract type can be changed without having to change any client code.

asleep aid.
Seve LCLint supports abstract types by detecting places where client code depends on the concrete
McConnell representation of an abstract type.

To declare an abstract type, the abst r act annotationisaddedto a t ypedef. For example (in
nstring. h),

typedef /*@bstract @/ char *nstring;

declaresst r i ng as an abstract type. Itisimplemented usingachar *, but clients of the type
should not depend on or need to be aware of this. If it later becomes apparent that a better
representation such as a string table should be used, we should be able to change the implementation
of st r i ng without having to change or inspect any client code.

In aclient module, abstract types are checked by name, not structure. LCLint reports an error if an
instance of st ri ng ispassed asachar * (for instance, as an argument to st r | en), since the
correctness of this call depends on the representation of the abstract type. LCLint also reports errors
if any C operator except assignment (=) or si zeof isused on an abstract type. The assignment
operator is allowed since its semantics do not depend on the representation of the type. The use of
si zeof isaso permitted, since thisisthe only way for clientsto allocate pointers to the abstract
type. Type casting objectsto or from abstract typesin a client module is an abstraction violation and
will generate a warning message.

Normally, LCLint will assume atype definition is not abstract unlessthe/ * @bst ract @/
qualifier isused. If instead you want all user-defined types to be abstract types unless they are
marked asconcr et e, the +i np- abst ract flagcanbeused. Thisaddsan implicit abst r act
annotation to any t ypedef that isnot marked with/ * @ oncrete@/ .

Some examples of abstraction violations detected by LCLint are shown in Figure 2.

* For abstract types whose instances can change value, a client does need to know if assignment has
copy or sharing semantics (see Section 3.2).

Function I nterfaces 7

pal i ndrone. c Running LCLint

include "bool .h" > Iclint palindrome.c
include "mstring. h LCLint 2.4 - 10 Apr 98

bool isPalindrome (nstring s)
palindrome.c: (in function isPalindrome)

6 char *current = (char *) s; palindrome.c:6: Cast from underlying abstract type
7int i, len = (int) strlen (s); mestring: (char *)s
for (i =0; i <= (len+l) [2; i++) palindrome.c:7: Function strlen expects arg 1 to be
char * gets mstring: s
1 if (current[i] != s[len-i-1]) palindrome.c:11: Array fetch from non-array (mstring):
return FALSE; slen -i-1]
r e% urn TRUE palindrome.c: (in function callPal)
} palindrome.c:19: Function isPalindrome expects arg 1 to

_ be mstring gets char *: "bob"
bool call Pal (void)

{19 return (isPalindrome ("bob")): Finished LCLint checking --- 4 code errors found

}
In client code, the abstract type is a distinct type,

incompatible with its concrete representation.

Figure® 2. Violations using abstract types.

3.1 Access

Where code may manipulate the representation of an abstract type, we say the code has access to that
type. If code has access to an abstract type, the representation of the type and the abstract type are
indistinguishable. Usually, asingle program module that is the only code that has access to the type
representation implements an abstract type. Sometimes, more complicated access control is desired if
the implementation of an abstract type is split across program files, or particular client code needsto
access the representation.

There are a several ways of selecting what code has access the representation of an abstract type:

Modules. An abstract type defined in M. h isaccessiblein M. c¢. Controlled by the
accessnodul e flag. Thismeanswhenaccessnodul e ison, asit is by default, the module
accessruleisin effect. If accessnodul e isoff (when - access- nodul e isused), the
module accessruleis not in effect and an abstract type defined in M. h is not necessarily
accessiblein M. ¢

File names. An abstract type namedt ype isaccessiblein filesnamedt ype. <ext ensi on>.
For example, the representation of nst ri ng isaccessibleinnstri ng. handnstri ng. c.
Controlled by theaccess-fi | e flag.

Function names. An abstract type named t ype may be accessible in afunction named

t ype_nane ort ypeNane. For example, nstring_| engt hand st ri nglLengt h would
have accessto thenst ri ng abstract type. Controlled by accessf unct i on and the naming
convention (see Section 9).

® Output from LCLint is displayed in sans-serif font. The command lineis preceded by >, the rest is
output from LCLint. Explanations added to the code or LCLint output are shown in italics. Code

shown in the figures in this document is available via anonymous f t p from
ftp://larch.lcs.mt.edu/ pub/Larch/lclint/guide.tar.gz

8 LCLint User's Guide

Access control comments. The syntax / * @ccess type, *@/° alowsthe following code to
access the representation of t ype. Similarly, / * @oaccess type, @/ restricts accessto
the representation of t ype. Thetypeinanoaccess comment must have been declared as an
abstract type.

3.2 Mutability

We can view types as being mutable or immutable. A typeismutable if passing it as a parameter to
afunction call can change the value of an instance of the type.” For example, the primitive typei nt
isimmutable. If i isalocal variable of typei nt and no variables point to the location wherei is
stored, the value of i must be the same before and after thecall f (i) . Structure and union types are
also immutable, since they are copied when they are passed as arguments. On the other hand, pointer
types are mutable. If x isaloca variable of typei nt *, the value of * x (and hence, the value of the
object x) can be changed by the function call g(x) .

The mutability of a concrete typeis determined by its type definition. For abstract types, mutability
does not depend on the type representation but on what operations the type provides. If an abstract
type has operations that may change the value of instances of the type, the typeis mutable. If not, itis
immutable. The value of an instance of an immutable type never changes. Since object sharingis
noticeable only for mutable types, they are checked differently from immutable types.
The/ *@rut abl e@/ and/ * @ mmut abl e@/ annotations are used to declare an abstract type
as mutable or immutable. (If neither is used, the abstract type is assumed to be mutable.) For
example,

typedef /*@bstract@/ /*@mutable@/ char *nstring;

typedef /*@bstract@/ /*@nmutable@/ int weekDay;

declares st r i ng as a mutable abstract type and weekDay as an immutable abstract type.

Clients of amutable abstract type need to know the semantics of assignment. After the assignment
expressions = t,dos andt refer to the same object (that is, will changes to the value of s aso
changethevaueof t)?

LCLint prescribes that all abstract types have sharing semantics, sos andt would indeed be the
same object. LCLint will report an error if a mutable type isimplemented with a representation (e.g.,
ast ruct) that does not provide sharing semantics (controlled by mut r ep flag).

The mutability of an abstract type is not necessarily the same as the mutability of its representation.
We could use the immutable concrete typei nt to represent mutable strings using an index into a
string table, or declare nst r i ng asimmutable as long as no operations are provided that modify the
valueof annst ri ng.

3.3 Boolean Types

Standard C has no boolean representation — the result of a comparison operator is an integer, and no
type checking is done for test expressions. Many common errors can be detected by introducing a
distinct boolean type and stronger type checking.

® The meta-notation, i t em * is used to denote a comma separated list of items. For example,
/*@ccess nstring, intSet@/

provides access to the representations of both mst ri ng andi nt Set .)
" Through the parameter. Modifications using some other variable that has a pointer to the location of
this parameter are not considered.

Function I nterfaces

Usethe—bool t ype <name> flagto select the type name is used to represent boolean values.?
Relations, comparisons and certain standard library functions are declared to return booleans.

LCLint checks that the test expressioninani f , whi | e, or f or statement or an operandto &&, | | or

I isaboolean. If thetype of atest expression isnot a boolean, LCLint will report an error
depending on the type of the test expression and flag settings. If the test expression has pointer type,
LCLint reports an error if pr edbool pt r ison (this can be used to prevent messages for the idiom
of testing if a pointer is not null without a comparison). If itistypei nt, an error isreported if

pr ed- bool -i nt ison. For all other types, LCLint reports an error if pr ed- bool - ot her s is

on.

Since using = instead of == is such a common bug, reporting of test expressions that are assignments
is controlled by the separate pr ed- assi gn flag. The message can be suppressed by adding extra

parentheses around the test expression.

Appendix C describes other flags for controlling boolean checking.

bool . c Running LCLint

b2)

1 nclude "bool.h"

int f (int i, char *s,
bool bl, bool

{

6 if (i =3)

7 return bil;

g if ('l |] s)

9 return i;

10 if (s)

11 return 7;

12 if (bl == b2)

13 return 3;

14 return 2;

}

> |clint bool.c +predboolptr —booltype bool
LCLint 2.4 --- 10 Apr 98

bool.c:7: Return value type bool does not match declared type int: bl
bool.c:6: Test expression for if is assignment expression: i = 3
bool.c:6: Test expression for if not bool, type int: 1 =3
bool.c:8: Operand of ! is non-boolean (int): !l
bool.c:8: Right operand of || is non-boolean (char *): li || s
bool.c:10: Test expression for if not bool, type char *:'s
Not reported without +pr edbool ptr.
bool.c:12: Use of == with bool variables (risks inconsistency because
of multiple true values): bl == b2

Finished LCLint checking --- 7 code errors found

3.4 Primitive C Types

LCLint supports stricter checking of primitive C types. Thechar and enumtypes can be checked as
distinct types, and the different numeric types can be type-checked strictly.

3.4.1 Characters

Figure 3. Boolean checking.

The primitive char type can be type-checked as adigtinct type. If char isused asadistinct type,
common errorsinvolving assigning i nt sto char s are detected.

8 To change the names of TRUE and FALSE, use - bool t r ue and - bool f al se. TheLCLint
distribution includes an implementation of bool , inl i b/ bool . h. However, it isn't necessary to use
this implementation to get the benefits of boolean checking.

Two types
have
compatible
type if their
types are the
same.

ANS C,

3.1.2.6.

Two types
need not be
identical to be
compatible.
ANS C,
footnote to
3.1.2.6.

10 LCLint User's Guide

The+chari nt flag can be used for checking legacy programswherechar andi nt are used
interchangeably. If chari nt ison, char typesindistinguishable fromi nts. To keepchar and
i nt asdistinct types, but allow chars to be used to index arrays, use +char i ndex.

3.4.2 Enumerators

Standard C treats user-declared enumtypes just like integers. An arbitrary integral value may be
assigned to an enumtype, whether or not it was listed as an enumerator member. LCLint checks each
user-defined enumtype as distinct type. An error isreported if avalue that is not an enumerator
member is assigned to the enumtype, or if an enumtypeis used as an operand to an arithmetic
operator.

If theenumi nt flagison, enumandi nt types may be used interchangeably. Likechari ndex, if
theenuni ndex flagison, enumtypes may be used to index arrays.

3.4.3 Numeric Types

LCLint reports where numeric types are used in dangerous or inconsistent ways. With the strictest
checking, LCLint will report an error anytime numeric types do not match exactly. If ther el ax-
gual s flagison, only those inconsistencies that may corrupt values are reported. For example, if an
i nt isassigned to avariable of typel ong (or passed asal ong formal parameter), LCLint will not
report an error if r el ax- qual s isonsinceal ong must have at least enough bitsto storean i nt
without dataloss. On the other hand, an error would be reported if thel ong were assigned to an

i nt,sincethei nt type may not have enough bitsto store the | ong value.

Similarly, if asi gned valueisassigned to an unsi gned, LCLint will report an error since an

unsi gned type cannot represent all si gned values correctly. If thei gnor e- si gns flagison,
checking is relaxed to ignore dl sign qualifiersin type comparisons (this is not recommended, since it
will suppress reporting of real bugs, but may be necessary for quickly checking certain legacy code).

3.4.4 Arbitrary Integral Types

Some types are declared to be integral types, but the concrete type may be implementation dependent.
For example, the standard library declaresthetypessi ze_t, ptr_di ff andwchar _t, but does
not constrain their types other than limiting them to integral types. Programs may rely on them being
integral types (e.g., can use + operator ontwo si ze_t operands), but should not rely on a particular
representation (e.g., | ong unsi gned).

LCLint supports three different kinds of arbitrary integral types:

[*@ntegraltype@/
An arbitrary integral type. The actual type may be any one of short,i nt, | ong,
unsi gned short , unsi gned, orunsi gned | ong.
/*@nsi gnedi ntegral type@/
An arbitrary unsigned integral type. The actual type may be any one of unsi gned short,
unsi gned, or unsi gned | ong.
/* @i gnedi ntegral type@/
An arbitrary signed integral type. The actua type may be any one of short,i nt, orl ong.

LCLint reports an error if the code depends on the actual representation of atype declared as an
arbitrary integral. Thermat ch- any-i nt egral flag relaxes checking and allows an arbitrary
integral type is allowed to match any integral type.

Function I nterfaces 11

Other flags set the arbitrary integral typesto a concrete type. These should only be used if portability
to platforms that may use different representationsis not important. Thel ong-i nt egral and

| ong- unsi gned-i nt egr al flags set the type correspondingto/ * @ nt egral t ype@/ tobe
unsi gned | ong and| ong respectively. Thel ong- unsi gned- unsi gned-i nt egral flag
sets the type correspondingto/ * @insi gnedi nt egral t ype@/ tobeunsi gned | ong. The
| ong- si gned-i nt egr al flag setsthe type correspondingto/ * @i gnedi nt egral t ype@/
to bel ong.

12 LCLint User's Guide

4. Function Interfaces

Functions communicate with their calling environment through an interface. The caller communicates
the values of actua parameters and global variables to the function, and the function communicatesto
the caller through the return value, global variables and storage reachable from the actual parameters.
By keeping interfaces narrow (i.e., restricting the amount of information visible across afunction
interface), we can understand and implement functions independently.

A function prototype documents the interface to afunction. It serves as a contract between the
function and its caller. In early versions of C, the function “ prototype”’ was very limited. It described
the type returned by the function but nothing about its parameters. The main improvement provided
by ANSI C was the ability to add information on the number and types of parameter to a function.
LCLint provides the means to express much more about a function interface: what global variable the
function may use, what values visible to the caller it may modify, if apointer parameter may be anull
pointer or point to undefined storage, if storage pointed to by a parameter is deallocated before the
function returns, if the function may create new aliases to a parameter, can the caller modify or
deallocate the return value, €etc.

The extrainterface information places constraints on both how the function may be called and how it
may be implemented. LCLint reports places where these constraints are not satisfied. Typicaly,
these indicate bugs in the code or errors in the interface documentation.

This section describes syntactic comments that may be added to a function declaration to document
what global variables the function implementation may use and what values visible to its caler it may
modify. Sections 4-7 describe annotations may be added to parameters to constrain valid arguments
to afunction and how these arguments may be used after the call and to the return value to constrain
results.

4.1 Modifications

The modifies clause lists what values visible to the caller may be modified by afunction. Modifies
clauses limit what values a function may modify, but they do not require that listed values are dways
modified. The declaration,

int f (int *p, int *q) /*@modifies *p@/;

declaresafunction f that may modify the value pointed to by its first argument but may not modify
the value of its second argument or any global state.

LCLint checks that a function does not modify any caler-visible value not encompassed by its
modifies clause and does modify al values listed in its modifies clause on some possible execution of
the function. Figure 4 shows an example of modifies checking done by LCLint.

4.1.1 Special Modifications
A few special names are provided for describing function modifications:

internal State
The function modifies some internal state (that is, the value of ast at i ¢ variable). Even
though a client cannot accessthe internal state directly, it isimportant to know that something
may be modified by the function call both for clear documentation and for checking undefined
order of evauation (Section 10.1) and side-effect free parameters (Section 8.2.1).

Function I nterfaces 13

fileSystem
The function modifies the file system. Any modification that may change the system stateis
considered afile system modification. All functions that modify an object of type pointer to
FI LE also modify the file system. In addition, functions that do not modify a FI LE pointer
but modify some state that is visible outside this process also modify the file system (e.g.,
renane). Theflagnod-fi |l e- syst emcontrols reporting of undocumented file system
modifications.

not hi ng
The function modifies nothing (i.e., it is side-effect free).

The syntactic comment, / * @/ in afunction declaration or definition (after the parameter list, before

the semi-colon or function body) denotes a function that modifies nothing and does not use any global
variables (see Section 4.2).

modi fy.c Running LCLint

void setx (int *X, int *y) | >iclint modify.c +checks
/*@modifies *x@/ LCLint 2.4 --- 10 Apr 98
* - Kk oy
4Ty =X modify.c:4: Undocumented modification of *y: *y = *x
modify.c:5: Suspect object listed in modifies of setx
void sety (int *x, int *y) _ not modlfled_: *X
/*@modifies *y@/ modify.c:1: Declaration of setx
{
setx (y, X); Finished LCLint checking --- 2 code errors found
No errorsfor sety —the call to setx The +checks flag isa mode flag for selecting moderately
modifies the value pointed to by itsfirst | grict checking. It turnson nust nod checking, so the
parameter (y) as documented by the second error concerning missing documented modifications
mOdIerS CI ause. iS reportaj_

Figure4. Modifies checking.

4.1.2 Missing Modifies Clauses

LCLint is designed so programs with many functions that are declared without modifies clauses can
be checked effectively. Unlessmodnonods isin on, no modification errors are reported checking a
function declared with no modifies clause.

A function with no modifies clause is an unconstrained function since there are no documented
constraints on what it may modify. When an unconstrained functionis called, it is checked differently
from afunction declared with amodifies clause. To prevent spurious errors, no modification error is
reported at the call site unlessthe mod- uncon flagison. Flags control whether errorsinvolving
unconstrained functions are reported for other checks that depend on modifications (side-effect free
macro parameters (Section 8.2.1), undefined evaluation order (Section 10.1), and likely infinite loops
(Section 10.2.1).)

14 LCLint User's Guide

4.1.3 Limitations

Determining whether a function modifies a particular parameter or global isin generd an
undecidable’ problem. To enable useful checking, certain simplifying assumptions are necessary.
LCLint assumes an object is modified when it appears on the left hand side of an assignment or it is
passed to a function as a parameter which may be modified by that function (according to the called
function's modifies clause). Hence, LCLint will report spurious modification errors for assignments
that do not change the value of an object or modifications that are always reversed before a procedure
returns. The/ *@ mods @/ and/ * @npds @/ control comments can be used around these
modifications to suppress the message.

4.2 Global Variables

Another aspect of afunction’ sinterface, isthe global variablesit uses. A globalslist in afunction
declaration lists externa variables that may be used in the function body. LCLint checks that global
variables used in a procedure match those listed in its globals list. A global isused in afunction if it
appears in the body directly, or itisin the globalslist of afunction called in the body. LCLint reports
if aglobal that isused in aprocedureisnot listed initsglobaslist, and if alisted global isnot used in
the function implementation. Figure 5 shows an example function definition with aglobalslist and
associated checking done by LCL.int.

gl obal s.c Running LCLint

int globl, glob2; > [clint globals.c +checks
sint f (void) /*@lobals globl: @/ | -CHNt24--10Apros

5 return gl ob2; globals.c:5: Undocumented use of global glob2
} globals.c:3: Global globl listed but not used

Finished LCLint checking --- 2 code errors found

Figure5. Globals checking.

4.2.1 Controlling Globals Checking

Whether on not an error is reported for ause of agloba variable in a given function depends on the
scope of the variable (file st at i ¢ or external), the checking annotation used in the variable
declaration or the implicit annotation if no checking annotation is used, whether or not the functionis
declared with aglobalslist, and flag settings.

A global or file static variable declaration may be preceded by an annotation to indicate how the
variable should be checked. In order of decreasing checks, the annotations are:

/*@heckedstrict @/
Strictest checking. Undocumented uses and modifications of the variable are reported in all
functions whether or not they have aglobaslist (unlesscheck-stri ct - gl obs isoff).
[*@hecked@/
Undocumented use of the variable is reported in a function with aglobaslist, but not in a
function declared with no globals (unless gl ob- nogl obs ison).

® This means that theoreticians can prove that no algorithm exists that solves the problem correctly for
all possible programs.

Function I nterfaces 15

[*@hecknmod@/
Undocumented uses of the variable are not reported, but undocumented modifications are
reported. (If nod- gl obs- nonods ison, errors are reported even in functions declared with

no modifies clause or globalslist.)
[/ * @nchecked@/

No messages are reported for undocumented use or modification of this global variable.

If avariable has none of these annotations, an implicit annotation is determined by the flag settings.

Different flags control the implicit annotation for variables declared with global scope and variables
declared with file scope (i.e., using the st at i ¢ storage qualifier). To set the implicit annotation for
global variables declared in cont ext (gl obs for external variables or st at i cs for file static
variable) to beannot at i on (checked, checknod, checkedstri ct) use

i mp<annot at i on><cont ext >. For example, +i np- checked- stri ct-stati cs makes
the implicit checking on unqualified file static variablescheckedst ri ct . (See Appendix Cfor a
complete list of globals checking flags.)

4.3 Declaration Consistency

LCLint checks that function declarations and definitions are consistent. The genera rule isthat the
first declaration of afunction implies all later declarations and definitions. If afunction isdeclared in
aheader file, the first declaration processed isitsfirst declaration (if it is declared in more than one
header file an error isreported if r edecl isset). Otherwise, the first declaration in the file defining
the function isitsfirst declaration.

Later declarations may not include variablesin the globals list that were not included in the first
declaration. The exception to thisis when the first declaration isin a header file and the later
declaration or definition includes file static variables. Since these are not visible in the header file,
they can not be included in the header file declaration. Similarly, the modifies clause of alater
declaration may not include objects that are not modifiable in the first declaration. The later
declaration may be more specific. For example, if the header declarationis:

extern void set Name (enployee e, char *s) /*@modifies e@/;
the later declaration could be,
voi d set Nane (enpl oyee e, char *) /*@mdifies e->nane@/;
If enpl oyee isan abstract type, the declaration in the header should not refer to a particular

implementation (i.e., it shouldn't rely on there being anane field), but the implementation
declaration can be more specific.

Thisrule also appliesto file static variables. The header declaration for a function that modifies afile
static variable should use nodi fi es i nt er nal St at e sincefile static variables are not visible to
clients. The implementation declaration should list the actual file static variables that may be
modified.

Y ea, from the
table of my
memory I'll
wipe away all
trivial fond
records, al
saws of
books, all
forms, all
pressures
past, that
youth and
observation
copied there.
Hamlet
prefers
garbage
collection
(Shakespeare,
Hamlet.
Act |,
Scenev)

16 LCLint User's Guide

5. Memory Management

About half the bugsin typical C programs can be attributed to memory management problems.
Memory management bugs are notorioudy difficult to detect through traditional techniques. Often,
the symptom of the bug is far removed from its actual source. Memory management bugs often only
appear sporadically and some bugs may only be apparent when compiler optimizations are turned on
or the code is compiled on a different platform. Run-time tools offer some help, but are cumbersome
to use and limited to detecting errors that occur when test cases are run. By detecting these errors
gtatically, we can be confident that certain types of errors will never occur and provide verified
documentation on the memory management behavior of a program.

