
Regularized Cox Regression

Kenneth Tay Noah Simon Jerome Friedman Trevor Hastie

Rob Tibshirani Balasubramanian Narasimhan

May 18, 2025

Contents

Introduction . 1
Basic usage for right-censored data . 2

Cross-validation . 3
Handling of ties . 4

Cox models for start-stop data . 6
Stratified Cox models . 8
Plotting survival curves . 9
References . 12

Introduction

This vignette describes how one can use the glmnet package to fit regularized Cox models.

The Cox proportional hazards model is commonly used for the study of the relationship beteween pre-
dictor variables and survival time. In the usual survival analysis framework, we have data of the form
(y1, x1, δ1), . . . , (yn, xn, δn) where yi, the observed time, is a time of failure if δi is 1 or a right-censored time
if δi is 0. We also let t1 < t2 < . . . < tm be the increasing list of unique failure times, and let j(i) denote the
index of the observation failing at time ti.

The Cox model assumes a semi-parametric form for the hazard

hi(t) = h0(t)exT
i β ,

where hi(t) is the hazard for patient i at time t, h0(t) is a shared baseline hazard, and β is a fixed, length p
vector. In the classic setting n ≥ p, inference is made via the partial likelihood

L(β) =

m∏

i=1

exT
j(i)β

∑
j∈Ri

exT
j

β
,

where Ri is the set of indices j with yj ≥ ti (those at risk at time ti).

Note there is no intercept in the Cox model as it is built into the baseline hazard, and like it, would cancel in
the partial likelihood.

In glmnet, we penalize the negative log of the partial likelihood with an elastic net penalty.

(Credits: The original "coxnet" algorithm for right-censored data was developed by Noah Simon, Jerome
Friedman, Trevor Hastie and Rob Tibshirani: see Simon et al. (2011) for details. The other features for Cox
models, introduced in v4.1, were developed by Kenneth Tay, Trevor Hastie, Balasubramanian Narasimhan
and Rob Tibshirani.)

1

Basic usage for right-censored data

We use a pre-generated set of sample data and response. x must be an n × p matrix of covariate values
— each row corresponds to a patient and each column a covariate. y is an n × 2 matrix, with a column
"time" of failure/censoring times, and "status" a 0/1 indicator, with 1 meaning the time is a failure
time, and 0 a censoring time. The Surv function in the survival package creates such a response matrix,
and it is recommended that the user uses the output of a call to Surv for the response to glmnet. (For
backward compatibility, glmnet can accept a two-column matrix with column names "time" and "status"

for right-censored data.)

library(glmnet)

Loading required package: Matrix

Loaded glmnet 4.1-9

library(survival)

data(CoxExample)

x <- CoxExample$x

y <- CoxExample$y

y[1:5,]

time status

[1,] 1.76877757 1

[2,] 0.54528404 1

[3,] 0.04485918 0

[4,] 0.85032298 0

[5,] 0.61488426 1

We apply the glmnet function to compute the solution path under default settings:

fit <- glmnet(x, y, family = "cox")

All the standard options such as alpha, weights, nlambda and standardize package, and their usage is
similar as in the Gaussian case. (See the vignette “An Introduction to glmnet” for details, or refer to the
help file help(glmnet).)

We can plot the coefficients with the plot method:

plot(fit)

2

https://glmnet.stanford.edu/articles/glmnet.html

−6 −5 −4 −3 −2

−
0.

4
0.

0
0.

2
0.

4

Log(λ)

C
oe

ffi
ci

en
ts

24 21 15 10 4

As before, we can extract the coefficients at certain values of λ:

coef(fit, s = 0.05)

30 x 1 sparse Matrix of class "dgCMatrix"

1

V1 0.37693638

V2 -0.09547797

V3 -0.13595972

V4 0.09814146

V5 -0.11437545

V6 -0.38898545

V7 0.24291400

V8 0.03647596

....

Since the Cox Model is not commonly used for prediction, we do not give an illustrative example on prediction.
If needed, users can refer to the help file by typing help(predict.glmnet).

Cross-validation

The function cv.glmnet can be used to compute K-fold cross-validation (CV) for the Cox model. The usage
is similar to that for other families except for two main differences.

First, type.measure only supports "deviance" (also default) which gives the partial-likelihood, and "C",
which gives the Harrell C index. This is like the area under the curve (AUC) measure of concordance for
survival data, but only considers comparable pairs. Pure concordance would record the fraction of pairs for
which the order of the death times agree with the order of the predicted risk. However, with survival data, if
an observation is right censored at a time before another observation’s death time, they are not comparable.

The code below illustrates how one can perform cross-validation using the Harell C index. Note that unlike
most error measures, a higher C index means better prediction performance.