LCLint can detect many memory management errors at compile time including:

using storage that may have been f r eed (Section 5.2)

failing to deallocate memory (Section 5.2)

returning a pointer to stack-allocated storage (Section 5.2.6)
undocumented or dangerous diasing or storage sharing (Section 6)
passing or returning storage that is not completely defined (Section 7.1)
dereferencing anull pointer (Section 7.2)

Most of these checks rely heavily on annotations added to programs to document assumptions rel ated
to memory management and pointer values. By documenting these assumptions for function
interfaces, variables, type definitions and structure fields, memory management bugs can be detected
at their source — where an assumption is violated. In addition, precise documentation about memory
management decisions makes it easier to change code.

5.1 Storage Model®

This section describes execution-time concepts for describing the state of storage more precisely than
can be done using standard C terminology. Certain uses of storage are likely to indicate program
bugs, and are reported as anomalies.

LCL assumes a CLU-like object storage model.™* An object is atyped region of storage. Some
objects use a fixed amount of storage that is alocated and deallocated automatically by the compiler.
Other objects use dynamic storage that must be managed by the program.

Storage is undefined if it has not been assigned a value, and defined after it has been assigned a
value. An object is completely defined if all storage that may be reached from it is defined. What
storage is reachable from an object depends on the type and value of the object. For example, if p isa
pointer to astructure, p is completely defined if the value of p isNULL, or if every field of the
structure p pointsto is completely defined.

When an expression is used as the |eft side of an assignment expression we say it isused as an
Ivalue. Itslocation in memory is used, but not its value. Undefined storage may be used as an lvalue
since only itslocation is needed. When storage is used in any other way, such as on the right side of

19 This section is largely based on [Evans96]. It semi-formally defines some of the terms needed to
describe memory management checking; if you are satisfied with an intuitive understanding of these
terms, this section may be skipped.

" Thisissimilar to the LISP storage model, except that objects are typed.

Memory Management

an assignment, as an operand to a primitive operator (including the indirection operator, *),"? or asa
function parameter, we say it isused asan rvalue. It isan anomaly to use undefined storage as an
rvalue.

A pointer isatyped memory address. A pointer is either live or dead. A live pointer is either NULL
or an address within alocated storage. A pointer that points to an object is an object pointer. A
pointer that points inside an object (e.g., to the third element of an allocated block) is an offset
pointer. A pointer that points to allocated storage that is not defined is an allocated pointer. The
result of dereferencing an alocated pointer is undefined storage. Hence, it isan anomaly to useit as
anrvaue. A dead (or “ dangling”) pointer does not point to allocated storage. A pointer becomes
dead if the storage it points to is deallocated (e.g., the pointer is passed to thef r ee library function.)
It isan anomaly to use adead pointer as an rvalue.

Thereisaspecia object null corresponding to the NULL pointer in aC program. A pointer that may
have the value NULL is a possibly-null pointer. It isan anomaly to use a possibly-null pointer where
anon-null pointer is expected (e.g., certain function arguments or the indirection operator).

5.2 Deallocation Errors

There are two kinds of deallocation errors with which we are concerned: deall ocating storage when
there are other live references to the same storage, or failing to deallocate storage before the last
referencetoitislost. To handle these deallocation errors, we introduce a concept of an obligation to
release storage. Every time storage is alocated, it creates an obligation to release the storage. This
obligation is attached to the reference to which the storage is assigned.”® Before the scope of the
referenceis exited or it is assigned to a new value, the storage to which it points must be released.
Annotations can be used to indicate that this obligation is transferred through a return value, function
parameter or assignment to an external reference.

5.2.1 Unshared References

Theonl y annotation is used to indicate a reference is the only pointer to the object it pointsto. We
can view the reference as having an obligation to release this storage. This obligation is satisfied by
transferring it to some other reference in one of three ways.

pass it as an actual parameter corresponding to aformal parameter declared with anonl y
annotation

assign it to an external reference declared with an onl y annotation

return it as aresult declared with an onl y annotation

After the release obligation is transferred, the original reference is a dead pointer and the storage it
points to may not be used.

All obligations to release storage stem from primitive allocation routines (e.g., mal | oc), and are
ultimately satisfied by callstof r ee. The standard library declared the primitive allocation and
dedllocation routines.

12 Except si zeof , which does not need the value of its argument.
3|f the storage is not assigned to areference, an internal reference is created to track the storage.

17

‘Tisin my
memory
lock’d, and
you yourself
shall keep the
key of it.
Ophelia
prefers
explicit
deallocation
(Hamlet.
Act |,
Sceneiii)

18 LCLint User's Guide

The basic memory allocator, mal | oc, is declared:™
/*@nly@/ void *malloc (size_t size);

It returns an object that is referenced only by the function return value.

The dedllocator, f r ee, is declared: ™
void free (/*@nly@/ void *ptr);

The parameter to f r ee must reference an unshared object. Since the parameter is declared using
onl y, the caller may not use the referenced object after the call, and may not passin areferenceto a
shared object. Thereis nothing specia about mal | oc and f r ee — their behavior can be described
entirely in terms of the provided annotations.

only.c Running LCLint

1 extern /*@nly@/ int *glob; > Iclint only.c
/*@nly@/ int * LCLint 2.4 --- 10 Apr 98
f (/*@nly@/ int *x, int *y,

int *z) only.c:11: Only storage glob not released before
/*@l obal s gl ob; @/ assignment: glob =y
{ - (int *) only.c:1: Storage glob becomes only
gint *m= (in 11 Imnlici ; .
. .) only.c:11: Implicitly temp storage y assigned to only:
9 mal | oc (sizeof (int)); glob=y
11 glob = y: Memory leak only.c:13: Dereference of possibly null pointer m: *m
12 free (x) only.c:8: Storage m may become null
13 *m = *X; Use after free only.c:13: Variable x used after being released
14 return z: Memory leak detected only.c:12: Storage x released
} only.c:14: Implicitly temp storage z returned as only: z

only.c:14: Fresh storage m not released before return
only.c:9: Fresh storage m allocated

Finished LCLint checking --- 6 code errors found
Figure 6. Deallocation errors.

5.2.2 Temporary Parameters

Thet enp annotation is used to declare a function parameter that is used temporarily by the function.
An error isreported if the function releases the storage associated with at enp formal parameter or

4 The full declaration of mal | oc asoincludesanul | annotation (Section 7.2) to indicate that the
result may be NULL (asit is when the requested storage cannot be allocated) and an out annotation
(Section 7.1) to indicate that the result points to undefined storage.

> The full declaration of f r ee also hasout and nul | annotations on the parameter to indicate that
the argument may be NULL and need not point to defined storage. According to [ANSI, 4.10.3.2],
NULL may be passed to f r ee without an error. On some UNIX platforms, passing NULL to free causes
aprogram crash so the UNIX version of the standard library (Appendix F) specifiesf r ee without the
nul | annotation on its parameter. To check that allocated objects are completely destroyed (e.g., all
unshared objects inside a structure are deall ocated before the structure is deallocated), LCLint checks
that any parameter passed asanout only voi d * does not contain referencesto live, unshared
objects. This makes sense, since such a parameter could not be used sensibly in any way other than
deallocating its storage.

Memory Management

creates new aliasesiit that are visible after the function returns. Any storage may be passed as a
t enp parameter, and it satisfies its origina memory constraints after the function returns.

5.2.3 Owned and Dependent References

In real programsit is sometimes necessary to have storage that is shared between several possibly
references. The owned and dependent annotations provide a more flexible way of managing
storage, at the cost of less checking. The owned annotation denotes a reference with an obligation to
release storage. Unlike onl y, however, other external references marked with dependent
annotations may share this object. It isup to the programmer to ensure that the lifetime of a
dependent referenceis contained within the lifetime of the corresponding owned reference.

5.2.4 Kept Parameters

The keep annotation is similar to onl y, except the caller may use the reference after the call. The
called function must assign the keep parameter to an onl y reference, or passit asakeep parameter
to another function. It is up to the programmer to make sure that the calling function does not use this
reference after it isreleased. The keep annotation is useful for adding an object to a collection (e.g.,
asymbol table), where it is known that it will not be deallocated until the collection is.

5.2.5 Shared References

If LCLint is used to check a program designed to be used in a garbage-collected environment, there
may be storage that is shared by one or more references and never explicitly released. Theshar ed
annotation declares storage that may be shared arbitrarily, but never released.

5.2.6 Stack References

Local variables that are not alocated dynamically are stored on acal stack. When afunction
returns, its stack frame is deallocated, destroying the storage associated with the function’s loca
variables. A memory error occursif a pointer into this storage is live after the function returns.
LCLint detects errors involving stack references exported from a function through return values or
assignments to references reachable from global variables or actual parameters. No annotations are
needed to detect stack reference errors, sinceit is clear from adeclaration if storageis alocated on
the function stack.

Figure 7 gives and example of errors reported involving stack-allocated storage.

5.2.7 Inner Storage
An annotation always applies to the outermost level of storage. For example,
/*@nly@/ int **x;

declares x as an unshared pointer to apointer toani nt. Theonl y annotation appliesto x, but not
to*x. To apply annotationsto inner storage a type definition may be used:

typedef /*@nly@/ int *oip;
/*@nly@/ oip *x;

Now, X isanonl y pointer to anoi p, whichisanonl y pointer toani nt .

19

20

stack. c Running LCLint

i nt *gl ob;

[* @ependent @/ int *
f (int **x)

int sa[2] ={ 0, 1 };
int loc = 3;

9 glob = &l oc;
10 *x = &sa[0];

12 return & oc;

}

A dependent annotation is used on the

LCLint User's Guide

> |clint stack.c
LCLint 2.4 --- 10 Apr 98

stack.c: (in function f)
stack.c:12: Stack-allocated storage &loc reachable
from return value: &loc
stack.c:12: Stack-allocated storage *x reachable from
parameter x
stack.c:10: Storage *x becomes stack
stack.c:12: Stack-allocated storage glob reachable
from global glob
stack.c:9: Storage glob becomes stack

Finished LCLint checking --- 3 code errors found

return value. Without this, several other
errorswould be reported, since the result
would have an implicit onl y annotation.

Figure7. Stack references.
When annotations are used in type definitions, they may be overridden in instance declarations. For
example,
/* @ependent @/ oip X;

makes x adependent pointertoani nt.

Another way to apply annotations to inner storage is to use a special clause (see Section 7.4).

5.3 Implicit Memory Annotations

Sinceit isimportant that LCLint can check unannotated programs effectively, the meaning of
declarations with no memory annotations is chosen to minimize the number of annotations needed to
get useful checking on an unannotated program.

An implicit memory management annotation may be assumed for declarations with no explicit
memory management annotation. Implicit annotations are checked identically to the corresponding
explicit annotation, except error messages indicate that they result from an implicit annotation.

Unannotated function parameters are assumed to bet enp. Thismeans if memory checking is turned
on for an unannotated program, all functions that rel ease storage referenced by a parameter or assign
aglobal variable to alias the storage will produce error messages. (Controlled by par ami npt enp.)

Unannotated return values, structure fields and global variables are assumed to be onl y. With
implicit annotations (on by default), turning on memory checking for an unannotated program will
produce errors for any function that does not return unshared storage or assignment of shared storage

Memory Management

to aglobal variable or structure field.*® (Controlled by r et i nponl y, st r uct i mponl y and
gl obi mponl y. Theal I i nponl y flag setsall of the implicit only flags.)

implicit.c
typedef struct {
|orr:|t y chlr *nane; Implicit onl y annotation on mutable structure
} *rec; ’ fieldif st ructi nponl y ison.
extern only rec rec_last ; Implicit onl y annotation on mutable global

variablesif gl obi nponl y ison.
extern only rec
rec_create (tenp char *name, |mplicit onl y annotation on mutable function

~ intval) . result if r et i nponl y isset. Implicitt enp
Annotationsini tal i ¢s arenot presentin 5nnaration on mutable parameter if

the code, but may be implied. par am npt enp is set.

21

Figure 8. Implicit annotations.

5.4 Reference Counting

Another approach to memory management is to add afield to atype to explicitly keep track of the
number of references to that storage. Every time areference is added or lost the reference count is
adjusted accordingly; if it would become zero, the storage isreleased. Reference counting it difficult
to do without automatic checking sinceiit is easy to forget to increment or decrement the reference
count, and exceedingly difficult to track down these errors.

LCLint supports reference counting by using annotations to constrain the use of reference counted
storage in a manner similar to other memory management annotations.

A reference counted type is declared using the r ef count ed annotation. Only pointer to st r uct
types may be declared asr ef er ence count ed, since reference counted storage must have afield
to count the references. Onefield in the structure (or integra type) is preceded by ther ef s
annotation to indicate that the value of thisfield is the number of live references to the structure.

For example (inr st ri ng. h),

typedef /*@bstract@/ /*@efcounted@/ struct {
|*@efs@/ int refs;
char *contents;

} *rstring;

declaresr st ri ng as an abstract, reference-counted type. Ther ef s field counts the number of
references and the cont ent s field holds the contents of a string.

All functionsthat return r ef count ed storage must increase the reference count before returning.
LCLint cannot determine if the reference count was increased, so any function that directly returns a
referencetor ef count ed storage will produce an error. Thisisavoided, by using afunction to
return anew reference (e.g., r st ri ng_r ef inFigure9).

18|t an exposure qualifier is used (see Section 6.2), the implied dependent annotation is used instead
of the more generally implied onl y annotation.

22

LCLint User's Guide

A reference counted type may be passed asat enp or dependent parameter. It may not be passed
asanonl y parameter. Instead, theki | | r ef annotation is used to denote a parameter whose
referenceis eiminated by the function call. Likeonl y parameters, an actual parameter
correspondingto aki | | ref formal parameter may not be used in the calling function after the call.
LCLint checks that the implementation of afunction releases all ki | | r ef parameters, either by
passingthemaski | | r ef parameters, or assigning or returning them without increasing the

reference count.

rstring.c Running LCLint

include "rstring. h"

static rstring rstring_ref (rstring r)

{

r->refs++
6 returnr

}

rstring rstring _first (rstring rl, rstring r2)

if (strcnp (rl->contents, r2->contents) < 0)

13 return rl;
}
el se
{ .
17 return rstring_ref (r2);
}
}

> |clint rstring.c
LCLint 2.4 --- 10 Apr 98

rstring.c: (in function rstring_first)

rstring.c:13: Reference counted storage
returned without modifying reference
count: rl

Finished LCLint checking --- 1 code
error found

No error isreported for line 6
since the reference count was
incremented. No error isreported
for line 17, sincer stri ng_r ef
returns a new reference.

Figure 9. Reference counting.

Macros 23

6. Sharing

Errorsinvolving unexpected sharing of storage can cause serious problems. Undocumented sharing
may lead to unpredictable modifications, and some library calls (e.g., st r cpy) have undefined
behavior if parameters share storage. Another class of sharing errors occurs when clients of an
abstract type may obtain a reference to mutable storage that is part of the abstract representation.
This exposes the representation of the abstract type, since clients may modify an instance of the
abstract type indirectly through this shared storage.

6.1 Aliasing

LCLint detects errorsinvolving dangerous aliasing of parameters. Some of these errors are aready
detected through the standard memory annotations (e.g., onl y parameters may not be diases.) Two
additional annotations are provided for constraining aliasing of parameters and return values.

6.1.1 Unique Parameters

The uni que annotation denotes a parameter that may not be aliased by any other storage reachable
from the function implementation — that is, any storage reachable through the other parameters or
global variables used by the function. The uni que annotation places similar constraints on function
parameters as the onl y annotation, but it does not transfer the obligation to release storage.

LCLint will report an error if auni que parameter may be aliased by another parameter or global
variable.

uni que. c Running LCLint

include <string. h> > Iclint unique.c
LCLint 2.4 --- 10 Apr 98

voi d

capitalize (é;guit@?/ char *s, unique.c: (in function capitalize)

{ unique.c:7: Parameter 1 (s) to function strcpy is

7 strepy (s, t); declared unique but may be aliased externally by
*s = toupper (*s); parameter 2 (t)

}

Finished LCLint checking --- 1 code error found

Theout qualifier isexplained in Section 7.1.1. | Anerror isreported since the first parameter to
the library function st r cpy isdeclared with

unique. If auni que qualifier were added to the
parameter declaration for s or t , no error would
be reported.

Figure 10. Unique parameters.

6.1.2 Returned Parameters

LCLint reports an error if afunction returns a reference to storage reachable from one of its
parameters (if r et al i as ison) since this may introduce unexpected aliases in the body of the
calling function when the result is assigned.

Ther et ur ned annotation denotes a parameter that may be diased by the return value. LCLint
checks the call assuming the result may be an aliasto ther et ur ned parameter. Figure 11 shows an
example use of ar et ur ned annotation.

24 LCLint User's Guide

returned.c

include "intSet.h"
extern intSet intSet_insert (/*@eturned@/ intSet s, int x);
nt Set intSet_singleton (int x)

i

{ _ _ _

7 return (intSet_insert (intSet_new (), X));
}

Without the r et ur ned qualifier, a memory leak error would be reported for line 7, since the
onl y storage returned by i nt Set _newisnot released. Because of ther et ur ned qualifier on
the first parameter toi nt Set _i nsert, LCLint assumesthe result of i nt Set _i nsert isthe
same storage asits first parameter, in this case the storage returned by i nt Set _new. No error
isreported, sincethe onl y storage isthen transferred through the return value (which has an
implicit onl y annotation, see Section 5.3).

Figure11. Returned parameters.

6.2 Exposure

LCLint detects places where the representation of an abstract type is exposed. Thisoccursif aclient
has a pointer to storage that is part of the representation of an instance of the abstract type. The client
can then modify or examine the storage this points to, and manipulate the value of the abstract type
instance without using its operations.

There are three ways a representation may be exposed:

1. Returning (or assigning to aglobal variable) an object that includes a pointer to a mutable
component of an abstract type representation. (Controlled by r et - expose).

2. Assigning a mutable component of an abstract object to storage reachable from an actua
parameter or aglobal variable that may be used after the call. This means the client may
manipulate the abstract object using the actual parameter after the call. Note that if the
corresponding formal parameter is declared onl y, the caller may not use the actual parameter
after the call so the representation is not exposed. (Controlled by assi gn- expose).

3. Casting mutable storage to or from an abstract type. (Controlled by cast - expose).

Annotations may be used to allow exposed storage to be returned safely by restricting how the caller
may use the returned storage.

6.2.1 Read-Only Storage

It is often useful for afunction to return a pointer to internal storage (or an instance of a mutable
abstract type) that is intended only as an observer. The caller may use the result, but should not
modify the storage it pointsto. For example, consider a naive implementation of the

enpl oyee_get Nane operation for the abstract enpl oyee type:

Macros

typedef /*@bstract @/ struct {
char *nane;
int id;

} *enpl oyee;

(.:.Har *enpl oyee_get Nane (enpl oyee e) { return e->nane; }

LCLint produces a message to indicate that the return value exposes the representation. One solution
would be to return afresh copy of e- >nane. Thisisexpensive, though, especialy if we expect
enpl oyee_get Nane isused mainly just to get a string for searching or printing. Instead, we could
change the declaration of enpl oyee_get Nane to:

extern /*@bserver @/ char *enpl oyee_get Nanme (enpl oyee e);

Now, the original implementation is correct. The declaration indicates that the caller may not modify
the result, so it is acceptable to return shared storage.” LCLint checks that the caller does not modify
thereturn value. An error isreported if observer storage is modified directly, passed as a function
parameter that may be modified, assigned to agloba variable or reference derivable from a global
variable that is not declared with an obser ver annotation, or returned as a function result or a
reference derivable from the function result that is not annotation with an obser ver annotation.

String Literals

A program that attempts to modify a string literal has undefined behavior [ANSI, Section 3.1.4]. This
is not enforced by most C compilers, and can lead to particularly pernicious bugs that only appear
when optimizations are turned on and the compiler attempts to minimize storage for string literals.
LCLint can be used to check that string literals are not modified, by treating them as-obser ver
storage. If r ead- onl y- stri ngs ison (default in standard mode), LCLint will report an error if a
string literal is modified.

6.2.2 Exposed Storage

Sometimes it is necessary to expose the representation of an abstract type. This may be evidence of a
design flaw, but in some casesis justified for efficiency reasons. The exposed annotation denotes
storage that is exposed. It may be used on areturn value for results that reference storage internal to
an abstract representation, on a parameter value to indicate a parameter that may be assigned directly
to part of an abstract representation,*® or on afield of an abstract representation to indicate that
external references to the storage may exist. An error isreported if exposed storageis released, but
unlike an obser ver , no error isreported if it is modified.

Figure 12 shows examples of exposure problems detected by LCLint.

7 Strictly, we should also check that the returned observer storage is not used again after any other calls
to the abstract type module using the same parameter. LCLint does not attempt to check this, and in
practiceit is not usually a problem.

18 Note that if the parameter is annotated with onl y, it is not an error to assign it to part of an abstract
representation, since the caller may not use the storage after the call returns.

25

26 LCLint User's Guide

exposure. c Running LCLint

include "enpl oyee. h" > |clint exposure.c +checks

LCLint 2.4 --- 10 Apr 98
char *
{eerI oyee_get Nare (enpl oyee €) exposure.c: (in function employee_getName)

6 return e->nane: exposure.c:6: Function returns reference to parameter

} e: e->name
exposure.c:6: Return value exposes rep of employee:
| *@bserver @/ char * e->name
enpl oyee_obsNane (enpl oyee e) exposure.c:6: Released storage e->name reachable from
{ return e->nane; } parameter

exposure.c:6: Storage e->name is released
exposure.c: (in function employee_capName)
exposure.c:23: Suspect modification of observer name:
*name = toupper(*name)

/* @xposed@/ char *
enpl oyee_exposeNane (enpl oyee e)
{ return e->nane; }

voi d
enpl oyee_capName (enpl oyee e) Finished LCLint checking --- 4 code errors found
Three messages are reported for line 6 where a
char *nane; mutabl e field of an abstract type is returned with

no sharing qualifier (without +checks only the

name = enpl oyee_obsNane (e); third one would be reported.)

23*nane = toupper (*nane);

}

The error for line 23 reports a modification of an
observer. If the call inline 22 were changed to
call enpl oyee_exposeNane, no error would
be reported.

Figure 12. Exposure checking.

7. Value Constraints

LCLint can be used to constrain values of parameters, function results, global variables, and derived
storage such as structure fields. These constraints are checked at interface points — where a function
iscalled or returns. Section 7.1 describes how to constrain parameters, return values and structures to
detect use before definition errors. A similar approach is used for restricting the use of possibly null
pointersin Section 7.2. To do both well, and avoid spurious errors, information about when and if a
function returnsif useful. Annotations for documenting execution control are described in Section
7.3.

7.1 Use Before Definition

Like many static checkers, LCLint detects instances where the value of alocation is used before it is
defined. Thisanalysisis done at the procedural level. If thereis a path through the procedure that
uses alocal variable beforeit is defined, a use before definition error isreported. Theusedef flag
controls use before definition checking.

LCLint can do more checking than standard checkers though, because the annotations can be used to
describe what storage must be defined and what storage may be undefined at interface points.
Unannotated references are expected to be completely defined at interface points. This meansall

Macros 27

storage reachable from a global variable, parameter to a function, or function return value is defined
before and after afunction call.

7.1.1 Undefined Parameters

Sometimes, function parameters or return vaues are expected to reference undefined or partialy
defined storage. For example, a pointer parameter may be intended only as an address to store a
result, or amemory allocator may return allocated but undefined storage. The out annotation
denotes a pointer to storage that may be undefined.

LCLint does not report an error when a pointer to alocated but undefined storage is passed as an out
parameter. Within the body of afunction, LCLint will assume an out parameter is allocated but not
necessarily bound to avalue, so an error is reported if its value is used before it is defined.

LCLint reports an error if storage reachable by the caller after the call is not defined when the
function returns. This can be suppressed by - nust - def i ne. After acall returns, an actua
parameter corresponding to an out parameter is assumed to be completely defined.

When checking unannotated programs, many spurious use before definition errors may be reported If
i mpout s ison, no error is reported when an incompletely-defined parameter is passed to aformal
parameter with no definition annotation, and the actual parameter is assumed to be defined after the
cal. The/ *@n@/ annotation can be used to dencte a parameter that must be completely defined,
evenif i np- out s ison. If i mp- out s isoff, thereisan impliciti n annotation on every parameter
with no definition annotation.

usedef . c Running LCLint

extern void

setVal (/*@ut@/ int *x); LCLint 2.4 - 10 Apr 98
extern int
getVal (/*@n@/ int *x); > .
extern int nysteryVal (int *x): usedef.c: (in function dumbfunc) o
usedef.c:11: Value *x used before definition
i nt usedef.c:13: Passed storage x not completely defined
dumbfunc (/*@ut@/ int *x, int i) (allocated only): getval (x)

if (i > 3) (allocated only): mysteryVal (x)
11 return *x; Not reported if i npout s ison since
else if (i > 1) _ thereisnoi n annotation on the
13 return getVval (x);
else if (i == 0) parameter to nyst er yVal .
15 return nysteryVal (x);
el se Finished LCLint checking --- 3 code errors found
18 setVal (x); No error isreported for line 18, since the
19) return *x; incompletely defined storage x is passed asan

> |clint usedef.c

usedef.c:15: Passed storage x not completely defined

out parameter. After the call, x may be
dereferenced, since set Val isassumed to
completely defineitsout parameter.

Figure 13. Usebefore definition.

28 LCLint User's Guide

7.1.2 Relaxing Checking

Ther el def annotation relaxes definition checking for a particular declaration. Storage declared
with ar el def annotation is assumed to be defined when it is used, but no error is reported if it is
not defined beforeit is returned or passed as a parameter.

It is up to the programmer to check r el def fieldsare used correctly. They should be avoided in
most cases, but may be useful for fields of structures that may or may not be defined depending on
other constraints.

7.1.3 Partially Defined Structures

Theparti al annotated can be used to relax checking of structure fields. A structure with
undefined fields may be passed asaparti al parameter or returned asaparti al result. Insidea
function body, no error is reported when thefield of aparti al structureisused. After acal, al
fields of astructure that is passed asaparti al parameter are assumed to be completely defined.

7.1.4 Global Variables

Specia annotations can be used in the globals list of afunction declaration (Section 4.2) to describe
the states of global variables before and after the call.

If aglobal is preceded by undef , it is assumed to be undefined before the call. Thus, no error is
reported if the global is not defined when the function is called, but an error is reported if the global is
used in the function body beforeit is defined.

annot gl obs. ¢ Running LCLint

int gl obnum > |clint annotglobs.c

LCLint 2.4 --- 10 Apr 98
struct {

char *firstnane;

char *| ast nane: annotglobs.c: (in function initialize)

int id: annotglobs.c:l4:_gndef global globnum used before
} gl obnane; definition
annotglobs.c:16: Global storage globname contains
voi d 1 undefined field when call returns: firstname
initialize (/*@nly@/ char *nane) annotglobs.c: (in function finalize)
/* @l obal s undef gl obnum annotglobs.c:22: Only storage globname.firstname
undef gl obnane @/ (type char *) derived from killed global is

149l obnane. id = gl obnum not released (memory leak)

16}g| obnare. | ast name = nare; Finished LCLint checking --- 3 code errors found
void finalize (void)
/*@l obal s killed gl obname@/

free (gl obnane.firstnane);
22}

Figure 14. Annotated globalslists.

Theki | | ed annotation denotes aglobal variable that may be undefined when the call returns. For
globals that contain dynamically alocated storage, aki | | ed global variableissimilar toanonl y
parameter (Section 5.2). An error isreported if it contains the only reference to storage that is not
released before the call returns.

Macros 29

7.2 Null Pointers

A common cause of program failuresis when anull pointer is dereferenced. LCLint detects these
errors by distinguishing possibly NULL pointers at interface boundaries.

Thenul | annotation is used to indicate that a pointer value may be NULL. A pointer declared with
no nul | annotation, may not be NULL. If null checking isturned on (controlled by nul |), LCLint
will report an error when a possibly null pointer is passed as a parameter, returned as aresult, or
assigned to an external reference with no nul | quaifier.

If apointer is declared with the nul | annotation, the code must check that it is not NULL on all paths
leading to a dereference of the pointer (or the pointer being returned or passed as a value with no
nul | annotation). Dereferences of possibly null pointers may be protected by conditional statements
or assertions (to seehow assert isdeclared see Section 7.3) that check the pointer isnot NULL.

Consider two implementations of f i r st Char in Figure 15. For f i r st Char 1, LCLint reports an
error since the pointer that is dereferenced is declared with anul | annotation. For fi r st Char 2,
no error is reported since the true branch of thes == NULL if statement returns, so the dereference
of s isonly reached if s isnot NULL.

null.c Running LCLint

char firstCharl (/*@ull @/ char *s) | s|clintnull.c

{ i

3 return *s: LCLint 2.4 --- 10 Apr 98

}

_ null.c:3: Dereference of possibly null pointer s: *s
char firstChar2 (/*@ull @/ char *s) null.c:1: Storage s may become null
if (s == NULL) return ‘\0’; . . .

9 ret l(” n *s:) Finished LCLint checking --- 1 code error found

}
No error isreported for line 9, since the
dereferenceisreached only if s isnon-null.

Figure 15. Null checking.

7.2.1 Predicate Functions

Another way to protect null dereference, isto declare afunction using f al senul | ortruenul |
and call the function in a conditional statement before the nul | -annotated pointer is dereferenced.
Thef al senul | andt ruenul | annotations may only be used on return values for functions that
return a boolean™ result and whose first argument is a possibly null pointer.

A function is annotated with t r uenul | isassumed to return TRUE if its first parameter is NULL and
FALSE otherwise. For example, if i sNul | isdeclared as,

/*@ruenul |l @/ bool isNull (/*@wull @/ char *x);

we could writef i r st Char 2:

¥ That is, the return typeisbool , ori nt if +bool i nt isused.

30 LCLint User's Guide

char firstChar2 (/*@ull @/ char *s)

if (isNull (s)) return '\0";
return *s;

}

No error is reported since the dereference of s isonly reached if i sNul | (s) isfalse, and since
i sNul | isdeclared withthet r uenul | annotation this means s must not be null.

Thef al senul | annotation is not quite the opposite of t r uenul | . If afunction declared with
fal senul | returns TRUE, it meansits parameter isnot NULL. [f it returns FALSE, the parameter
may or may not be NULL.

For example, we could definei sNonEnpt y to return TRUE if its parameter is not NULL and has
least one character before the NUL terminator:

/*@al senul | @/ bool isNonEmpty (/*@ull @/ char *x)

return (x !'= NULL && *x != '\ 0');
}

LCLint does not check that the implementation of a function declared with f al senul | or
t ruenul | isconsistent with its annotation, but assumes the annotation is correct when code that
callsthe function is checked.

7.2.2 Overriding Null Types

Thenul | annotation may be used in atype definition to indicate that all instances of the type may be
NULL. For declarations of atype declared using nul | , thenul | annotation in the type definition
may be overridden with not nul | . Thisis particularly useful for parametersto hidden st ati c
operations of abstract types where the null test has aready been done before the function is called, or
function results of the type which are never NULL. For an abstract type, not nul | may not be used
for parameters to external functions, since clients should not be aware of when the concrete
representation may by NULL. Parametersto static functions in the implementation module, however,
may be declared using not nul | , since they may only be called from places where the representation
isaccessible. Returnvauesfor st ati ¢ or external functions may be declared using not nul | .

Figure 16 gives an example showing the use of not nul | .

7.2.3 Relaxing Null Checking

An additional annotation, r el nul | may be used to relax null checking (r el nul | isanalogousto
r el def for definition checking). No error isreported when ar el nul | valueisdereferenced, or
when a possibly null valueis assigned to an identifier declared usingr el nul | .

Thisis generaly used for structure fields that may or may not be null depending on some other
congtraint. LCLint does not report and error when NULL isassignedtoar el nul | reference, or
whenar el nul | referenceis dereferenced. It is up to the programmer to ensure that this constraint
is satisfied before the pointer is dereferenced.

Macros

mstring.c
typedef /*@bstract@/ /*@ull @/ char *nstring;
static /*@otnull @/ nmstring nstring_createNew (int x) ;

mstring nmetring_space (void)

{

mstring m= nstring_createNew (1);

Because of not nul | qualifier onnst ri ng_cr eat eNew, can assume misnot null.
*m="'"; *(m+ 1) ="'\0";

return m

}

31

Figure16. Usingnot nul | .

7.3 Execution

To detect certain errors and avoid spurious errors, it isimportant to know something about the control
flow behavior of called functions. Without additional information, LCLint assumes that all functions
eventually return and execution continues normally at the call site.

Theexi t s annotation is used to denote a function that never returns. For example,
extern /*@xits@/ void fatalerror (/*@bserver@/ char *s);

declaresf at al er r or to never return. Thisallows LCLint to correctly analyze code like,
if (x == NULL) fatalerror ("Yikes!");
*X = 3
Other functions may exit, but sometimes (or usualy) return normally. The mayexi t annotation

denotes afunction that may or may not return. This doesn’t help checking much, since LCLint must
assume that a function declared with mayexi t returns normally when checking the code.

To bemore precise, thet rueexi t andf al seexi t annotations may be used. Similar to
truenul | andfal senul | (seeSection7.2.1),trueexit andf al seexi t meanthat a
function always exitsif the value of its first argument is TRUE or FAL SE respectively. They may be
used only on functions whose first argument has a boolean type.

A function declared with t r ueexi t must exit if the value of its argument is TRUE, and a function
declared with f al seexi t must exit if the value of its argument is FALSE. For example, the
standard library declaresassert as®:

/*@al seexit @/ void assert (/*@ef@/ bool /*@lt int@/ pred);
Thisway, code like,

assert (x != NULL);
*x = 3;

“Thesef annotation denotes a parameter as side-effect free (see Section 8.2.1). By declaring the
argument to assert to be side-effect free, LCLint will report errorsif the parameter to asser t
produces a side-effect. Thisisespecially pertinent if assertions are turned off when the production
versioniscompiled. Thebool /*@lt int @/ typespecifier for the parameter means the
parameter type must match either bool ori nt . Alternate types are described in Section 8.2.2.

32 LCLint User's Guide

is checked correctly, sincethef al seexi t annotation on assert meansthe deference of x is not
reachedisx ! = NULL isfase.

7.4 Special Clauses

Sometimes it is necessary to specify function interfaces at alower level than is possible with the
standard annotations. For example, if afunction defines some fields of areturned structure but does
not define al thefields. The/ * @peci al @/ annotation is used to mark a parameter, global
variable, or return value that is described using specia clauses. The usual implicit definition rules do
not apply to a specia declaration.

Special clauses may be used to constrain the state of a parameter or return value before or after acall.
One or more specia clauses may appear in afunction declaration, before the modifies or globals
clauses. Specia clauses may belisted in any order, but the same special clause should not be used
more than once. Parameters used in specia clauses must be annotated with / * @ peci al @/ inthe
function header. Inaspecia clauselist, r esul t isused to refer to the return value of the function.

If resul t appearsin aspecia clause, the function return value must be annotated with

/*@pecial @/ .

The following specia clauses are used to describe the definition state or parameters before and after
the function is called and the return value after the function returns:

/| *@ises <references>@/
Referencesin the uses clause must be completely defined before the function is called. They
are assumed to be defined at function entrance when the function is checked.

| *@Bets <references>@/
Referencesinthe set s clause must be allocated before the functionis caled. They are
completely defined after the function returns. When the function is checked, they are assumed
to be alocated at function entrance and an error is reported if there is a path on which they are
not defined before the function returns.

/| *@lefines <references>@/
Referencesinthe def i nes clause must not refer to unshared, allocated storage before the
function is called. They are completely defined after the function returns. When the function is
checked, they are assumed to be undefined at function entrance and an error is reported if there
is apath on which they are not defined before the function returns.

/| *@l | ocates <references>@/
Referencesintheal | ocat es clause must not refer to unshared, allocated storage before the
functioniscaled. They are alocated but not necessarily defined after the function returns.
When the function is checked, they are assumed to be undefined at function entrance and an
error isreported if thereis a path on which they are not allocated before the function returns.

| *@ el eases <references>@/
Referencesinther el eases clause are deallocated by the function. They must correspond to
storage that could be passed as an onl y parameter before the function is caled, and are dead
pointers after the function returns. When the function is checked, they are assumed to be
allocated at function entrance and an error is reported if they refer to live, alocated storage at
any return point.

Additional generic special clauses can be used to describe other aspects of the state of inner storage
before or after acall. Generic specia clauses havetheform st at e: constrai nt . Thestateis

Macros

either pr e (before the function is called), or post (after the functionis called). The congtraint is
similar to an annotation. The following constraints are supported:

Aliasing Annotations

pre:only,post:only

pre: shar ed, post : shared

pr e: owned, post : owned

pre: dependent, post : dependent
References refer to onl y, shar ed, owned or dependent storage before (pr e) or after
(post) thecal.

Exposure Annotations

pre: observer, post: observer
pre: exposed, post : exposed
References refer to obser ver or exposed storage before (pr e) or after (post) the call.

Null State Annotations

pre:isnull,post:isnull
References have the value NULL before (pr e) or after (post) the call. Note, thisis not the
same hame or meaning as the null annotation (which means the value may be NULL.)

pre: not nul |, post: not nul |
References do not have the value NULL before (pr e) or after (post) the call.

Some examples of specia clauses are shown in Figure 17. The defines clause for r ecor d_new
indicates that thei d field of the structure pointed to by the result is defined, but the nane field is not.
So, record_creat e needsto call r ecor d_set Nane to define the name field. Similarly, the
releases clause for r ecor d_cl ear Nane indicates that no storage is associated with the nane field
of its parameter after the return, so no failure to deall ocate storage message is produced for the call to
freeinrecord_ free.

34 LCLint User's Guide

special . c

typedef struct

int id;
[*@nly@/ char *nane;
} *record;

static /*@pecial @/ record record_new (void)
/| *@efines result->1d@/
{

record r = (record) malloc (sizeof (*r));

assert (r != NULL);
r->id = 3;
return r;

}

static void
record_set Nane (/*@pecial @/ record r, /*@nly@/ char *nane)
/*@lefines r->name@/

{
r->name = nane;
}
record record_create (/*@nly@/ char *nane)
{

record r = record_new ();
record_set Nane (r, name);
return r;

}

void record_cl ear Nane (/*@pecial @/ record r)
| *@ el eases r->nane@/
[*@ost:isnull r->name@/

free (r->nane);
r->name = NULL,;

}

void record_free (/*@nly@/ record r)
{

record_clearName (r);
free (r);

Figure 17. Special Clauses.

Macros

8. Macros

Macros are commonly used in C programs to implement constants or to mimic functions without the
overhead of afunction call. Macros that are used to implement functions are a persistent source of
bugsin C programs, since they may not behave like the intended function when they are invoked with
certain parameters or used in certain syntactic contexts.

LCLint eliminates most of the potential problems by detecting macros with dangerous
implementations and dangerous macro invacations. Whether or not a macro definition is checked or
expanded normally depends on flag settings and control comments (see Section 8.3). Stylized macros
can also be used to define control structures for iterating through many values (see Section 8.4).

8.1 Constant Macros

Macros may be used to implement constants. To get type-checking for constant macros, use the
const ant syntactic comment:

/*@onstant null char *nstring_undefi ned@/

Declared constants are not expanded and are checked according to the declaration. A constant with a
nul | annotation may be used asonl y storage.

8.2 Function-like Macros

Using macros to imitate functions is notoriously dangerous. Consider this broken macro for squaring
anumber:

define square(x) x * Xx

Thisworksfine for asimple invocation like squar e(i) . It behaves unexpectedly, though, if itis
invoked with a parameter that has a side effect.

For example, squar e(i ++) expandstoi ++ * i ++. Not only does this give the incorrect resullt, it
has undefined behavior since the order in which the operands are evaluated is not defined. (See
Section 10.1 for more information on how expressions exhibiting undefined evaluation order behavior
are detected by LCLint.) To correct the problem we either need to rewrite the macro so that its
parameter is evaluated exactly once, or prevent clients from invoking the macro with a parameter that
has a side-effect.

Another possible problem with macrosis that they may produce unexpected results because of
operator precedencerules. Theinvocation, squar e(i +1) expandstoi +1*i +1, which evauates to
i +i +1 ingtead of the square of i +1. To ensure the expected behavior, the macro parameter should
be enclosed in parentheses where it is used in the macro body.

Macros may also behave unexpectedly if they are not syntactically equivalent to an expression.
Consider the macro definition,

define incCounts() ntotal ++; ncurrent ++;

Thisworksfine, unlessit is used as a statement. For example,
if (x <3) incCounts();

incrementsnt ot al if x < 3 but dwaysincrementsncurrent .

35

36 LCLint User's Guide

One solution is to use the comma operator to define the macro:
define incCounts() (ntotal ++, ncurrent++)

More complicated macros can be written using ado ... whi | e construction:

define incCounts() \
do { ntotal ++; ncurrent++; } while (FALSE)

LCLint detects these pitfalls in macro definitions, and checks that a macro behaves as much like a
function as possible. A client should only be able to tell that a function was implemented by a macro
if it attempts to use the macro as a pointer to afunction.

LCLint does these checks on a macro definition corresponding to a function:

Each parameter to a macro (except those declared to be side-effect free, see Section 8.2.1) must be
used exactly oncein al possible executions of the macro, so side-effecting arguments behave as
expected.?* (Controlled by nacr opar ans.)

A parameter to amacro may not be used as the left-hand side of an assignment expression or as
the operand of an increment or decrement operator in the macro text, since this produces non-
functional behavior. (Controlled by macr oassi gn.)

Macro parameters must be enclosed in parentheses when they are used in potentially dangerous
contexts. (Controlled by macr opar ens.)

A macro definition must be syntactically equivalent to a statement when it is invoked followed by
asemicolon. (Controlled by macr ost nt .)

The type of the macro body must match the return type of the corresponding function. If the macro
is declared with type voi d, its body may have any type but the macro value may not be used.

All variables declared in the body of a macro definition must be in the macro variable namespace,
so they do not conflict with variables in the scope where the macro is invoked (which may be used
in the macro parameters). By default, the macro namespace is al names prefixed by m . (See
Section 9.2 for information on controlling namespaces.)

At the call site, amacro is checked like any other function call.

8.2.1 Side-Effect Free Parameters

Suppose we really do want to implement squar e as amacro, but want do so in asafe way. One way
to do thisisto require that it is never invoked with a parameter that has a side-effect. LCLint will
check that this constraint holds, if the parameter is annotated to be side-effect free. That is, the
expression corresponding to this parameter must not modify any state, so it does not matter how many
timesit isevaluated. The sef annotation is used to denote a parameter that may not have any side-
effects:

extern int square (/*@ef @/ int x);

define square(x) ((x) *(x))
Now, LCLint will not report an error checking the definition of squar e even though x is used more
than once.

A message will be reported, however, if squar e isinvoked with a parameter that has a side-effect.
For the code fragment,

square (i++)

% To be completely correct, all the macro parameters should be evaluated before the macro has any
side-effects. Since checking this would require extensive analysis for occasional modest gain, it was not
considered worth implementing.

Macros 37

LCLint produces the message:
Parameter 1 to square is declared sef, but the argument may modify i: i++

Itisaso an error to passanon-sef macro parameter asasef macro parameter in the body of a
macro definition. For example,

extern int sunmsquares (int x, int y);
define sunsquares(x,y) (square(x) + square(y))

Although x only appears once in the definition of sunsquar es it will be evaluated twice since
squar e is expanded. LCLint reports an error when anon-sef macro parameter is passed as a s ef
parameter.

A parameter may be passed asasef parameter without an error being reported, if LCLint can
determine that evaluating the parameter has no side-effects. For function calls, the modifies clauseis
used to determine if a Side-effect is possible? To prevent many spurious errors, if the called
function has no modifies clause, LCLint will report an error only if sef - uncon ison. Justifiably
paranoid programmers will insist on setting sef - uncon on, and will add modifies clauses to
unconstrained functions that are used in sef macro arguments.

8.2.2 Polymorphism

One problem with our new definition of squar e isthat while the original macro would work for
parameters of any numeric type, LCLint will now report an error is the new version is used with a
non-integer parameter.

Wecanusethe/ * @l t <t ype>, *@ syntax to indicate that an alternate type may be used. For
example,

externint /*@lt float@/ square (/*@ef@/ int /*@lt float@/ x);
define square(x) ((x) *(x))

declaressquar e for bothi nt sandf | oat s.

Alternate types are also useful for declaring functions for which the return value may be safely
ignored (see Section 10.3.2).

8.3 Controlling Macro Checking

By default, LCLint expands macros normally and checks the resulting code after macros have been
expanded. Flags and control comments may be used to control which macros are expanded and which
are checked as functions or constants.

If thef cn- macr os flagison, LCLint assumes all macros defined with parameter lists implement
functions and checks them accordingly. Parameterized macros are not expanded and are checked as
functions with unknown result and parameter types (or using the types in the prototype, if oneis
given). The analogous flag for macros that define constantsisconst - macr os. If itison, macros
with no parameter lists are assumed to be constants, and checked accordingly. Theal | - macr os
flag setsboth f cn- macr os and const - macr os. If themacr o-f cn- decl flagisset, a
message reports parameterized macros with no corresponding function prototype. If the macr o-

22 Note that functions which do not produce to the same result each time they are called with the same
arguments should be declared to modify i nt er nal St at e sothey will lead to errorsif they are
passed assef parameters.

38 LCLint User's Guide

const - decl flagisset, asimilar message reports macros with no parameters that have no
corresponding constant declaration.

The macro checks described in the previous sections make sense only for macros that are intended to
replace functions or constants. When f cnmacr os or const macr os ison, more general macros
need to be marked so they will not be checked as functions or constants, and will be expanded
normally. Macros which are not meant to behave like functions should be preceded by the
[*@otfunction@/ comment. For example,

[*@not function@/
define forever for(;;)

Macros preceded by not f unct i on are expanded normally before regular checkingisdone. If a
macro that is not syntactically equivalent to a statement without a semi-colon (e.g., a macro which
enters a new scope) is not preceded by not f unct i on, parse errors may result when f cn- macr os
or const - macr os ison.

8.4 lterators

It is often useful to be able to execute the same code for many different values. For example, we may
want to sum all elementsinani nt Set that represents a set of integers. If i nt Set isan abstract
type, there is no easy way of doing thisin aclient module without depending on the concrete
representation of the type. Instead, we could provide such a mechanism as part of the type's
implementation. We call amechanism for looping through many values an iterator.

The C language provides no mechanism for creating user-defined iterators. LCLint supports a
stylized form of iterators declared using syntactic comments and defined using macros.

Iterator declarations are similar to function declarations except instead of returning a value, they
assign valuesto their yi el d parametersin each iteration. For example, we could add this iterator
declarationtoi nt Set . h:

/*@ter intSet_elenents (intSet s, yield int el); @/

Theyi el d annotation means that the variable passed as the second actual argument is declared as a
local variable of typei nt and assigned avalue in each loop iteration.

Defining Iterators

An iterator is defined using amacro. Here's one (not particularly efficient) way of defining
i nt Set _el ement s:

typedef /*@bstract @/ struct {
i nt nel enents;
int *el enents;

} intSet;

define intSet_elenments(s,mel) \
{ int mij; \
for (mi = (0); mi <= ((s)->nelenents); mi++) { \
int mel = (s)->elenments[(m.i)];
define end_intSet_elenents }}

Each time through the loop, the yield parameter m el isassigned to the next value. After each value
has been assigned tom el for one iteration, the loop terminates. Variables declared by the iterator

Macros 39

macro (including theyi el d parameter) are preceded by the macro variable namespace prefix m_
(see Section 8.2) to avoid conflicts with variables defined in the scope where the iterator is used.

Using lterators

The general structure for using an iterator is,
iter (<params>) stnt; end_iter

For example, aclient could usei nt Set _el enent s to sum the elementsof ani nt Set :
i nt Set s;
int sum = 0;

intSet _elenents (s, el) {
sum += el ;
} end_intSet _el enents;

The actual parameter corresponding to ayield parameter, el , is not declared in the function scope.
Instead, it is declared by the iterator and assigned to an appropriate value for each iteration.

LCLint will do the following checks for uses of stylized iterators:

An invocation of theiterator i t er must be balanced by a corresponding end, named end_i t er .
All actual parameters must be defined, except those corresponding to yield parameters.
Yield parameters must be new identifiers, not declared in the current scope or any enclosing scope.

Iterators are a bit awkward to implement, but they enable compact, easily understood client code. For
abstract collection types, an iterator can be used to enable clients to operate on elements of the
collection without breaking data abstraction.

40 LCLint User's Guide

9. Naming Conventions

Naming conventions tend to be areligious issue. Generaly, it doesn't matter too much what naming
convention is followed as long as oneis chosen and followed religioudly. There are two kinds of
naming conventions supported by LCLint. Type-based naming conventions (Section 9.1) constrain
identifier names according to the abstract typesthat are accessible where the identifier is defined.
Prefix naming conventions (Section 9.2) constrain the initia characters of identifier names according
to what is being declared and its scope. Naming conventions may be combined or different
conventions may be selected for different kinds of identifiers. In addition, LCLint supports checking
that names do not conflict with names reserved for the standard library or implementation (Section
9.3) and that names are sufficiently distinguishable from other names.

9.1 Type-Based Naming Conventions

Generic naming conventions constrain valid names of identifiers. By limiting valid names,
namespaces may be preserved and programs may be more easily understood since the name gives
clues as to how and where the name is defined and how it should be used.

Names may be constrained by the scope of the name (externd, file static, internal), the file in which
the identifier is defined, the type of the identifier, and global constraints.

9.1.1 Czech Names

Czech® names denote operations and variables of abstract types by preceding the names by
<t ype>_. Theremainder of the name should begin with alowercase character, but may use any
other character besides the underscore. Types may be named using any non-underscore characters.

The Czech naming convention is selected by theczech flag. If access- czech ison, afunction,
variable, constant or iterator named <t ype>_<nare> has access to the abstract type <t ype>.

Reporting of violations of the Czech naming convention is controlled by different flags depending on
what is being declared:

czech-fcns
Functions and iterators. An error isreported for afunction name of the form
<pr ef i x>_<nane> where <pr ef i x> isnot the name of an accessibletype. Note that if
accessczech ison, atype named <pr ef i x> would be accessiblein afunction beginning
with <prefi x>_. If access- czech isoff, an error isreported instead. An error is
reported for a function name that does not have an underscore if any abstract types are
accessible where the function is defined.

% The most renowned C naming convention is the Hungarian naming convention, introduced by
Charles Simonyi [Simonyi, Charles, and Martin Heller. “The Hungarian Revolution.” BYTE, August
1991, p. 131-38]. The names for LCLint naming conventions follow the tradition of using Central
European nationalities as mnemonics for naming conventions. The LCLint conventions are similar to
the Hungarian naming convention in that they encode type information in names, except that the
LCLint conventions encode the names of accessible abstract typesinstead of the type of the declaration
of return value. Prefixes used in the Hungarian naming convention are not supported by LCLint.

Naming Conventions 41

czech-vars
czech-constants
czech-nacr os

Variables, constants and expanded macros. An error is reported if the identifier name starts
with <pr efi x>_ and pr ef i x isnot the name of an accessible abstract type, or if an
abstract type is accessible and the identifier name does not begin with <t ype>_ wheret ype
isthe name of an accessible abstract type. If access- czech ison, the representation of the

typeisvisible in the constant or variable definition. Of course, this

czech-types is acomplete

User-defined types. An error isreported if atype name includes an underscore character. jumble toeéhe

uninitiated,
d that’ s th

9.1.2 Slovak Names e o
Slovak names are similar to Czech names, except they are spelled differently. A Sovak nameis of Charles
the form <t ype><Nane>. Thetype prefix may not use uppercase characters. The remainder of the Simonyi, on
name starts with the first uppercase character. the H”rr‘]%?]rq : zg
convention

The sl ovak flag selects the Sovak naming convention. Like Czech names, it may be used with
access- sl ovak to control access to abstract representations. Thesl ovak- f cns, sl ovak-
var s, sl ovak- const ant s, and sl ovak- macr os flags are analogous to the similar Czech
flags. If sl ovak-t ype ison, an error isreported if atype name includes an uppercase letter.

9.1.3 Czechoslovak Names

Czechodovak names are a combination of Czech names and Slovak names. Operations may be
named either <t ype>_ followed by any sequence of non-underscore characters, or <t ype> followed
by an uppercase |etter and any sequence of characters. Czechoslovak names have been out of favor
since 1993, but may be necessary for checking legacy code. Theczechosl ovak- f cns,
czechosl ovak- var s, czechosl ovak- macr os, and czechosl ovak- const ant s flags
are analogous to the similar Czech flags. If czechosl ovak-t ype ison, an error is reported if a
type name contains either an uppercase letter or an underscore character.

9.2 Namespace Prefixes

Another way to restrict names is to constrain the leading character sequences of various kinds of
identifiers. For example, the names of al user-defined types might begin with “ T” followed by an
uppercase letter and all file static names begin with an uppercase letter. This may be useful for
enforcing a namespace (e.g., all names exported by the X-windows library should begin with “ X") or
just making programs easier to understand by establishing an enforced convention. LCLint can be
used to constrain identifiers in this way to detect identifiers inconsistent with prefixes.

All namespace flags are of the form, - <cont ext >prefi x <stri ng>. For example, the macro
variable namespace restricting identifiers declared in macro bodies to be preceded by “m " would be
selected by - macr ovar prefi x "m". Thestring may contain regular characters that may appear
inaC identifier. These must match the initial characters of the identifier name. In addition, specia
characters (shown in Table 1) can be used to denote a class of characters.® The* character may be
used at the end of a prefix string to specify the rest of the identifier is zero or more characters

24 Namespace prefixes should probably be described by regular expressions. LCLint usesasimpler,
more limited means for describing names, which is believed to be adequate for describing most useful
naming conventions. If thereis sufficient interest, regular expressions may be supported in a future
version of LCLint.

42 LCLint User's Guide

matching the character immediately beforethe *. For example, the prefix string “ T&*” matches“ T”
or “ TW NDOW but not “ Twi n”.

A Any uppercase letter, A-Z

& Any lowercase letter, a- z

% Any character that is not an uppercase letter (allows lowercase letters, digits and underscore)
~ Any character that is not alowercase |etter (allows uppercase letters, digits and underscore)
$ Anyletter (a-z, A-2)

I Any letter or digit (A- Z, a- z, 0-9)

? Any character valid in a C identifier

Any digit, 0- 9

Tablel. Prefix character codes.

Different prefixes can be selected for the following identifier contexts:

macr o- var - prefix Any variable declared inside a macro body

unchecked- macro-prefiX Any macro that is not checked as a function or constant
(see Section 8.4)

tag-prefix Tagsfor st ruct, uni on and enumdeclarations

enum prefix Members of enumtypes

type-prefix Name of a user-defined type

file-static-prefix Any identifier with file static scope

gl ob-var-prefix Any variable (not of function type) with global scope

const - prefix Any constant (see Section 8.1)

iter-prefix An iterator (see Section 8.4)

pr ot o- param prefix A parameter in afunction declaration prototype

external - prefix Any exported identifier

If anidentifier isin more than one of the namespace contexts, the most specific defined namespace
prefix isused (e.g., aglobal variable is also an exported identifier, soif gl obal - var - prefi x is
set, it is checked against the variable name; if not, the identifier is checked against the ext er nal -
prefix.)

For each prefix flag, a corresponding flag named <pr ef i xnane>excl ude controls whether
errors are reported if identifiers in a different namespace match the namespace prefix. For example,
if macr o-var - pr ef i x- excl ude ison, LCLint checks that no identifier that is not avariable
declared inside a macro body uses the macro variable prefix.

Hereis a(somewhat draconian) sample naming convention:

-unchecked-macro-prefix "~*" unchecked macros have no lowercase letters

-type-prefix "Th&" all type names begin with T followed by an uppercase
letter. Therest of the nameisall lowercase letters.

+type- prefix-excl ude no identifier that does no name a user-defined type
name begin with the type name prefix (set above)

-file-static-prefix ""&&&" file static scope variables begin with an uppercase
letter and three lowercase | etters

-proto-paramprefix "p_" al parameters in prototypes must begin with p_

-gl ob-var-prefix "G' all global variables start with G

+gl ob-var - pref i x- excl ude no identifier that is not aglobal variable starts with G

Naming Conventions 43

The prefix for parameters in function prototypesis useful for making sure parameter names are not in
conflict with macros defined before the function prototype. In most cases, it may be preferable to not
name prototype parameters. If the pr ot o- par am nane flagis set, an error is reported for any
named parameter in a prototype declaration. If apr ot o- par am prefi x isset, no error is
reported for unnamed parameters.

It may also be useful to check the names of prototype parameters correspond to the namesin
definitions.? If pr ot o- par am mat ch isset, LCLint will report an error if the name of a
definition parameter does not match the corresponding prototype parameter (after removing the
pr ot opar anpr ef i x).

9.3 Naming Restrictions

Additional naming restrictions can be used to check that names do no conflict with names reserved for
the standard library, and that identifier are sufficiently distinct (either for the compiler and linker, or
for the programmer.) Restrictions may be different for names that are needed by the linker (external
names) and names that are only needed during compilations (internal names). Names of non-

st at i ¢ functions and global variables are external; al other names are internal.

9.3.1 Reserved Names

Many names are reserved for the implementation and standard library. A complete list of reserved
names can be found in [vdL, p. 126-128] or [ANSI, Section 4]. Some name prefixes such asst r
followed by alowercase character are reserved for future library extensions. Most C compilers do
not detect naming conflicts, and they can lead to unpredictable program behavior. If ansi -
reserved ison, LCLint reports errors for external names that conflict with reserved names. |If
ansi -reserved-i nt ernal ison, errorsare aso reported for internal names.

If the cpp- nanes flagisset, LCLint will report identifier names that are keywords or reserved
wordsin C++. Thisisuseful if the code may later be compiled with a C++ compiler (of course, this
is not enough to ensure the meaning of the code is not changed when it is compiled as C++.)

9.3.2 Distinct Identifiers

LCLint can check that identifiers differ within a given number of characters, optionally ignoring
alphabetic case and differences between characters that look similar. The number of significant
characters may be different for external and internal names.

Using +di st i nct - ext er nal - nanes setsthe number of significant characters for external
names to six and makes alphabetical case insignificant for external names. Thisisthe minimum
significance acceptable in an ANSI-conforming compiler. Most modern compilers exceed these
minimums (which are particularly hard to follow if one uses the Czech or Sovak naming convention).
The number of significant characters can be changed using the ext er nal - name- | engt h
<nunber > flag. If ext er nal - nane- case-i nsensi ti ve ison, alphabetical caseisignored
in comparing external names. LCLint reports identifiers that differ only in aphabetic case.

For internal identifiers, a conforming compiler must recognize at least 31 characters and treat
alphabetical casesdistinctly. Nevertheless, it may still be useful to check that internal names are
more distinct then required by the compiler to minimize the likelihood that identifiers are confused in

% While using header files as documentation is not generally recommended, it is common enough
practice that it makes sense to check that parameter names are consistent. A discrepancy may indicate
an error in the parameter order in the function prototype.

The decision
to retain the
old six-
character
case-
insensitive
restriction on
significance
was most
painful.

ANS C
Rationale

44

LCLint User's Guide

the program. Analogously to externa names, thei nt er nal - nane- | engt h <nunber > flag
sets the number of significant charactersin an internal nameandi nt er nal - nane- case-

i nsensi ti ve setsthe case sengitivity. Thei nt er nal - nane- | ook- al i ke flag further
restricts distinctions between identifiers. When set, similar-looking characters match — the
lowercase letter “ | " matches the uppercase letter “ 1 ” and the number “ 1”; the letter “ O or “ 0”
matches the number “0”; “5” matches“ S”’; and “ 2" matches“ Z”. ldentifiersthat are not distinct
except for look-alike characters will produce an error message. External names are also internal
names, so they must satisfy both the externa and internal distinct identifier checks.

names. c Running LCLint

3int f (int x)

5 int | ookalike = 1;
6 i nt |ookali ke = 2;
if (x > 3)
10 int x = | ookalike;
x += | ookali ke;
}
return x;

}

1 char *stringrev (char *s);

> [clint names.c +distinctinternalnames +internalnamelookalike
+ansireserved
LCLint 2.4 --- 10 Apr 98

names.c:1: Name stringreverse is reserved for future ANSI library
extensions. Functions that begin with "str" and a lowercase
letter may be added to <stdlib.h> or <string.h>. (See ANSI,
Section 4.13.7)

names.c:6: Internal identifier lookalike is not distinguishable from

lookalike except by lookalike characters

names.c:5: Declaration of lookalike

names.c:10: Variable x shadows outer declaration
names.c:3: Previous declaration of x: int

Finished LCLint checking --- 3 code errors found

Figure 18. Naming checks.

Other Checks 45

10. Other Checks

The section describes other errors detected by LCLint that are not directly related to extrainformation
provided in annotations. Many of the checks are significantly improved, however, because of the
extrainformation that is known about the program.

10.1 Undefined Evaluation Order

The order in which side effects take placein a C program is not entirely defined by the code. Certain
execution points are known as sequence points — afunction call (after the arguments have been
evaluated), the end of afull expression (an initializer, expression in an expression statement, the
control expression of ani f, swi t ch, whi | e or do statement, each expression of af or statement,
and the expression in ar et ur n statement), and after the first operand or a&&, | | , ? or, operand.

All side effects before a sequence point must be complete before the sequence point, and no
evaluations after the sequence point shall have taken place [ANSI, Section 2.1.2.3]. Between
sequence points, side effects and evaluations may take place in any order. Hence, the order in which
expressions or arguments are evaluated is not specified. Compilers are free to evaluate function
arguments and parts of expressions (that do not contain sequence points) in any order. The behavior
of code isundefined if it uses avaue that is modified by another expression that is not required to be
evaluated before or after the other use.

LCLint detects instances where undetermined order of evaluation produces undefined behavior. If
modifies clauses and globals lists are used, this checking is enabled in expressions involving function
calls. Evauation order checking is controlled by the eval - or der flag.

order.c Running LCLint

extern int glob; > Iclint order.c +evalorderuncon
. . LCLint 2.4 --- 10 Apr 98
extern int nystery (void);

extern int modgl ob (voi d) order.c:11: Expression has undefined behavior (value of right

/*@l obal s gl ob@/ operand modified by left operand): x++ * x
/*@odifies gl ob@/ ; order.c:13: Expression has undefined behavior (left operand uses
i, modified by right operand): y[i] = i++
int f (int x, int y[]) order.c:14: Expression has undefined behavior (value of right
{ operand modified by left operand): modglob() * glob
1mint i = x++ * X From the modifies clause, modgl ob may modify gl ob.

The behavior is undefined since we don’'t know if glob

1‘31 ?/['+]: ;o:j+|+bb() * gl ob: is evaluated before, after or during the modification.
15§ 4= WS? ery() * g| ob; order.c:15: Expression has undefined behavior (unconstrained

16 return i: function mystery used in left operand may set global variable

} glob used in right operand): mystery() * glob

Not reported without +eval or der uncon.

Finished LCLint checking --- 4 code errors found

Figure 19. Evaluation order

When checking systems without modifies and globals information, evaluation order checking may
report errors when unconstrained functions are called in procedure arguments. Since LCLint has no
annotations to constrain what these functions may modify, it cannot be guaranteed that the evaluation

46 LCLint User's Guide

order is defined if another argument calls an unconstrained function or uses aglobal variable or
storage reachable from a parameter to the unconstrained function. Its best to add modifies and globals
clauses to constrain the unconstrained functions in ways that eliminate the possibility of undefined
behavior. For large legacy systems, this may require too much effort. Instead, the - eval - or der -
uncon flag may be used to prevent reporting of undefined behavior due to the order of evaluation of
unconstrained functions.

10.2 Problematic Control Structures

A number of control structuresthat are syntactically legal may indicate likely bugs in programs.
LCLint can detect errorsinvolving likely infinite loops (Section 10.2.1), fall through cases and
missing casesin swi t ch statements (Section 10.2.2), br eak statements within deeply nested loops
or switches (Section 10.2.3), clauses of i f, whi | e or f or statementsthat are empty statements or
unblocked single statements (Section 10.2.4) and incomplete if-else logic (Section 10.2.5). Although
any of these may appear in a correct program, depending on the programming style used they may
indicate likely bugs or style violations that should be detected and eliminated.

10.2.1 Likely Infinite Loops

LCLint reports an error if it detects aloop that appearsto beinfinite. An error is reported for aloop
that does not modify any value used in its condition test inside the body of the loop or in the condition
test itself. This checking is enhanced by modifies clauses and globals lists since they provide more
information about what global variable may be used in the condition test and what values may be
modified by function calls in the loop body.

Figure 20 shows examples of infinite loops detected by LCLint. An error is reported for the loop in
line 14, since neither of the values used in the loop condition (x directly and gl ob1 through the call
tof) ismodified by the body of the loop. If the declaration of g is changed to include gl ob1 in the
modifies clause no error is reported. (In this example, if we assume the annotations are correct, then
the programmer has probably called the wrong function in the loop body. Thisisn't surprising, given
the horrible choices of function and variable names!)

If an uncongtrained function is called within the loop body, LCLint will assumethat it modifiesa
value used in the condition test and not report an infinite loop error, unlessi nf | copsuncon ison.
If i nfl oopsuncon ison, LCLint will report infinite loop errors for loops where there is no explicit
modification of avalue used in the condition test, but where they may be an undetected modification
through a cal to an unconstrained function (e.g., line 15 in Figure 20).

10.2.2 Switches

The automatic fall-through of C switch statements is amost never the intended behavior.?® LCLint
detects case statements with code that may fall through to the next case. Thecasebr eak flag
controls reporting of fall through cases. A single fall through case may be marked by preceding the
case keywordwith/ *@ al | t hr ough@/ toindicate explicitly that execution falls through to this
case.

% Peter van der Linden estimates that default fall through is the wrong behavior 97% of the time.
[vdL95, p. 37]

Other Checks 47

| oop. c Running LCLint

extern int globl, glob2; > Iclint loop.c +infloopsuncon

. . LCLint 2.4 --- 10 Apr 98
extern int f (void)

/* @l obal s gl ob1@/

/*@odi fies nothing@/ loop.c: (in function upto)

loop.c:14: Suspected infinite loop. No value used in loop test (X,
extern void g (void) glob1) is modified by test or loop body.
/*@rodifies glob2@/ ; loop.c:15: Suspected infinite loop. No condition values modified.
Modification possible through unconstrained calls: h
extern void h (void)
Finished LCLint checking --- 2 code errors found
void upto (int x)
An error isreported for line 14 since the only value
modified by the loop test or body if gl ob2 and the value

14 while (x > f()) g9();
h();
) hO of the loop test does not depend on gl ob2.

15 while (f() <3
}

The error for line 15 would not be reported if
+i nf | oopsuncon wasn’t used.

Figure 20. Infiniteloop checking

For switches on enumtypes, LCLint reports an error if a member of the enumerator does not appear
asacase in the switch body (and thereisno def aul t case). (Controlled by m sscase.)

switch.c Running LCLint

typedef enum { > [clint switch.c
YES, NO, DEFINITELY, LCLint 2.4 - 10 Apr 98
PROBABLY, MAYBE } ynm

switch.c: (in function decide)
switch.c:11: Fall through case (no preceding break)
switch (y) switch.c:14: Missing case in switch: DEFINITELY

voi d decide (ynmy)

case PROBABLY: Finished LCLint checking --- 2 code errors found
case NO printf ("No!");
11 case MAYBE: printf ("Maybe"): | Nofall through error isreported for the NOcase,
[*@allthrough@/ since there are no statements associated with the
case YES: printf ("Yes!"); .
1) previouscase. The/*@al | t hrough@/
} comment prevents a message from being
produced for the YES case.

Figure 21. Switch checking.

10.2.3 Deep Breaks

Thereis no syntax provided by C (other than got o) for breaking out of anested loop. All br eak
and cont i nue statements act only on the innermost surrounding loop or switch. This often leadsto
serious problems? when a programmer intends to break the outer loop or switch instead. LCLint
optionally reports errorsfor br eak and cont i nue statementsin nested contexts.

2 «goftware Glitch Cripples AT& T Network”, Telephony, 22 January 1990.

48 LCLint User's Guide

Four types of br eak errors are reported:

br eak insidealoop (whi | e or f or) that isinside aloop. Controlled by | oopl oopbr eak. To
indicate that abr eak isinside an inner loop, precedethe br eak by / * @ nner break@/ .

br eak inside aloop that isinsideaswi t ch statement. Controlled by swi t chl oopbr eak. To
mark the br eak as aloop break, precede the br eak by / * @ oopbreak@/ .

br eak insideaswi t ch statement that isinside aloop. Controlled by | oopswi t chbr eak. To
mark the br eak as a switch break, precede the br eak by / * @wi t chbreak@/ .

br eak insdeaswi t ch inside another swi t ch. Controlled by swi t chswi t chbr eak. To
indicate that the br eak isfor the inner switch, use/ * @ nner br eak @/ .

Since cont i nue only makes sense within loops, errors are only reported for cont i nue statements
within nested loops. (Controlled by | oopl oopcont i nue.) A safeinner cont i nue may be
preceded by / * @ nner cont i nue@/ to suppress error messages localy. The deepbr eak flag
sets all nested break and continue checking flags.

LCLint reports an error if the marker preceding abr eak isnot consistent with its effect. Anerroris
reported if i nner br eak precedes abr eak that is not breaking an inner loop, swi t chbr eak
precedes abr eak that is not breaking a switch, or | oopbr eak precedesabr eak that is not
breaking aloop.

10.2.4 Loop and If Bodies

An empty statement after ani f , whi | e or f or often indicates a potential bug. A single statement
(i.e., not acompound block) after ani f, whi | e or f or isnot likely to indicate a bug, but make the
code harder to read and edit. LCLint can report errors for if or loop statements with empty bodies or
bodies that are not compound statements. Separate flags control checking for statements following an
if,whileorfor:

[if, while, for]enpty — report errorsfor empty bodies(e.g.,i f (x > 3) ;)
[if, while, for]bl ock — report errorsfor non-block bodies (e.g.,i f (x > 3) x++;)

Thei f statement checks also apply to the body of theel se clause. Ani f bl ock error isnot
reported if the body of theel se clauseisani f statement, toalow el se i f chains.

10.2.5 Complete if-else Logic

Although it may be perfectly reasonable in many contexts, ani f -el se chain with no fina el se may
indicate missing logic or forgetting to check error cases. If el sei f - conpl et e ison, LCLint
reportserrorswhen ani f statement that is the body of an el se clause does not have a matching

el se clause. For example, the code,

if (x =0) { return "nil"; }
else if (x == 1) { return "many"; }

produces an error message since the second i f has no matching el se branch.

10.3 Suspicious Statements

LCLint detects errors involving statements with no apparent effects (Section 10.3.1) and statements
that ignore the result of a called function (Section 10.3.2).

10.3.1 Statements with No Effects

LCLint can report errors for statements that have no effect. (Controlled by no- ef f ect.) Because
of modifies clauses, LCLint can detect more errors than traditional checkers. Unlessthe no-

Other Checks 49

ef f ect - uncon flagison, errors are not reported for statements that involve calls to unconstrained
functions since the unconstrained function may cause a modification.

noeffect.c Running LCLint

extern void > Iclint noeffect.c +noeffectuncon

nomodcal I (int *x) /*@/; LCLint 2.4 --- 10 Apr 98

Recall that /* @*/ is shorthand for

modifies nothing and use no globals. noeffect.c:6: Statement has no effect: y == *
extern void nysterycall (int *x); noeffect.c:7: Statement has no effect: nomodcall(x)

noeffect.c:8: Statement has no effect (possible

. . N .
Int noeffect (int *x, inty) undetected modification through call to

{ —= ky- unconstrained function mysterycall):
nomodcal | (x): mysterycall(x)
nmysterycal | (x); Not reported without +noef f ect uncon.
return *x;

} Finished LCLint checking --- 3 code errors found

Figure22. Statementswith no effect.

10.3.2 Ignored Return Values

LCLint reports an error when areturn value isignored. Checking may be controlled based on the
type of thereturn value: r et - val - i nt controls reporting of ignored return values of typei nt , and
ret-val - bool forreturnvauesof typebool ,andr et - val - ot her s for al other types. A
function statement may be cast to voi d to prevent this error from being reported.

Alternate types (Section 8.2.2) can be used to declare functions that return values that may safely be
ignored by declaring the result type to aternately by voi d. Severa functionsin the standard library
are specified to alternately return voi d to prevent ignored return value errors for standard library
functions (e.g., st r cpy) where the result may be safely ignored (see Appendix F).

Figure 23 shows example of ignored return value errors reported by LCLint.

10.4 Unused Declarations

LCLint detects constants, functions, parameters, variables, types, enumerator members, and structure
or union fields that are declared but never used. Theflagsconst use, f cnuse, par anuse,

var use, t ypeuse, enummenuse andf i el duse control whether unused declaration errors are
reported for each kind of declaration. Errorsfor exported declarations are reported only if t opuse is
on (see Section 10.5).

The/ * @inused@/ annotation can be used before a declaration to indicate that the item declared
need not be used. Unused declaration errors are not reported for identifiers declared with unused.

50 LCLint User's Guide

i gnore.c Running LCLint

extern int fi (void); > [clint ignore.c
extern bool fb (void); LCLint 2.4 - 10 Apr 98
externint /*@lt void@/

fv (void);

ignore.c: (in function ignore)
int ignore (void) ignore.c:8: Return value (type int) ignored: fi()
ignore.c:10: Return value (type bool) ignored: fb()

8 fi ();

9 (void) fi (); Finished LCLint checking --- 2 code errors found
10 fb ();
1 fv (), The message for line 8 would not be reported if

12 return fv ();

}

-retvalint isset; for line 10, if - r et val bool isset.
No message is reported for line 9 because the result is cast
tovoi d, and no message isreported for line 11 because f v
is declared to alternately return voi d.

Figure 23. Ignored return values.

10.5 Complete Programs

LCLint can be used on both complete and partial programs. When checking complete programs,
additional checks can be done to ensure that every identifier declared by the programis defined and
used, and that functions that do not need to be exported are declared st at i c.

LCLint checksthat al declared variables and functions are defined (controlled by conpdef) .
Declarations of functions and variables that are defined in an external library, may be preceded by
/ *@xternal @/ tosuppress undefined declaration errors.

LCLint reports external declarations that are unused (controlled by t opuse). Which declarations
are reported also depends on the declaration use flags (see Section 10.4).

Theparti al flagsetsflagsfor checking apartial system. Top-level unused declarations, undefined
declarations, and unnecessary external names are not reported if parti al isset.

10.5.1 Unnecessary External Names

LCLint can report variables and functions that are declared with global scope (i.e., without using

st at i c), that are not used outside the file in which they are defined. In a stand-alone system, these
identifiers should usually be declared using st at i ¢ to limit their scope. If theexport-static
flagison, LCLint will report declarations that could have file scope. 1t should only be used when all
relevant source files are listed on the LCLint command line; otherwise, variables and functions may
be incorrectly identified as only used in the file scope since LCLint did not process the other filein
which they are used.

10.5.2 Declarations Missing from Headers

A common practice in C programming styles, is that every function or variable exported by M ¢
isdeclaredin M h. If theexport - header flagison, LCLint will report exported declarationsin
M c that are not declared in M h.

Other Checks 51

10.6 Compiler Limits

The ANSI Standard includes limits on minimum numbers that a conforming compiler must support.
Whether of not a particular compiler exceeds these limits, it is worth checking that a program does not
exceed them so that other compilers may safely compileit. In addition, exceeding alimit may
indicate a problem in the code (e.g., it istoo complex if the control nest depth limit is exceeded) that
should be fixed regardless of the compiler. LCLint checksthe following limits. For each limit, the
maximum value may be set from the command line (or locally using a stylized comment). If the

ansi -1 imts flagison, al limits are checked with the minimum values of a conforming compiler.

i ncl ude- nest
Maximum nesting depth of fileinclusion (#i ncl ude). (ANSI minimumis 8)
control -nest-depth

Maximum nesting of compound statements, control structures. (ANSI minimum is 15)
num enum menber s

Number of membersin an enumdeclaration. (ANSI minimum is 127)
num struct-fields

Number of fieldsinast r uct or uni on declaration. (ANSI minimum is 127)

Since human
beings
themselves
are not fully
debugged yet,
there will be
bugsin your
code no matter
what you do.
Chris
Mason,
Zero-defects
memo
(Microsoft
Secrets,
Cusumano
and Selby)

From bnelson@netcom.com (Bob Nelson)
Subject Re: NT vs. Linux
Date Fri, 5 Jul 1996 05:11:22 GMT

Newsgroups comp.os.linux.advocacy,comp.sys.ibm.pc.hardware,
comp.os.ms-windows.win95.misc, comp.os.mswindows.nt.misc,
alt.flame,alt.fan.bill-gates,alt.destroy.microsoft

Toni AnzZlovar (toni.anzlovar @kiss.uni-lj.si) wrote:

> Why does everybody want to RUN WORD? Why does nobody want to write and edit
> text?

Smple. A *tremendous* number of documents are written using Microsoft Word. Onethat is
particularly ironic is the guide to LCLint -- a very popular lint tool -- often the lint of choice in the
linux world.

52 LCLint User’s Guide Appendix

Appendix A Availability

The web home page for LCLint is
http://ww. sds.lcs.mt.edu/lclint/

It includes this guide in HTML format, samples demonstrating LCLint, and links to related web sites.

LCLint can be downloaded from
http://ww. sds.lcs.mt.edu/lclint/dowl oad. ht m

or obtained viaanonymousf t p from
ftp://sds.lcs.nmt.edu/pub/lclint/

Win32 and several UNIX platforms are supported. Source code is freely available.

Appendix B Communication

LCLint development islargely driven by suggestions and comments from users. We are also very
interested in hearing about your experiences using LCLint in developing or maintaining programs,
enforcing coding standards, or teaching courses. For general information, suggestions, and questions
onLCLintsend mail tol cl i nt @ds. | cs. nit. edu.

Toreport abugin LCLint send amessagetol cl i nt - bug@ds. | cs. mit. edu.

There are two mailing lists associated with LCLint:

I clint-announce@ds.lcs.nit.edu
Reserved for announcements of new releases and bug fixes. (Everyone who sends mail

regarding LCLint is added to thislist.)
lclint-interest @ds.lcs.nit.edu

Informal discussions on the use and development of LCLint. To subscribe, send a (human-
readable) messagetol cl i nt - r equest @ds. | cs. m t. edu or use theform at

http://ww. sds. mit.edu/lclint/lists.htm . Themailinglistisarchived at
http://ww. sds.mt.edu/lclint/lclint-interest/

LCLint discussions relating to checks enabled by specifications or annotations are welcome in the
conp. speci fication. | arch Usenet group. Messages more focused on C-specific checking
would be more appropriate for thel cl i nt - i nt er est list of one of the C language groups.

Annotations 53

Appendix C Flags

Flags can be grouped into four major categories:

Global flags for controlling initializations and global behavior

Message format flags for controlling how messages are displayed

Mode selectors for coarse control of LCLint checking

Checking flags that control checking and what classes of messages are reported.

Globa flags can be used ininitialization files and at the command line; al other flags may also be
used in control comments.

Global Flags

Glaobal flags can be set at the command line or in an optionsfile, but cannot be set locally using
stylized comments. These flags control on-line help, initialization files, pre-processor flags, libraries
and output.

Help

On-line help provides documentation on LCLint operation and flags. When ahelp flag is used, no
checkingisdone by LCLint. Help flags may be preceded by - or +.

hel p

Display genera help overview, including list of additional help topics.
hel p <t opi c>

Display help on <topic>. Available topics.

annot ati ons describe annotations

commrent s describe control comments

flags describe flag categories

fl ags <category> all flags pertaining to <category> (one of the categories listed by
Iclint -help flags)

flags al pha al flagsin alphabetical order

flags full print afull description of all flags

mai | print information on mailing lists

nmodes flags settings in modes

prefixcodes character codes for setting namespace prefixes

references print references to relevant papers and web sites

vars describe environment variables

ver si on print maintainer and version information

hel p <fl ag>

Describe flag <flag>. (May list severa flags.)

war n-f | ags
Display awarning when aflagisset in asurprisingway. An error isreported if an obsolete
(LCLint Version 1.4 or earlier) flag is set, aflagis set to its current value (i.e., the + or - may
be wrong), or amode selector flag is set after mode checking flags that will be reset by the
mode were set. By default, war n- f | ags ison. To suppress flag warnings, use - war n-
fl ags.

54 LCLint User’s Guide Appendix

Initialization

These flags control directories and filesused by LCLint. They may be used from the command line or
in an options file, but may not be used as control comments in the source code. Except where noted.
they have the same meaning preceded by - or +.

tnpdir <directory>
Set directory for writing temp files. Defaultis/ t np/ .
| <di rectory>
Add directory to path searched for C include files. Note thereis no space after thel , to be

consistent with C preprocessor flags.
S<di rectory>

Add directory to path search for . | ¢l specification files.

f <file>
Load optionsfile <file>. If thisflagisused from the command line, the default
~/ . I clintrcfileisnotloaded. Thisflag may be used in an optionsfile to load

in another optionsfile.
nof

Prevents the default optionsfiles(. /. I clintrcand~/ .| cl i ntrc) frombeing

loaded. (Setting - nof overrides +nof , causing the options files to be loaded normally.)
sys-dirs

Set directories for system files (default is” / usr /i ncl ude"). Separate directories with

colons(e.g., "/ usr/include:/usr/local/lib"). Flagsettings propagateto filesina

system directory. If - sys-di r-errors isset, no errors are reported for filesin system

directories.

Pre-processor

These flags are used to define or undefine pre-processor constants. The - | <di r ect or y> flagis
also passed to the C pre-processor.
D<initializer>
Passed to the C pre-processor.
Winitializer>
Passed to the C pre-processor.

Libraries
These flags control the creation and use of libraries.

dunmp <file>
Save state in <file> for loading. The default extension . | cd isadded if <file> hasno
extension.

| oad <file>
Load state from <file> (created by - dunp). The default extension . | cd isadded if <file>
has no extension. Only one library file may be loaded.

By default, the standard library isloaded if the - | oad flagis not used to load a user library. If no
user library isloaded, one of the following flags may be used to select a different standard library.

Precede the flag by + to load the described library (or to prevent alibrary from being loaded using
no- | i b). See Appendix F for information on the provided libraries.

no-lib
Do not load any library. This prevents the standard library from being loaded.

Annotations 55

ansi-lib

Use the ANSI standard library (selected by default).
strict-lib

Use strict version of the ANS| standard library.
posi x-lib

Use the POSIX standard library.
posi x-strict-lib

Use the strict version of the POSIX standard library.
uni x-lib

Use UNIX version of standard library.
uni x-strict-lib

Use the gtrict version of the UNIX standard library.

Output

These flags control what additional information LCLint prints. Setting +<f | ag> causes the
described information to be printed; setting - <f | ag> preventsit. By default, all these flags are off.

use-stderr

Send error messages to standard error (instead of standard output).
show- sunmar y

Show asummary of al errors reported and suppressed. Counts of suppressed errors are not
necessarily correct since turning a flag off may prevent some checking from being done to save
computation, and errors that are not reported may propagate differently from when they are

reported.
show scan

Show file names are they are processed.
show al | - uses

Show list of uses of all external identifiers sorted by number of uses.

stats
Display number of lines processed and checking time.

time-di st
Display distribution of where checking timeis spent.

qui et
Suppress herald and error count. (If qui et isnot set, LCLint prints out a herald with version
information before checking begins, and aline summarizing the total number of errors
reported.)

which-1ib
Print out the standard library filename and creation information.

[imt <nunber>
At most <number> similar errors are reported consecutively. Further errors are suppressed,
and a message showing the number of suppressed messagesis printed.

Expected Errors

Normally, LCLint will expect to report no errors. The exit status will be success (0) if no errors are
reported, and failure if any errors are reported. Flags can be used to set the expected number of
reported errors. Because of the provided error suppression mechanisms, these options should
probably not be used for final checking real programs but may be useful in developing programs using
make.

expect <nunber >
Exactly <number> code errors are expected. LCLint will exit with failure exit status unless
<number> code errors are detected.

80

56 LCLint User’s Guide Appendix

Message Format

These flags control how messages are printed. They may be set at the command line, in options files,
or locdly in syntactic comments. Thel i ne-1 enand! i m t flags may be preceded by + or - with
the same meaning; for the other flags, + turns on the describe printing and - turnsit off. The box to
the left of each flag givesits default value.

show col umm

Show column number where error is found.
show- f unc

Show name of function (or macro) definition containing error. The function nameis printed

once before the first message detected in that function.
showal | -conj s

Show all possible aternate types (see Section 8.2.2).
paren-file-format
Use <file>(<line>) format in messages.
hi nts
Provide hints describing an error and how a message may be suppressed for the first error

reported in each error class.
force-hints

Provide hints for al errors reported, even if the hint has aready been displayed for the same
error class.

i ne-1en <nunber>
Set length of maximum message line to <number> characters. LCLint will split messages
longer than <number> characters long into multiple lines.

Mode Selector Flags

Mode selects flags set the mode checking flags to predefined values. They provide a quick coarse-
grain way of controlling what classes of errors are reported. Specific checking flags may be set after a
mode flag to override the mode settings. Mode flags may be used locally, however the mode settings
will override specific command line flag settings. A warning is produced if a mode flag is used after a
mode checking flag has been set.

These are brief descriptionsto give a general idea of what each mode does. To see the complete flag
settingsin each mode, usel cl i nt - hel p nodes. A mode flag has the same effect when used with
either + or - .

weak
Wesak checking, intended for typical unannotated C code. No modifies checking, macro
checking, rep exposure, or clean interface checking is done. Return values of typei nt may be
ignored. Thetypesbool ,i nt, char and user-defined enumtypes are all equivaent. Old

style declarations are unreported.
standard

The default mode. All checking done by weak, plus modifies checking, global alias checking,
use al parameters, using released storage, ignored return values or any type, macro checking,
unreachable code, infinite loops, and fall-through cases. Thetypesbool ,i nt andchar are
distinct. Old style declarations are reported.

plain: -
m:- - ++

shortcut

plain: -

m:- +++

plain: +
plain: +

plain: +

plain: -

Annotations

checks
Moderately strict checking. All checking done by st andar d, plus must modification

checking, rep exposure, return alias, memory management and compl ete interfaces.
strict

Absurdly strict checking. All checking done by checks, plus modifications and global
variables used in unspecified functions, strict standard library, and strict typing of C operators.
A specia reward will be presented to the first person to produce area program that produces
no errorswith stri ct checking.

Checking Flags

These flags control checking done by LCLint. They may be set locally using syntactic comments,
from the command line, or in an optionsfile. Some flags directly control whether a certain class of
message is reported. Preceding the flag by + turns reporting on, and preceding the flag by - turns
reporting off. Other flags control checking less directly by determining default values (what
annotations are implicit), making types equivaent (to prevent certain type errors), controlling
representation access, etc. For these flags, the effect of + is described, and the effect of - isthe
opposite (or explicitly explained if there is no clear opposite). The organization of this section
mirrors Sections 3-10.

Key

To the left of each flag name is a flag descriptor encoding what kind of flag it is and its default value.
The descriptions are:

A plain flag. The value after the colon gives the default setting (e.g., thisflag is off.)

A mode checking flag. The vaue of the flag is set by the mode selector. The four signs give the
setting in the weak, standard, checks and strict modes. (e.g., thisflag is off in the weak and standard
modes, and on in the checks and strict modes.)

A shortcut flag. Thisflag sets other flags, so it has no default value.

Types

Abstract Types
i mp- abstract

Implicit abst r act annotation for type declarations that do not use concr et e.
mut - rep

Representation of mutable type has sharing semantics.

Access (Section 3.1)
access- nodul e

An abstract type defined in M. h (or specifiedin M. | cl) isaccessiblein M. c.
access-file

An abstract type named t ype isaccessiblein filesnamed t ype. <ext ensi on>.
access-czech

An abstract type named t ype may be accessible in afunction named t ype_nane. (see

Section 9.1.1)
access- sl ovak

An abstract type named t ype may be accessible in afunction named t ypeNane. (see
Section.9.1.2)

plain: -

shortcut

plain: -
plain:
unset
plain:
FALSE
plain:
TRUE
m:- - ++
m:- +++
m:++++

shortcut

plain: +

mi- - - +
Mi++- -

m- - - +

m:- +++
mi-- -+

m- - - +

58 LCLint User’s Guide Appendix

access- czechosl ovak
An abstract type named t ype may be accessible in afunction named t ype_nane or

t ypeNane. (see Section 9.1.3)
access-al |

Setsaccess- nodul e, access-fil eandaccess-czech.

Boolean Types (Section 3.3)

These flags control the type name used to represent bool eans, and whether the boolean typeis
abstract.

bool

Boolean typeis an abstract type.
bool t ype <name>

Set name of boolean type to <name>.
bool f al se <nane>

Set name of boolean false to <name>.
bool true <name>

Set name of boolean true to <name>.

Predicates
pr ed- bool -ptr
Type of condition test is a pointer.
pr ed- bool -i nt
Type of condition test is an integral type.
pr ed- bool - ot hers

Type of condition test is not a boolean, pointer or integral type.
pr ed- bool

Setspr edbool i nt, predbool ptr andpr ebool ot hers.

pr ed- assi gn
The condition test is an assignment expression. If an assignment is intended, add an extra
parentheses nesting (e.g.,i f ((a = b)) ..).

Primitive Operations
ptr-arith
Arithmetic involving pointer and integer.
ptr-negate
Allow the operand of the! operator to be a pointer.
bi tw se-si gned
An operand to a bitwise operator is not an unsigned value. This may have unexpected results
depending on the signed representations.
shi ft-signed
The left operand to a shift operator is not an unsigned value.
strict-ops
Primitive operation does not type check strictly.
si zeof -type
Operand of si zeof operator isatype. (Safer to use expression, i nt *x = si zeof
(*x) ;instead of si zeof (int).)

plain: +

plain: +

plain: +

m:- +++

m:- +++

m:- +++

mi+- - -

plain: +
m:+- - -
m:- +++
plain: +
m:+- - -
m:- - - -

mi+- - -

mi+- - -
Mi++- -
mi+- - -

m:- - - -

Annotations

Format Codes
f or mat - code
Invaid format code in format string for pri nt f | i ke or scanf | i ke function.
format-type
Type-mismatch in parameter corresponding to format codeinapri ntfli ke orscanfli ke
function.

Main

mai n-type
Type of mai n does not match expected type (function returning ani nt , taking no parameters
or two parameters of typei nt andchar **.)

Comparisons

bool - conpar e
Comparison between boolean values. Thisis dangerous since there may be multiple TRUE
valuesif any non-zero value isinterpreted as TRUE.

real - conpare
Comparison involving f | oat or doubl e values. Thisis dangerous sinceit may produce
unexpected results because floating point representations are inexact.

ptr-conpare
Comparison between pointer and number.

Type Equivalence
voi d- abstract
Allow voi d * to match pointersto abstract types. (Casting a pointer to an abstract typeto a
pointer tovoi d isokay if +voi d- abstract isset)
cast-fcn-ptr
A pointer to afunctionis cast to (or used as) a pointer to void (or vice versa).
f or war d- decl
Forward declarations of pointers to abstract representation match abstract type.
i mp-type
A variable declaration has no explicit type. Thetypeisimplicitly int.
i nconpl et e-type
A formal parameter is declared with an incompletetype (e.g.,i nt[]1[]).
char - i ndex
Allow char toindex arrays.
enum i ndex
Allow members of enum type toindex arrays.
bool -i nt
Makebool andi nt areequivaent. (No type errors are reported when aboolean is used
where an integral typeis expected and vice versa.)
char-int
Make char andi nt typesequivaent
enunm i nt
Make enumandi nt types equivalent
fl oat - doubl e
Makef | oat and doubl e types equivaent
i gnore-qual s
Ignore type qualifiers (I ong, short , unsi gned).

59

60 LCLint User’s Guide Appendix

m:++-- relax-quals
Report qualifier mismatches only if dangerous (information may be lost since alarger typeis
assigned to (or passed as) a smaller one or a comparison usessi gned and unsi gned
values.)

m:---- i gnore-signs
Ignore signsin type comparisons (unsi gned matchessi gned).

plain: - | ong-integral
Allow long type to match an arbitrary integral type (e.g., dev_t).
m:+--- | ong-unsi gned-integral
Allow unsigned long type to match an arbitrary integral type (e.g., dev_t).
plain: - match-any-integral
Allow any integral type to match an arbitrary
plain: - | ong-unsi gned- unsi gned-i nt egral

Allow unsigned long type to match an arbitrary unsigned integral type (e.g., si ze_t).
m:+--- | ong-signed-integral
Allow long type to match an arbitrary signed integral type (e.g., ssi ze_t).

plain: + numliteral
Integer literals can be used as floats.
plain:- char-int-literal
A character constant may beused asani nt .
plain: + zero- ptr
Literal 0 may be used as a pointer.
plain: - relax-types
Allow al numeric types to match.

Function Interfaces

Modification (Section 4.1)
plain: + nodifies
Undocumented modification of caller-visible state. Without +nbduncon, modification errors
are only reported in the definitions of functions declared with a modifies clause (or specified).
m:- - ++ must - nod
Documented modification is not detected. An object listed in the modifies clause for a
function, is not modified by the implementation.
shortcut nod- uncon
Report modification errors in functions declared without a modifies clause.(Sets mod-
nonods, nod- gl obs- nonbds and nod- st ri ct - gl obs- nonods.)
m:- - - + nod- nonods
Report modification errors (not involving global variables) in functions declared without a
modifies clause.
m:- - - + nod- uncon- nonods
An uncongtrained function is caled in afunction body where modifications are checked.
Since the unconstrained function may modify anything, there may be undetected modifications
in the checked function.
m:---+ nod-internal-strict
A function that modifiesi nt er nal St at e iscalled from afunction that does not list
i nt er nal St at e initsmodifies clause.
m:---+ nod-file-sys
A function modifies the file system but does not list f i | eSyst emin its modifies clause.

plain: +
m;++++
m:- - - +
m:- - - +
m:- - - +
m:- +++
m:- - ++
m:++++
m:- +++
m:- - - +
m:- - - +
m:- - - +
m:- - - +
m:- - - +
m:- - ++
m:- - - -

Annotations

Global Variables (Section4.2)

Errorsinvolving the use and modification of global and file static variables are reported depending on
flag settings, annotations where the global variable is declared, and whether or not the function where
the global is used was declared with a globals clause.

gl obs

Undocumented use of a checked global variable in afunction with aglobalslist.
gl ob-use

A global listed in the globals list is not used in the implementation.
gl ob- nogl obs

Use of achecked global in afunction with no globals list.
i nternal - gl obs

Undocumented use of internal state (should have gl obal s i nt er nal St at e).
i nt ernal - gl obs- nogl obs

Use of internal state in function with no globalslist.
gl ob-state

A function returns with globa in inconsistent state (null or undefined)
al I - gl obs

Report use and modification errors for globals not annotated with unchecked.
check-strict-gl obs

Report use and modification errorsfor checkedst ri ct globals.

Modification of Global Variables
nod- gl obs

Undocumented modification of a checked global variable.
nod- gl obs- unchecked

Undocumented modification of an unchecked global variable.
nod- gl obs- nonods

Undocumented modification of a checked global variable in afunction with no modifies clause.
nod- st ri ct - gl obs- nonods

Undocumented modification of acheckedst ri ct global variablein afunction declared
with no modifies clause.

Globals Lists and Modifies Clauses
war n- m ssi ng- gl obs
Globa variable used in modifies clause is not listed in globals list. (The global is added to the
globalslist.)
war n- m ssi ng- gl obs- nogl obs
Globa variable used in modifies clause of afunction with no globalslist.
gl obs-i np- nods- not hi ng
A function declared with aglobal s list but no modifies clause is assumed to modify nothing.
nods- i mp- nogl obs
A function declared with a modifies clause but no globalslist is assumed to use no globals.

61

62 LCLint User’s Guide Appendix

Implicit Checking Qualifiers

m:---- i np-checked- gl obs
Implicit checked quaifier on global variables with no checking annotation.
m:---- |1 np-checked-statics

Implicit checked qudifier file static scope variables with no checking annotation.
m:- - -- i np- checknod- gl obs

Implicit checknod qualifier on globa variables with no checking annotation.

m:---- i np-checknod-statics

Implicit checknod qualifier file static scope variables with no checking annotation.
m:---+ i np-checkedstrict-gl obs

Implicit checked quaifier on global variables with no checking annotation.
m:---+ inp-checkedstrict-statics

Implicit checked qudifier file static scope variables with no checking annotation.
m:- - ++ i nmp-checknod-internals

Implicit checknod qualifier on function scope static variables with no checking annotation.
m:- +++ i mp- gl obs- weak

Global Aliasing
shortcut gl ob-al i as
Function returns with global aliasing externa state (setscheckstri ct - gl ob-al i as,

checked- gl ob-al i as, checknod- gl ob- al i as andunchecked- gl ob- al i as).
m:- +++ checkstrict-glob-alias

Function returnswithacheckst ri ct globa aliasing external state.
m:- +++ checked-gl ob-ali as

Function returnswith achecked globa aiasing external state.
m:- +++ checknod- gl ob-al i as

Function returns with achecknod global aliasing external state.
m:- - ++ unchecked- gl ob-al i as

Function returns with an unchecked globa aiasing external state.

Declaration Consistency (Section4.3)
m:- +++ i ncon-defs
Identifier redeclared or redefined with inconsistent type.
m:- +++ incon-defs-lib
Identifier defined in alibrary is redefined with inconsistent type
m:---- overl oad

Standard library function overloaded.
m:- +++ match-fields

A st ruct or enumtypeis redefined with inconsistent fields or members.

m:- +++

m- - - +

m:- +++

m- - - +

m:- - ++

m:- +++

m:- +++

m- - - +

Annotations

Memory Management

Reporting of memory management errorsis controlled by flags setting checking and implicit
annotations and code annotations.

Deallocation Errors (Section 5.2)

use-rel eased

Storage used after it may have been released.
strict-use-rel eased

An array element used after it may have been released.

Inconsistent Branches
branch-state
Storage hasinconsistent states of alternate paths through a branch (e.g., itisreleased in the

true branch of an if-statement, but there is no else branch.)
strict-branch-state

Storage through array fetch has inconsistent states of alternate paths through a branch. Since
array elements are not checked accurately, this may lead to spurious errors.

dep- arrays
Treat array elementsasdependent storage. Checking of array elements cannot be done
accurately by LCLint. If dep- ar r ays isnot set, array elements are assumed to be
independent, so code that rel eases the same element more than once will produce no error. If
dep- ar rays isset, array elements are assumed to be dependent, so code that rel eases the
same element more that once will produce an error, but so will code that releases different
elements correctly will produce a spurious error.

Memory Leaks
must-free
Allocated storage was not released before return or scope exit Errors are reported for onl y,

f resh or owned storage.
conp- destroy

All only references derivable fromout onl y parameter of typevoi d * must be released.
(Thisisthetype of the parameter to f r ee, but may aso be used for user-defined deallocation

functions.)
strict-destroy

Report compl ete destruction errors for array elements that may have been released. (If
strict-destroy isnotsea, LCLint will assumethat if any array element was released, the
entire array was correctly released.)

63

64 LCLint User’s Guide Appendix

Transfer Errors

A transfer error is reported when storage is transferred (by an assignment, passing a parameter, or
returning) in away that isinconsistent.

shortcut Nemtrans

Sets al memory transfer errors flags.
m:- +++ only-trans

Only storage transferred to non-only reference (memory leak).
m:- +++ ownedtrans

Owned storage transferred to non-owned reference (memory leak).
m:- +++ fresh-trans

Newly-allocated storage transferred to non-only reference (memory leak).
m:- +++ shared-trans

Shared storage transferred to non-shared reference
m:- +++ dependent-trans

Inconsistent dependent transfer. Dependent storage is transferred to a non-dependent

reference.
m:- +++ tenp-trans

Temporary storage (associated with at enp formal parameter) istransferred to a non-

temporary reference. The storage may be released or new aliases created.
m:- +++ Kkept-trans

Kept storage transferred to non-temporary reference.
m:- +++ Kkeep-trans

Keep storage is transferred in away that may add anew diasto it, or release it.
m:- +++ refcount-trans

Reference counted storage is transferred in an inconsistent way.
m:- +++ newref-trans

A new reference transferred to a reference counted reference (reference count is not set

correctly).
m:- +++ i mredi ate-trans

An immediate address (result of &) is transferred inconsistently.
m:- +++ sStatic-trans

Static storage is transferred in an inconsistent way.
m:- +++ expose-trans

Inconsistent exposure transfer. Exposed storage is transferred to anon-exposed, non-

obser ver reference.
m:- +++ observer-trans

Inconsistent obser ver transfer. Observer storage is transferred to a non-observer reference.
m:- +++ unqualified-trans

Unqualified storage is transferred in an inconsistent way.

Initializers
m:- - ++ only-ung-gl obal -trans
Only storage transferred to an unqualified global or static reference. Thismay lead to a

memory leak, since the new reference is not necessarily released.
m:--++ sStatic-init-trans

Static storage is used as an initia value in an inconsistent way.
m:--++ unqualified-init-trans

Unqualified storage is used as an initial value in an inconsistent way.

m:- +++

m:++++

plain: +
plain: +
plain: +
plain: +
shortcut
m:- +++

m:- - - -

m:- +++

m:- +++

m:- +++

m:- - ++

Annotations

Derived Storage

conp- mem pass
Storage derivable from a parameter does not match the alias kind expected for the formal
parameter.

Stack References

st ack-r ef
A stack referenceis pointed to by an externa reference when the function returns. Since the
call frame will be destroyed when the function returns the return value will point to dead
storage. (Section 5.2.6)

Implicit Memory Annotations (Section 5.3)
gl ob-i mp-only
Assume unannotated global storageisonly.
param i np-tenp
Assume unannotated parameter ist enp.
ret-inp-only
Assume unannotated returned storageisonl y.
struct-inmp-only
Assume unannotated structure or union fieldisonl y.
code-i nmp-only
Setsgl ob-i np-only,ret-inp-onlyandstruct-inp-only.
meminmp
Report memory errors for unqualified storage.
pass- unknown
Passing a value as an unannotated parameter clears its annotation. Thiswill prevent many
spurious errors from being report for unannotated programs, but eliminates the possibility of
detecting many errors.

Sharing

Aliasing (Section 6)

al i as- uni que
An actual parameter that is passed asauni que formal parameter is aliased by another
parameter or global variable.

may- al i as- uni que
An actual parameter that is passed asauni que formal parameter may be aliased by another

parameter or global variable.
nmust - not-al i as

An dias has been added to at enp-qualifier parameter or global that is visible externally

when the function returns.
ret-alias

A function returns an alias to parameter or global.

65

shortcut

m:- - ++
m:- - ++

m:- - ++

plain: +

m- - - +

m:- - ++

m:- +++

m:- +++
m:- +++

m:- +++

m:- +++

66 LCLint User’s Guide Appendix

Exposure (Setion 6.2)

r ep- expose
Theinternal representation of an abstract typeisvisibleto the caller. This means clients may
have access to a pointer into the abstract representation. (Setsassi gn- expose, ret -
expose, and cast - expose.)

assi gn- expose
Abstract representation is exposed by an assignment or passed parameter.

cast - expose

Abstract representation is exposed through a cast.
ret - expose

Abstract representation is exposed by areturn value.

Observer Modifications
nod- obser ver

Possible modification of observer storage.
nod- obser ver - uncon

Storage declared with observer may be modified through a call to an unconstrained function.

String Literals (Section 6.2.1)

read-onl y-trans
Report memory transfer errors for initializations to read-only string literals

read- onl y-strings
String literals are read-only (ANSI semantics). An error isreported if astring literal may be
modified or released.

Use Before Definition (Section 7.1)
use- def
The value of alocation that may not be initialized on some execution path is used.
i mp-outs
Allow unannotated pointer parameters to functions to be implicit out parameters.
conp- def
Storage derivable from a parameter, return value or global variable is not completely defined.
uni on- def

No field of aunionisdefined. (No error isreported if at least one union field is defined.)
nmust - def i ne

Parameter declared with out isnot defined before return or scope exit.

Null Pointers (Section 7.2)

nul |
A possibly null pointer may be dereferenced, or used somewhere a non-null pointer is
expected.

plain: -
plain: -
shortcut

plain: -

m:- +++

m:- +++
m:- +++
m:- +++
mi-- -+
m:- +++

m:- +++

Annotations

Macros (Section 8)
These flags control expansion and checking of macro definitions and invocations.

Macro Expansion

These flags control which macros are checked as functions or constants, and which are expanded in
the pre-processing phase. Macros preceded by / * @ot f unct i on@/ are never expanded
regardless of these flag settings. These flags may be used in source-file control comments.

f cn- nacr os

Macros defined with parameter lists are not expanded and are checked as functions.
const - nacr os

Macros defined without parameter lists are not expanded and are checked as constants.
al | - macros

Setsf cn- macr os and const - macr os.
i b- macros

Macros defining identifiers declared in aloaded library are not expanded and are checked
according to the library information.

Macro Definitions
These flags control what errors are reported in macro definitions.

macr o- st nt
Macro definition is not syntactically equivalent to function. This meansif the macro is used as
astatement (e.g.,i f (test) macro() ;) unexpected behavior may result. Onefixisto
surround the macro body withdo { ...} while (FALSE).

nmacr o- par ans

A macro parameter is not used exactly once in all possible invocations of the macro.
macr o- assi gn

A macro parameter is used as the left side of an assignment expression.
nmacr o- par ens

A macro parameter is used without parentheses (in potentially dangerous context).
macr o- enpty

Macro definition of afunction is empty.
macr o- r edef

Macro isredefined. Thereis another macro defined with the same name.
nmacr o- unr ecog

An unrecognized identifier appears in a macro definition. Since the identifier may be defined
where the macro is used, this could be okay, but LCLint will not be able to check the
unrecognized identifier appropriately.

67

68 LCLint User’s Guide Appendix

Corresponding Declarations
m:++++ Mmacr o- mat ch- nane
Aniter orconst ant macro isdefined using a different name from the one used in the

previous syntactic comment
shortcut nacr o- decl

A macro definition has no corresponding declaration. (Setsmacr of cndecl and

macr oconst decl .)
m:- +++ macr o-fcn-decl

Macro definition with parameter list has no corresponding function prototype. Without a

prototype, the types of the macro result and parameters are unknown.
m:- +++ Mmacr o- const - decl

A macro definition without parameter list has no corresponding constant declaration.
plain: + next-1ine-nacros

A constant or iter declaration is not immediately followed by a macro definition.

Side-Effect Free Parameters (Section 8.2.1)

These flags control error reporting for parameters with inconsi stent side-effects in invocations of
checked function macros and function calls.

m:- +++ sSef-parans

An actual parameter with side-effectsis passed as aformal parameter declared with sef .
m:- - ++ sef-uncon

An actual parameter involving acall to an unconstrained function (declared without modifies
clause) that may modify anything is passed asasef parameter.

Iterators
plain: - has-yield
An iterator has been declared with no parameters annotated with yi el d.

Naming Conventions
plain: + nane-checks
Turns al name checking on or off without changing other settings.

Type-Based Naming Conventions (Section 9.1)

Czech Naming Convention
shortcut czech
Selects complete Czech naming convention (setsaccess- czech, czech-fcns, czech-

vars, czech-consts,czech- macros,andczech-t ypes).
plain: + access-czech

Allow access to abstract types following Czech naming convention. The representation of an

abstract type named t is accessible in the definition of afunction or constant namedt _nane.
plain:- czech-fcns

Function or iterator nameis not consistent with Czech naming convention.
plain:- czech-vars

Variable name is not consistent with Czech naming convention.

plain: - czech-macr os

Expanded macro name is not consistent with Czech naming convention.
plain:- czech-consts

plain: -

shortcut

plain: -

plain: -
plain: -
plain: -
plain: -

plain: -

shortcut

plain: -

plain: -
plain: -
plain: -
plain: -

plain: -

plain: +

Annotations 69

Congtant name is not consistent with Czech naming convention.
czech-types

Type nameis not consistent with Czech naming convention. Czech type names must not use
the underscore character.

Slovak Naming Convention
sl ovak
Selects complete Slovak naming convention (setsaccess- sl ovak, sl ovak- f cns,

sl ovak- vars, sl ovak- const s, sl ovak- macr os, and sl ovak-t ypes).
access- sl ovak

Allow access to abstract types following Slovak naming convention. The representation of an

abstract type named t is accessible in the definition of afunction or constant named t Nane.
sl ovak- fcns

Function or iterator nameis not consistent with Slovak naming convention.
sl ovak- macr os

Expanded macro name is not consistent with Slovak naming convention.
sl ovak-vars

Variable name is not consistent with Slovak naming convention.
sl ovak- const s

Congtant name is not consistent with Slovak naming convention.
sl ovak-t ypes

Type nameis not consistent with Slovak naming convention. Slovak type names may not
include uppercase letters.

Czechoslovak Naming Convention

czechosl ovak
Selects complete Czechod ovak naming convention (setsaccess- czechosl ovak,
czechosl ovak-f cns, czechosl ovak-var s, czechosl ovak- const s,

czechosl ovak- macr os, and czechosl ovak-t ypes).
access- czechosl ovak

Allow access to abstract types by Czechosovak naming convention. The representation of an
abstract type named t is accessible in the definition of afunction or constant namedt _nane

ort Namre.
czechosl ovak-fcns

Function nameis not consistent with Czechoslovak naming convention.
czechosl ovak- macr os

Expanded macro name s not consistent with Czechoslovak naming convention.
czechosl ovak-vars

Variable name is not consi stent with Czechosovak naming convention.
czechosl ovak- const s

Congtant name is not consi stent with Czechoslovak naming convention.
czechosl ovak-t ypes

Type nameis not consistent with Czechodovak naming convention. Czechodovak type names
may not include uppercase letters or the underscore character.

Namespace Prefixes (Section 9.2)
macr o-var-prefix <prefix string>

Set namespace prefix for variables declared in amacro body. (Defaultism .)
macr o- var - pr ef i x- excl ude

A variable declared outside a macro body starts with the macr o- var - pr ef i x.
tag-prefix <prefix string>

Set namespace prefix of st ruct , uni on or enumtag identifiers.

plain:

plain:

plain:

plain:

plain:

plain:

plain:

plain:

plain:

plain:

70 LCLint User’s Guide Appendix

t ag- prefi x- excl ude

An identifier that is not atag startswith thet agpr ef i x.
enum prefix <prefix string>

Set namespace prefix for enummembers.
enum prefi x- excl ude

An identifier that is not an enummember starts with the enunpr ef i x.
file-static-prefix <prefix string>

Set namespace prefix for filest at i ¢ declarations.
file-static-prefix-exclude

An identifier that is not file static startswith thef i | est ati cprefi x.
gl obal -prefix <prefix string>

Set namespace prefix for global variables.
gl obal - prefi x-excl ude

An identifier that isnot aglobal variable starts with the gl obal pr ef i x.
type-prefix <prefix string>

Set namespace prefix for user-defined types.
t ype- prefi x-excl ude

Anidentifier that is not atype name starts with thet ypepr ef i x.
external -prefix <prefix string>

Set namespace prefix for externa identifiers.
ext ernal - prefi x-excl ude

An identifier that is not externa starts with the ext er nal prefi x.
| ocal -prefix <prefix string>

Set namespace prefix for local variables.
| ocal - prefix-excl ude

An identifier that isnot alocal variable startswith the | ocal pr ef i x.
unchecked- macro-prefix <prefix string>

Set namespace prefix for unchecked macros.
unchecked- macr o- prefi x- excl ude

An identifier that is not the name of an unchecked macro starts with the
uncheckedmacr opr ef i x.
const-prefix <prefix string>

Set namespace prefix for constants.
const - prefi x- excl ude

An identifier that is not a constant starts with the const ant pr ef i x.
iter-prefix <prefix string>

Set namespace prefix for iterators.
iter-prefix-exclude

Anidentifier thatisnotani t er startswiththei t er prefi x.

Annotations 71

prot o- param prefix <prefix string>
Set namespace prefix for parameters in function prototypes.
plain: - proto-param prefix-exclude
An identifier that is not a parameter in a function prototype starts with the

pr ot opr ar nprefi x.
m:- - ++ pr ot o- par am nanme

A parameter in afunction prototype has a name (can interfere with macro definitions).
m:- - -+ proto-param nmatch

The name of a parameter in afunction definition does not match the corresponding name of the
parameter in afunction prototype (after removing the pr ot opar anpr ef i x).

Naming Restrictions (Section9.3)
m:- +++ Shadow
Declaration reuses name visible in outer scope.

Reserved Names
m:- - ++ ansi-reserved

External name conflicts with name reserved for the compiler or standard library.
m:---+ ansi-reserved-internal

Internal name conflicts with name reserved for the compiler or standard library.
m:- - ++ Cpp- hames

Internal or external name conflicts with a C++ reserved word. (Will cause problems if
program is compiled with a C++ compiler.)

Distinct External Names
plain: - di stinct-external -nanes
An external name is not distinguishable from another external name using
ext er nal nanel en significant characters.
plain: 6 external - nane-| en <nunber >
Sets the number of significant charactersin an external name (ANSI default minimum is 6).

Sets+di sti nct - ext er nal - names.
plain: - external - nane-case-insensitive

Make aphabetic case insignificant in external names. According to ANSI standard, case need
not be significant in an external name. If +di sti nct - ext er nal - nanes isnot set, sets
+di sti nct - ext er nal - nanes with unlimited external name length.

Distinct Internal Names
m:---- distinct-internal -names
An internal name is not distinguishable from another internal name using i nt er nal nanel en
significant characters. (Also effected by i nt er nal - name- case-i nsensi tive and
i nt ernal - nane- | ookal i ke.)
plain: 31 internal -nanme-1en <nunber>
Set the number of significant charactersin an internal name. Sets+di sti nct -i nt er nal -
names.
plain: - internal -nane-case-insensitive
Set whether case is significant an internal names (- i nt er nal - nane- case-
i nsensi tive meanscaseissgnificant). If +di sti nct-i nt er nal - names isnot s,

sets+di st i nct -i nt er nal - nanes with unlimited internal name length.
plain: - internal -nane-| ookal i ke

Set whether similar looking characters (e.g., “1” and “1 ") match in internal names.

72 LCLint User’s Guide Appendix

Other Checks

Undefined Evaluation Order (Section 10.1)
m:- +++ eval - order
Behavior of an expression is unspecified or implementation-dependent because sub-

expressions contain interfering side effects that may be evaluated in any order.
m:---+ eval -order-uncon

An expression may be undefined because a sub-expression contains a call to an unconstrained
function (no modifies clause) that may modify something that may be modified or used by
another sub-expression.

Problematic Control Structures (Section 10.2)
m:- +++ i nf-1oops
Likely infinite loop is detected (Section 10.2.1).
m:- - ++ i nf-1o0ops-uncon
Likely infinite loop is detected. Loop test or body calls an unconstrained function that may

produce an undetected modification.
m:---+ elseif-conplete

Thereisno finals else following an elseif construct (Section 10.2.5).
m:- +++ case- break

Thereis anon-empty casein aswitch not followed by abr eak (Section 10.2.2).
m:- +++ MM Ss-case

A switch on an enumtypeis missing a case for amember of the enumerator.
m:---- | oop-exec

Assume all loops execute at least once. This effects use-before-definition and memory
checking. It should probably not be used globally, but may be used surrounding a particular
loop that is known to always execute to prevent spurious messages.

Deep Break (Section10.2.3)
shortcut deep- br eak
Report errorsfor br eak statementsinside anestedwhi | e, f or or swi t ch. (Setsall nested

break and continue flags.)
m:- - ++ | oop-1 oop- br eak

Thereisabr eak insdeawhi | e, f or or iterator loop that isinside awhi | e, f or or iterator

loop. Mark with/ * @ nner br eak @/ to suppress the message.
m:- - ++ Swi t ch-1 oop- break

Thereisabr eak insdeawhi | e, f or or iterator loop that isinside aswi t ch statement.

Mark with/ * @ oopbr eak@/ .
m:---+ | oop-sw tch-break

Thereisabr eak insdeaswi t ch statement that isinsideawhi | e, f or or iterator loop.
Mark with /* @w t chbreak@/ .

m- - - +

m:- - - +
shortcut
shortcut
m:- - ++
m:- - - +
m:- - - +
m:- - - +
m;++++
m:- - - +

m:- +++

m:- +++

m- - - +

m:- +++

Annotations 73

sw tch-swi t ch- break
Thereisabr eak insideaswi t ch statement that isinside another swi t ch statement. Mark
with / * @ nner break@/ .

| oop- | oop- conti nue
Thereisacont i nue inside awhile, for or iterator loop that isinside awhile, for or iterator
loop. Mark with/ * @ nner conti nue@/ .
Loop and if Bodies (Section 10.2.4)
all-enpty
Anif, while or for statement has no body (setsi f - enpt y, whi | e- enpt y andf or -
enpty.)
al I - bl ock
Thebody of ani f, whi | e or f or statement isnot ablock (setsi f - bl ock, whi | e- bl ock
andf or - bl ock.)
whi | e-enmpty
A while statement has no body.
whi | e- bl ock
The body of awhi | e statement is not a block
for-enpty
A f or statement has no body.
for- bl ock
The body of af or statement is not a block.
if-enmpty
An if statement has no body.
i fbl ock

Thebody of ani f statement is not a block.

Suspicious Statements (Section 10.3)
unr eachabl e

Code is not reached on any possible execution.
noef f ect

Statement has no effect.
noef f ect - uncon

Statement involving call to unconstrained function may have no effect.
nor et

Thereisapath with nor et ur n in afunction declared to return anon-voi d value.

74 LCLint User’s Guide Appendix

Ignored Return Values (Setion10.3.2)

These flags control when errors are reported for function calls that do not use the return value.
Casting the function call to voi d or declaring the called functiontoreturn/ *@al t voi d@/ .

m:- +++ ret-val - bool
Return value of type bool ignored.
m:- +++ ret-val-int
Return value of typei nt ignored.
m:++++ ret-val -other
Return value of type other than bool ori nt ignored.
shortcut ret-val
Return valueignored (Setsr et val bool ,retval i nt,retval ot her.)

Unused Declarations (Section 10.4)

These flags control when errors are reported for declarations that are never used. Theunused
annotation can be used to prevent unused errors from being report for a particular declaration.

m:.---+ top-use
An externa declaration is not used in any file.
m:- +++ const -use

Constant never used.
m:- +++ enum nem use

Member of enumerator never used.
m:++++ var-use

Variable never used.
m:- +++ param use

Function parameter never used.
m:++++ fcn-use

Function is never used.
m:++++ type-use

Defined type never used.
m:- +++ fi el d-use

Field of structure or union type is never used.
m:- - -+ unused- speci al

Declaration in a special file (correspondingto. | or . y file) is unused.

Complete Programs (Section 10.5)
m:- - ++ decl - undef
Function, variable, iterator or constant declared but never defined.
shortcut parti al
Check as partial system (sets- decl - undef , - export - | ocal and prevents checking of
macros in headers without corresponding . ¢ files.)

Exports
m:---+ export-|ocal
A declaration is exported but not used outside this module. (Declaration can usethest ati c
qualifier.)
m:- - ++ export-header

A declaration (other than avariable) is exported but does not appear in a header file.
m:- - ++ export-header-var

A variable declaration is exported but does not appear in a header file.

plain: +
plain: +

plain: -

plain: +
m:- - ++

m:- +++

m:- - ++
mi- - - +

m:- +++

plain: +

shortcut

mi- - - +
15

m:- - - +
509
m:- - - +
127
m:- - - +
127
m:- - ++

plain: +

Annotations

Unrecognized Identifiers
unr ecog
An unrecognized identifier is used.
Sys-unrecog
Report unrecognized identifiers that start with the system prefix, _ (two underscores).
repeat - unr ecog
Report multiple messages for unrecognized identifiers. If r epeat unr ecog isnot set, an
error isreported only the first time a particular unrecognized identifier appearsin thefile.

Multiple Definition and Declarations
r edef

A function or variable is defined more than once.
r edecl

An identifier is declared more than once.
nest ed- extern

An ext er n declaration is used inside a function body.

ANSI C Conformance
nopar ans
A function is declared without a parameter list prototype.
ol d-style
Function definition isin old style syntax. Standard prototype syntax is preferred.
exit-arg
Argument to exi t hasimplementation defined behavior. The only valid argumentsto exi t
are EXI T_SUCCESS, EXI T_FAI LURE and 0. Anerror isreported if LCLint can detect
statically that the argument to exi t isnot one of these.
use-var - args
Report if <var ar gs. h> isused (should use st dar g. h).

Limits (Section 10.6)
ansi-limts

Check for violations of standard limits (Setscont r ol - nest - dept h, stri ng-

literal -1en,include-nest,numstruct-fields,andnum enum nenbers).
control - nest -dept h <nunber >

Set maximum nesting depth of compound statements, iteration control structures, and selection

control structures (ANSI minimum is 15).
string-literal -l en <nunber>

Set maximum length of string literals (ANSI minimum is 509).
numstruct-fields <nunber>

Set maximum number of fidldsinast ruct oruni on (ANSI minimum is 127).
num enum menber s <nunber >

Set maximum number of members of an enumtype (ANSI minimum is 127).
i ncl ude- nest <nunber >

Set maximum number of nested #i ncl ude files (ANSI minimum is 8).

Header Inclusion (Appendix F)

ski p- ansi - header s
Prevent inclusion of header filesin a system directory with names that match standard ANSI
headers. The symbolic information in the standard library is used instead. In effect only if a
library that includes the ANSI library isused. The ANSI headers are: assert, ct ype,

75

76 LCLint User’s Guide Appendix

errno,float,limts,|ocal e, mat h,setj np, si gnal ,stdarg,stddef,stdio,
stdlib,strings,string,tinme,andwchar.

plain: + sKi p- posi x- headers
Prevent inclusion of header filesin a system directory with names that match standard POSIX
headers. The symbolic information in the standard library is used instead. In effect only if a
library that includes the POSIX library isused. The POSIX headersare: di rent,fcntl,
grp, pwd, ternm os,sys/stat,sys/tines,sys/types,sys/utsnanme,sys/wait,
uni std,anduti ne.

plain: + War n- posi x- headers
Report use of a POSIX header when checking a program with a non-POSIX library.

plain: - ski p-sys-headers
Prevent inclusion of all header filesin system directories.
plain: + sys-dir-expand- macros
Expand macros in system directories regardless of other settings, except for macros
corresponding to names defined in aload library.
mi---+ Sys-dir-errors
Report errorsin filesin system directories (set by - sys- di r s).

global: - single-include
Optimize header inclusion to only include each header file once.
global: - never-include

Use library information instead of including header files.

Comments
These flags control how syntactic comments are interpreted (see Appendix E).
plain: @ conmment -char <char>

Set the marker character for syntactic comments. Comments beginning with/ * <char > are
interpreted by LCLint.

plain: - noaccess
Ignore access comments.
plain: - nocoment s

Ignore al stylized comments.
plain: + sup-counts

Actua number of errors does not match number in/ * @ <n>@ /

plain: + |int-conmments
Interpret traditional lint comments (/ * FALLTHROUGH*/ , / * NOTREACHED* / ,
/ * PRI NTFLI KE* /).

m:- +++ warn-|int-comments

Print awarning and suggest an alternative when atraditional lint comment is used.
plain: + unrecog-conments

Stylized comment is unrecognized.

plain: -

plain: +

plain: +

plain: +

plain: +

plain: +

plain: -

plain: +
plain: +

plain: +

plain: -

plain: +

Annotations

Parsing

cont i nue- comment
A line continuation marker (\) appears inside a comment on the same line as the comment
close. Preprocessors should handle this correctly, but it causes problems for some
preprocessors.

nest - conment
A comment open sequence (/ *) appearsinside acomment. This usually indicates that an

earlier comment was not closed.
dupl i cat e-qual s
Report duplicate type qudifiers (e.g., | ong | ong). Duplicate type qualifiers not supported
by ANSI, but some compilers (e.g., gcc) do support duplicate qualifiers.
gnu- ext ensi ons
Support some GNU (gcc¢) and Microsoft language extensions.

Array Formal Parameters

These flags control reporting of common errors caused by confusion about the semantics of array

formal parameters.
si zeof -formal -array

Thesi zeof operator isused on a parameter declared as an array. (In many instances this has
unexpected behavior, since the result isthe size of a pointer to the element type, not the number
of elementsin the array.)

fixed-formal -array
An array formal parameter is declared with afixed size (e.g., i nt x[20]). Thisislikey to

be confusing, since the sizeisignored.
formal -array

A formal parameter isdeclared as an array. Thisis probably not a problem, but can be
confusing since it istreated as a pointer.

General Checks

These flags should probably not be set globally since they turn off general checks that should aways
be done. They may be used locally to suppress spurious errors.

abstract

A data abstraction barrier is violated.
cont rol

A control flow error is detected.
synt ax

Parse error.
try-to-recover

Try to recover fromaparse error. If t ryt or ecover isnot set, LCLint will abort checking
after aparse error is detected. If itisset, LCLint will attempt to recover, but LCLint does
performs only minimal error recovery. Itislikely that trying to recover after a parse error will
lead to an internal assertion failing.

type
Type mismatch.

77

78 LCLint User’'s Guide Appendix

Flag Name Abbreviations

Within aflag name, abbreviations may be used. Table 2 shows the flag name abbreviations. The
expanded and short forms are interchangeable in flag names.

For example, gl obsi mpnodsnot hi ng and gl obal si npl i esnodi fi esnot hi ng denote the
same flag. Abbreviationsin flag names allow pronounceable, descriptive names to be used without
making flag names excessively long (athough one must admit even gl obsi nprnodsnot hi ng isa
bit of a mouthful.)

To make flag names more readable, the space, dash (-), and underscore (_) characters may be used
inside aflag name. So, gl obal s-i npl i es-nodi fi es- not hi ng,
gl ob_i mps_nodsnot hi ng and gl obsi nprodsnot hi ng are equivalent.

Expanded Form Short Form
const ant const
decl arati on decl
function fcn
gl obal gl ob
implicit,inplied inmp
i terator iter
| ength I en
nodi fi es nods
nodi fy nod
nenory mem
par anet er param
poi nt er ptr
return ret
vari abl e var
unconstr ai ned, unconst uncon

Table 2. Flag name abbreviations.

MY QUALTTY ASSURAMNCE W
REVIEL) OF YOUR BETA |

PRODUCT TURNED UP A&
FEL BUGS, wﬁﬁj—)

-

ENUELS

BY SEVERITY: 1)LETHAL, AMD VEXING. LOHERES

(TVE CLASSIFIED THE BUGS |
L BONEHEADED 7

("ALL T SEE ARE LETHAL
4 BONEHEADED, 2WEXTHNG. L

E
| |3
g 3
3 o &
[_EF §| TM TRYING TO
' fr E 2| RENT A STADIUM
L _J:t Il 70 HOLD THE
S x| PRINTOUT.
s ==: L) { ;
i ;]
|t 3 = [

Copyright 2 1995 United Feature Syndicate, |nc.
Redistribution in whole or in part prohibited

Annotations 79

Appendix D Annotations

The grammar below is the C syntax from [K&R,A13] modified to show the syntax of syntactic
comments. Only productions effected by LCLint annotations are shown. In the annotations, the @
represents the comment marker char, set by - commrent char (defaultis @.

Functions

direct-declarator:
direct-declarator (parameter-type-listyy) Special Sop global Sope modifiesyy
| direct-declarator (identifier-listoy) Specialsyp: global Sy modifiesyy

specials: (Section 7.4)
| * @pecial-tag specitem,” ; oo @/

special-tag: uses | sets | defines |al | ocates |rel eases | Sate-tag: state-clause
state-tag: pr e | post

state-clause: onl y | shar ed | owned | dependent | observer | exposed
[isnull |notnull

globals. (Section 4.2)
/ * @l obal s globitem,” ; o @/
| /* @yl obal s declaration-listoy: ; ot @/

globitem:
globannot” identifier
| internal State
| fileSystem

globannot: undef |kill ed

modifies. (Section 4.1)
/*@rodi fi es moditem,” ; o @/
| /*@rodifies nothing ;o @/
| /1*@/ (Abbreviation for no globals and modifies nothing.)

moditem:
expression
| internal State
| fileSystem

80 LCLint User’s Guide Appendix

Iterators (Section 8.4)

The globals and modifies clauses for an iterator are the same as those for a function, except they are
not enclosed by a comment, since the iterator is already a comment.

direct-declarator:
/*@ter identifier (parameter-type-listoy) iter-global sy iter-modifiesyy @/

iter-globals:
gl obal s declaration-listp ; opt

iter-modifies:
modi fi es moditem+ ; o
| modifies nothing ; o

Constants (Section 8.1)

external-declaration:
/* @onst ant declaration; oox @/

Alternate Types (Section 8.2.2)
Alternate types may be used in the type specification of parameters and return values.

extended-type:
type-specifier alt-typegy

alt-type:
/*@l t basic-type,” @/

Declarator Annotations

General annotations appear after storage-class-specifiers and before type-specifiers. Multiple
annotations may be used in any order. Here, annotations are without the surrounding comment. Ina
declaration, the annotation would be surrounded by / * @and @/ . In aglobals or modifies clause or
iterator or congtant declaration, no surrounding comments would be used since they are within a
comment.

Type Definitions (Section 3)

A type definition may use any either abst r act or concr et e, either nut abl e or i nmrut abl e,
andr ef count ed. Only apointertoast r uct may be declared withr ef count ed. Mutability
annotations may not be used with concrete types since concrete types inherit their mutability from the
actual type.

abstract

Typeis abstract (representation is hidden from clients).
concrete

Typeis concrete (representation is visible to clients).

Annotations

i mut abl e

Instances of the type cannot change value. (Section 3.2)
mut abl e

Instances of the type can change value. (Section 3.2)
ref count ed

Reference counted type. (Section 5.4)

Global Variables (Section4.2.1)
One check annotation may be used on aglobal or file-static variable declaration.

unchecked

Weakest checking for global use.
checknod

Check modification by not use of global.
checked

Check use and modification of global.
checkedstri ct

Check use of global, even in functions with no global list.

Memory Management (Sectionl)
dependent

A reference to externally-owned storage. (Section 5.2.2)
keep

A parameter that is kept by the called function. The caller may use the storage after the call,

but the called function is responsible for making sureit is deallocated. (Section 5.2.4)
killref

A r ef count ed parameter. Thisreferenceiskilled by the cal. (Section 5.4)
only

An unshared reference. Associated memory must be released before referenceis logt.

(Section 5.2)
owned

Storage may be shared by dependent references, but associated memory must be rel eased

before thisreferenceislost. (Section 5.2.2)
shar ed

Shared reference that is never deallocated. (Section 5.2.5)

temp
A temporary parameter. May not be released, and new aiasesto it may not be created.
(Section 5.2.2)

Aliasing (Section 6)
Both alias annotations may be used on a parameter declaration.

uni que
Parameter that may not be aliased by any other reference visible to the function.

(Section 6.1.1)
ret urned

Parameter that may be aliased by the return value. (Section 6.1.2)

81

82 LCLint User’s Guide Appendix

Exposure (Section6.2)
observer

Reference that cannot be modified. (Section 6.2.1)
exposed

Exposed reference to storage in another object. (Section 6.2)

Definition State (Section7.1)
out
Storage reachable from reference need not be defined.
in
All storage reachable from reference must be defined.
parti al
Partialy defined. A structure may have undefined fields. No errors reported when fields are

used.
rel def

Relax definition checking. No errors when reference is not defined, or when it is used.

Global State (Section7.1.2)

These annotations may only be used in globals lists. Both annotations may be used for the same
variable, to mean the variable is undefined before and after the call.

undef

Variable is undefined before the call.
killed

Variable is undefined after the call.

Null State (Section7.2)
nul |

Possibly null pointer.
not nul |

Non-null pointer.
rel null

Relax null checking. No errors when NULL is assigned to it, or when it is used as a non-null
pointer.

Null Predicates (Section7.2.1)

A null predicate annotation may be used of the return value of afunction returning a boolean type,
taking a possibly-null pointer for itsfirst argument.

t ruenul |

If result is TRUE, first parameter is NULL.
fal senul |

If result is TRUE, first parameter is not NULL.

Annotations

Execution (Section7.3)

Theexi ts, mayexi t andnever exi t s annotations may be used on any function. The
trueexit andf al seexit annotations may only be used on functions whose first argument isa
boolean.

exits

Function never returns.
mayexi t

Function may or may not return.
trueexit

Function does not return if first parameter is TRUE.
fal seexit

Function does not return if first parameter if FALSE.
never exit

Function always returns.

Side-Effects (Section8.2.1)
sef
Corresponding actual parameter has no side effects.

Declaration
These annotations can be used on a declaration to control unused or undefined error reporting.

unused

Identifier need not be used (no unused errors reported.) (Section 10.4)
ext er nal

Identifier is defined externally (no undefined error reported.) (Section 10.5)

Case

fallthrough
Fall-through case. No message is reported if the previous case may fall-through into the one
immediately after thef al | t hr ough.

Break (Section10.2.3)
These annotations are used before abr eak or cont i nue statement.

i nner br eak

Break is breaking an inner loop or switch.
| oopbr eak

Break is breaking aloop.
swi t chbr eak

Break is breaking a switch.
i nnerconti nue

Continue is continuing an inner loop.

84 LCLint User’s Guide Appendix

Unreachable Code
This annotation is used before a statement to prevent unreachable code errors.

not r eached
Statement may be unreachable.

Special Functions (Appendix E)
These annotations are used immediately before a function declaration.

printflike

Check variable argumentslike pri nt f library function.
scanfli ke

Check variable arguments like scanf library function.

Control Comments 85

Appendix E Control Comments

Error Suppression

Several comments are provided for suppressing messages. |n general, it isusualy better to use specific

flags to suppress a particular error permanently, but the general error suppression flags may be more

convenient for quickly suppressing messages for code that will be corrected or documented later.

i gnore

end
No errors will be reported in code regions between/ * @ gnore@/ and/ * @nd@/ . These
comments can be used to easily suppress an unlimited number of messages, but are dangerous
sinceif real errors are introduced in thei gnor e...end region they will not be reported. The
i gnor e and end comments must be matched — awarning is printed if the file endsin an
ignore region or if i gnor e isused inside ignore region.

[
No errorswill be reported froman/* @ @/ comment to the end of theline.

i <n>
No errorswill be reported froman/* @ <n>@/ (e.g.,/ * @ 3@/) comment to the end of the
line. If there are not exactly n errors suppressed from the comment point to the end of theline,
LCLint will report an error. Thisismorerobust thani or i gnor e since a message is generated
if the expected number errorsis not present. Since errors are not necessarily detected until after
thisfileis processed (for example, and unused variable error), suppress count errors are reported
after all files have been processed. The - supcount s flag may be used to suppress these
errors. Thisisuseful when asystem if being rechecked with different flag settings.

t

t<n>
Likei andi <n>, except controlled by +t mpconmrent s flag. These can be used to temporarily
suppress certain errors. Then, - t mpconmrent s can be set to find them again.

Type Access

Control comments may also be used to override type access settings. The syntax / * @ccess
<type>, “@/ alowsthefollowing code to access the representation of <t ype>. Similarly,

| * @oaccess <type>, @/ restricts accessto the representation of <t ype>. Thetypeina
noaccess comment must have been declared as an abstract type. Type access applies from the point
of the comment to the end of the file or the next access control comment for this type.

Macro Expansion

The/ * @ot f unct i on@ / indicates that the next macro definition is not intended to be a function,
and should be expanded in line instead of checked as a macro function definition.

86 LCLint User’s Guide Appendix

Special Types
These syntactic comments are used to represent arbitrary integral types. Syntactically, they replace the
impliciti nt type.

/*@ntegraltype@/
An arbitrary integral type. The actua type may be any one of short,i nt, | ong, unsi gned
short ,unsi gned, orunsi gned | ong.

/*@nsi gnedi ntegral type@/
An arbitrary unsigned integral type. The actual type may be any one of unsi gned short,
unsi gned, or unsi gned | ong.

/* @i gnedi ntegral type@/
An arbitrary signed integral type. The actua type may be any one of short,i nt, orl ong.

Traditional Lint Comments

Some of the control comments supported by most standard UNIX lints are supported by LCLint so
legacy systems can be checked more easily. These comments are not lexically consistent with LCLint
comments, and their meanings are less precise (and may vary between different lint programs), so we
recommend that LCLint comments are used instead except for checking legacy systems aready
containing standard lint comments.

These standard lint comments supported by LCLint:

/ * FALLTHROUGH*/ (alternate misspelling, / * FALLTHRU*/)

Prevents errors for fall-through cases. Samemeaningas/*@al | t hr ough@/ .
| * NOTREACHED* /

Prevents errors about unreachable code (until the end of the function). Same meaning as

[*@otreached@/ .
[* PRI NTFLI KE*/

Arguments similar tothe pri nt f library function (there didn’t seem to be much of a consensus
among standard lints as to exactly what this means). LCLint supports:

[*@rintflike@/
Function takes zero or more arguments of any type, an unmodified char * format string
argument and zero of more arguments of type and number dictated by the format string.
Format codes are interpreted identically to the pri nt f standard library function. May
return aresult of any type. (LCLint interprets/ * PRI NTFLI KE*/ as
[*@rintflike@/.)

[*@canfli ke@/
Likeprintfli ke, except format codes are interpreted asin thescanf library function.

| * ARGSUSED* /

Turns off unused parameter messages for this function. The control comment,

/* @ par amuse@/ can be used to the same effect, or / * @nused@/ canbeusedin

individual parameter declarations.

LCLint will ignore standard lint commentsif - | i nt - comrent s isused. If +warn-1i nt -
conmmrent s isused, LCLint generates a message for standard lint comments and suggest replacements.

Libraries 87

Appendix F Libraries

Libraries can be used to record interface information. A library containing information about the
Standard C Library is used to enable checking of library calls. Program libraries can be created to
enable fast checking of single modulesin alarge program.

Standard Libraries

In order to check callsto library functions, LCLint uses an annotated standard library. This contains
more information about function interfaces then is available in the system header files since it uses
annotations. Further, it contains only those functions documented in the ANSI Standard. Many systems
include extrafunctionsin their system libraries, programs that use these functions cannot be compiled
on other systems that do not provide them. Certain types defined by the library are treated as abstract
types (e.g., aprogram should not rely on how the FI LE type isimplemented). When checking source
code, LCLint does include system headers corresponding to filesin the library, but instead uses the
library description of the standard library.

The LCLint distribution includes severa different standard libraries: the ANSI standard library, the
POSIX standard library®®, and an ad hoc UNIX library. Each library comesin two versions: the
standard version and the strict version.

ANSI Library

The default behavior of LCLint isto use the ANSI standard library (loaded fromansi . | cd). This
library is based on the standard library described in the ANSI C Standard. It includes functions and
types added by Amendment 1 to the ANSI C Standard.

POSIX Library

The POSIX library is selected by the +posi x1 i b flag. The POSIX library is based on the IEEE Std
1003.1-1990.

UNIX Library

The UNIX library is selected by the +uni xI i b flag. Thislibrary isan ad hoc attempt to capture
additional functionality provided by many UNIX platforms. Unfortunately, UNIX systems vary widely
and very few are consistent with the ANSI Standard.

The differences between the standard library and the POSIX library are:

In the UNIX library, f r ee isdeclared with anon-null parameter. ANSI C specifiesthat f r ee
should handle the argument NULL, but several UNIX platforms crash if NULL ispassedtof r ee.
Extravariables, constants and functions are included in the UNIX library. Some declarations are not
part of the POSIX library, but are believed to be available on many UNIX systems. See

['i b/ uni x. h for alist of the UNIX-only declarations.

Code checked using the UNIX library can probably be ported to some UNIX systems without difficulty.
To enhance the likelihood that a program is portable, the POSIX library should be used instead.

% pOSIX library was contributed by Jens Schweikhardt.

88 LCLint User’s Guide Appendix

Strict Libraries

Stricter versions of thelibrariesare used isthe - ansi - stri ct, posi x-strict-1iboruni x-
strct-1ibflagisused. These libraries use a stricter interpretation of the library. They will detect
more errors in some programs, but may to produce many spurious errors for typical code.

The differences between the standard libraries and the strict libraries are;

The standard libraries declare the printing functions (f pri nt f, pri ntf,andspri nt f) that may
return error codesto returni nt or voi d. Thispreventstypical programs from leading to deluge of
ignored return value errors, but may mean some relevant errors are not detected. In the strict library,
they are declared to returni nt , so ignored return value errors will be reported (depending on other
flag settings). Programs should check that this return value is non-negative.

The standard libraries declare some parameters and return values to be alternate types (i nt or

bool , ori nt orchar). The ANS standard specifiesthesetypesasi nt to be compatible with
older versions of the library, but logically they make more senseasbool or char . Inthestrict
library, the stronger typeisused. The parameter to assert isi nt or bool inthe standard library,
and bool inthedtrict library. The parameter to the character functionsi sal num i sal pha,
iscntrl,isdigit,isgraph,islower,isprint,ispunct,isspace,isupper,

i sxdi git,tol ower andt oupper ischar ori nt inthe standard library and char in the strict
library. Thetype of the return value of the character classification functions (all of the previous
character functions except t ol ower andt oupper)isbool ori nt inthe standard library and
bool inthedtrict library. Thetype of the first parameter to unget ¢ ischar ori nt inthe standard
library and char inthe strict library (EOF should not be passed to unget c¢). The second parameter
tostrchr andstrrchr ischar ori nt inthestandard library and char inthe strict library.
The global variables st di n, st dout and st derr are declared asunchecked variables (see
Section 4.2.1) in the standard libraries. In the strict libraries, they are checked.

The global variable er r no isdeclared unchecked in the standard libraries, but declared
checkedstri ct inthedtrict libraries.

If nolibrary flag isused, LCLint will load the standard library, st andar d. | cd. If +nol i b isset, no
library isloaded. Thelibrary source files can easily be modified, and new libraries created to better suit
aparticular application.

Generating the Standard Libraries

The standard libraries are generated from header files included in the LCLint distribution. Some
libraries are generated from more than one header file. Since the POSIX library includes the ANS
library, the headers for the ANSI and POSIX libraries are combined to produce the POSIX library.
Similarly, the UNIX library is composed of the ANSI, POSIX and UNIX headers. The header files
include some sections that are conditionally selected by defining STRI CT.

The commands to generate the standard libraries are:

Iclint -nolib ansi.h -dunp ans

clint -nolib -DSTRICT ansi.h -dunp ansistrict

lint -nolib ansi.h posix.h -dunp posix

lint -nolib -DSTRICT ansi.h posix.h -dunp posixstrict

lint -nolib ansi.h posix.h unix.h -dunp unix

lint -nolib -DSTRICT ansi.h posix.h unix.h -dunp unixstrict

Libraries 89

User Libraries

To enable running LCLint on large systems, mechanisms are provided for creating libraries containing
necessary information. This means source files can be checked independently, after alibrary has been
created. The command line option - dunp |1 br ary storesinformationinthefilel i brary (the
default extension, . | cd®, isadded). Then, - 1 oad | i brary loadsthelibrary. Thelibrary contains
interface information from the files checked when the library was created.

Header File Inclusion
The standard behavior of LCLint on encountering
#i ncl ude <X h>

isto search for afile named X. h on the include search path (set using -1) and then the system base
include path (read fromthei ncl ude environment variable if set or using a default value, usually
/usr/include). If X. histhe name of a header filein aloaded standard library (either ANSI or
POSIX) and X. h isfound in adirectory that is a system directory (as set by the - sysdi r s flag; the
defaultis/ usr /i ncl ude), X. h will not beincluded if ski p- ansi - header s or ski p- posi x-
header s (depending on whether X. h

isan ANSI or POSIX header file) is on (both are on by default). To force al headers to be included
normally, use - ski p- ansi - headers.

Sometimes headers in system directories contain non-standard syntax that LCLint is unable to parse.
The +ski p- sys- header s flag may be used to prevent any include file in a system directory from
being included.

LCLint isfast enough that it can be run on medium-size (10,000 line) programs without performance
concerns. It takes about one second to process a thousand source lines on a DEC Alpha. Libraries can
be used to enable efficient checking of small modules in large programs. To further improve
performance, header file inclusion can be optimized.

When processing a complete system in which many files include the same headers, alarge fraction of
processing time is wasted re-reading header files unnecessarily. If you are checking a 100-file program,
and every fileincludesut i | s. h, LCLint will have to processut i | s. h 100 times (as would most C
compilers). If the+si ngl e-i ncl ude flagisused, each header file is processed only once. Single
header file processing produces a significant efficiency improvement when checking large programs
split into many files, but is only safe if the same header file included in different contexts always has the
same meaning (i.e., it does not depend on preprocessor variable defined differently at different inclusion
sites).

When processing asingle filein alarge system, alarge fraction of the time is spent processing included
header files. This can be avoided if the information in the header filesis stored in alibrary instead. If
+never - i ncl ude isset, inclusion of filesending in . h isprevented. Fileswith different suffixes are
included normally. To do this the header files must not include any expanded macros. That is, the
header file must be processed with +al | - macr os, and there must beno/ * @ot f uncti on@/
control commentsin the header. Then, the +never - i ncl ude flag may be used to prevent inclusion
of header files. Alternately, non-function macros can be moved to a different file with a name that does
notendin. h. Remember, that this file must be included directly fromthe. c file, sinceif it isincluded
froma. h fileindirectly, that . h fileisignored so the other fileis never included.

% |n earlier versions of LCLint, the default extension . | | dnp was used. This has been shortened to
.l cd.

90 LCLint User’s Guide Appendix

These options can be used for significant performance improvements on large systems. The
performance depends on how the code is structured, but checking a single module in alarge programis
several times faster if librariesand +noi ncl ude are used.

Preprocessing Constants

LCLint defines the preprocessor constant __ LCLI NT___ (two underscores on each side) when

preprocessing source files. If you want to include code that is processed only when LCLint is used,
surround thecodewith# i fdef _ LCLINT __ ... #endif.

Specifications 91

Appendix G Specifications

Another way of providing more information about programsisto use formal specifications. Although
this document has largely ignored specifications, LCLint was originally designed to use the information
in LCL specifications instead of source-code annotations. This document focuses on annotations since it
takes less effort to add annotations to source code than to maintain an additional specification file.
Annotations can express everything that can be expressed in LCL specifications that is relevant to
LCLint checking. However, LCL specifications can provide more precise documentation on program
interfaces than is possible with LCLint annotations. This appendix (extracted from [Evans94]) is avery
brief introduction to LCL Specifications. For more information, consult [GH93].

The Larch family of languages is atwo-tiered approach to formal specification. A specification is built
using two languages — the Larch Shared Language (LSL), which is independent of the implementation
language, and a Larch Interface Language designed for the specific implementation language. AnLSL
specification defines sorts, anal ogous to abstract types in a programming language, and operators,
analogous to procedures. It expresses the underlying semantics of an abstraction.

The interface language specifies an interface to an abstraction in a particular programming language. It
captures the details of the interface needed by a client using the abstraction and places congtraints on
both correct implementations and uses of the module. The semantics of the interface are described using
primitives and sorts and operators defined in LSL specifications. Interface languages have been
designed for severa programming languages.

LCL [GH93, Tan95] isa Larch interface language for Standard C. LCL uses a C-like syntax.
Traditionaly, a C module Mconsists of a sourcefile, M ¢, and aheader file, M h. The header file
contains prototype declarations for functions, variables and constants exported by M as well as those
macro definitions that implement exported functions or constants, and definitions of exported types.
When using LCL, a module includes two additional files— M | ¢l , aformal specification of M and

M | h, which isderived by LCLint (if thel h flagison) fromM | cl . ClientsuseM | cl for
documentation, and should not need to look at any implementation file. The derived file, M | h, contains
include directives (if Mdepends on other specified modules), prototypes of functions and declarations of
variables as specifiedinM | ¢l . ThefileM h shouldinclude M | h and retain the

implementation aspects of the old M h, but is no longer used for client documentation.

The LCLint release package includes a grammar for LCL and examples of LCL specifications.

92 LCLint User’s Guide Appendix

Specification Flags
These flags are relevant only when LCLint is used with LCL specifications.

Global Flags

I cs
Generate . | cs files containing symbolic state of . | ¢l files (used for imports). By default
. | cs filesare generated for each . | ¢l file processed. Use- | ¢cs to prevent generation of

. I cs files.

I h
Generate. | h files. By default, -1 hiissetand no . | h filesare generated. Use +| h to enable
. | hfile generation.

i <file>
Set LCL initidization fileto <file>. The LCL initidization fileisread if any . | cl filesare
listed on the command line. The default fileisl clinit. | ci, found onthe LARCH PATH.

| cl expect <nunber >
Exactly <number> specification errors are expected. Specification errors are errors detected
when checking the specifications. They do not depend on the source code.

Implicit Globals Checking Qualifiers
m:- ++- i nmp- checked- spec- gl obs
Implicit checked qualifier on global variables specified in an LCL file with no checking

annotation.
m:---- i nmp- checknod- spec- gl obs

Implicit checknod qualifier on global variables specified in an LCL file with no checking

annotation.
m:- - -+ i np-checkedstrict-spec-gl obs

Implicit checked qualifier on global variables specified in an LCL file with no checking
annotation.

Implicit Annotations
plain: - spec-gl ob-inp-only
Implicit onl y annotation on global variable declaration in an LCL file with no alocation
annotation.
plain: - spec-ret-inmp-only
Implicit onl y annotation on return value declaration in an LCL file with no alocation
annotation.
plain: - spec-struct-inp-only
Implicit onl y annotation on structure field declarationsin an LCL file with no alocation
annotation.
shortcut spec-inp-only
Setsspec- gl ob-i np-onl y,spec-ret-inp-onlyandspec-struct-inmp-only.

Macro Expansion
plain: + Spec- macr os
Macros defining specified identifiers are not expanded and are checked according to the
specification.

m:- +++

plain: -

plain: -

shortcut
m:- - - +
m:- - - +
m:- - - +
m:- - - +
m:- - - +
m:- - - +

Specifications

Complete Programs and Specifications

spec- undef

Function, variable, iterator or constant specified but never defined.

spec- undecl
Function, variable, iterator or constant specified but never declared.

need- spec
Thereisinformation in the specification that is not duplicated in syntactic comments. Normally,
thisis not an error, but it may be useful to detect it to make sure checking incompl ete systems
without the specifications will still use thisinformation.

export-any
An error isreported for any identifier that is exported but not specified. (Setsall export flags

below.)
export - const

Constant exported but not specified.
export-var

Variable exported but not specified.
export-fcn

Function exported but not specified.
export-iter

Iterator exported but not specified.
export-nmacro

An expanded macro exported but not specified
export-type

Type definition exported but not specified

93

94 LCLint User’s Guide Appendix

Appendix H Emacs

LCLint can be used most productively with the emacs text editor. The release package includes emacs
filesfor running LCLint and editing code with annotations.

Editing Abbreviations

An additional file, emacs/ | cl i nt - abbr evs contains abbreviations for LCLint syntactic comments
and annotations. If it isloaded, the comment surrounding an LCLint annotation will be added
automatically. For example, typing “ onl y” and a space, will produce“/ * @nl y@/ ”.
Abbreviations are provided for each LCLint syntactic comment. The abbreviationof /*@ul | @/ is
nl | (not nul I'), sinceit is often necessary to type NULL.

Abbreviations are loaded and used when a. ¢ or . h fileis edited by adding these linesto your . enacs
file:

(quietly-read-abbrev-file "<directory>/Iclint-abbrevs")
(setq c-nmode-hook (function (lanbda nil (abbrev-node 1))))

References 95

References

LCLint

[Evans94] David Evans. Using specifications to check source code. MIT/LCS/TR 628, Laboratory for
Computer Science, MIT, June 1994.

SM Thesis. Describes research behind LCLint, focusing on how specifications can be exploited
to do lightweight checking. Includes case studies using LCL.int.

[EGHT94] David Evans, John Guttag, Jim Horning and Yang Meng Tan. LCLint: A tool for using
specifications to check code. SIGSOFT Symposium on the Foundations of Software Engineering,
December 1994.

Introduction to LCLint. Shows how LCLint is used to find errors in a sample program.

[Evans96] David Evans. Satic Detection of Dynamic Memory Errors. SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’ 96), Philadel phia, PA., May 1996.

Describes approach for exploiting annotations added to code to detect awide class of errors.
Focuses on checks described in Sections 1-7 of this guide.

Larch

[GH93] Guttag, John V. and Horning, James J., with Stephen J. Garland, Kevin D. Jones, Andrés
Modet, and Jeannette M. Wing, Larch: Languages and Tools for Formal Specification, Springer-Verlag,
Texts and Monographs in Computer Science, 1993.

Overview of the Larch family of specification languages and related tools. Includes a chapter on
LCL, the Larch C interface language, on which LCLint is based.

[Tan95] Tan, Yang Meng. Formal Specification Techniques for Engineering Modular C, Kluwer
International Series in Software Engineering, Volume 1, Kluwer Academic Publishers, Boston, 1995.

Modified and updated version of MIT Ph D thesis, previoudly published as MIT/LCSTR-619,
1994. Includes presentation of the semantics of LCL and a case study using LCL.

C

[ANSI] American National Standard for Information Systems, Programming Language, C. ANSI
X3.159-1989. (Believed to beidentical to ISO/IEC 9899:1990).

Specification for C programming language. LCLint aimsto be consistent with this document.

96 LCLint User’s Guide Appendix

[Hat95] Hatton, Les. Safer C: Developing Software for High-integrity and Safety-critical Systems.
McGraw-Hill International Seriesin Software Engineering, 1995.

A broad work on all aspects of developing safety-critical software, focusing on the C language.
Provides good justification for the use of C in safety-critical systems, and the necessity of tool-
supported programming standards. LCLint userswill be interested to see how many of the errors
listed as only being dynamically detectable can be detected statically by LCLint.

[KR88] Kernighan, Brian W. and Ritchie, DennisM. The C Programming Language, second edition.
Prentice Hall, New Jersey, 1988.

Standard reference for ANSI C. If you haven’t heard of this one, you probably didn’t get thisfar
(unless you started at the back).

[vdL94] Van der Linden, Peter. Expert C Programming: Deep C Secrets. SunSoft Press, Prentice
Hall, New Jersey, 1994.

Filled with useful information on the darker corners of C, aswell aslots of industry anecdotes
and humor. LCLint’s reserved name checking isloosely based on the list of reserved namesin
this book.

Abstract Types

[LG86] Liskov, Barbara. and Guttag, John V. Abstraction and Specification in Program Devel opment,
MIT Press, Cambridge, MA, 1986.

Describes a programming methodology using abstract types and specified interfaces. Much of
the methodology upon which LCLint is based comes from this book. Usesthe CLU
programming language.