3

set.seed(1)

cvfit <- cv.glmnet(x, y, family = "cox", type.measure = "C")

Once fit, we can view the optimal λ value and a cross validated error plot to help evaluate our model.

plot(cvfit)

−6 −5 −4 −3 −2

0.
55

0.
60

0.
65

0.
70

Log(λ)

C
−

in
de

x

24 24 21 19 18 15 13 10 10 9 8 4 4 1

As with other families, the left vertical line in our plot shows us where the CV-error curve hits its minimum.
The right vertical line shows us the most regularized model with CV-error within 1 standard deviation of the
minimum. We also extract such optimal λ’s:

cvfit$lambda.min

[1] 0.03057865

cvfit$lambda.1se

[1] 0.05864711

Second, the option grouped = TRUE (default) obtains the CV partial likelihood for the Kth fold by subtraction,
i.e. by subtracting the log partial likelihood evaluated on the full dataset from that evaluated on the (K −1)/K
dataset. This makes more efficient use of risk sets. With grouped = FALSE the log partial likelihood is
computed only on the Kth fold, which is only reasonable if each fold has a large number of observations.

Handling of ties

glmnet handles ties in survival time with the Breslow approximation. This is different from survival

package’s coxph function, whose default tie-handling method is the Efron approximation.

create x matrix

set.seed(1)

nobs <- 100; nvars <- 15

x <- matrix(rnorm(nobs * nvars), nrow = nobs)

4

create response

ty <- rep(rexp(nobs / 5), each = 5)

tcens <- rbinom(n = nobs, prob = 0.3, size = 1)

y <- Surv(ty, tcens)

coefficients from these two models will not line up because

of different tie handling methods

glmnet_fit <- glmnet(x, y, family = "cox", lambda = 0)

coxph_fit <- coxph(y ~ x)

plot(coef(glmnet_fit), coef(coxph_fit))

abline(0, 1)

−0.2 0.0 0.2 0.4 0.6

−
0.

2
0.

0
0.

2
0.

4
0.

6

coef(glmnet_fit)

co
ef

(c
ox

ph
_f

it)

glmnet is not able to perform the Efron approximation at the moment. survival’s coxph can perform the
Breslow approximation by specifying ties = "breslow":

coefficients from these two models will line up

glmnet_fit <- glmnet(x, y, family = "cox", lambda = 0)

coxph_fit <- coxph(y ~ x, ties = "breslow")

plot(coef(glmnet_fit), coef(coxph_fit))

abline(0, 1)

5

−0.2 0.0 0.2 0.4 0.6

−
0.

2
0.

0
0.

2
0.

4
0.

6

coef(glmnet_fit)

co
ef

(c
ox

ph
_f

it)

Cox models for start-stop data

Since version 4.1 glmnet can fit models where the response is a (start, stop] time interval. As explained
in Therneau and Grambsch (2000), the ability to work with start-stop responses opens the door to fitting
regularized Cox models with

• time-dependent covariates,
• time-dependent strata,
• left truncation,
• multiple time scales,
• multiple events per subject,
• independent increment, marginal, and conditional models for correlated data, and
• various forms of case-cohort models.

The code below shows how to create a response of this type (using survival package’s Surv function) and
how to fit such a model with glmnet.

create x matrix

set.seed(2)

nobs <- 100; nvars <- 15

xvec <- rnorm(nobs * nvars)

xvec[sample.int(nobs * nvars, size = 0.4 * nobs * nvars)] <- 0

x <- matrix(xvec, nrow = nobs) # non-sparse x

x_sparse <- Matrix::Matrix(xvec, nrow = nobs, sparse = TRUE) # sparse x

create start-stop data response

beta <- rnorm(5)

fx <- x_sparse[, 1:5] %*% beta / 3

ty <- rexp(nobs, drop(exp(fx)))

tcens <- rbinom(n = nobs, prob = 0.3, size = 1)

starty <- runif(nobs)

yss <- Surv(starty, starty + ty, tcens)

6

fit regularized Cox model with start-stop data

fit <- glmnet(x, yss, family = "cox")

(Note that the call above would have worked as well if x was replaced by x_sparse.) cv.glmnet works with
start-stop data too:

cv.fit <- cv.glmnet(x, yss, family = "cox", nfolds = 5)

plot(cv.fit)

−6 −5 −4 −3 −2

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

Log(λ)

P
ar

tia
l L

ik
el

ih
oo

d
D

ev
ia

nc
e

15 15 15 13 13 12 11 11 8 8 7 4 2 1 1

As a sanity check, the code below shows that fitting start-stop responses using glmnet with lambda = 0

matches up with coxph’s result:

glmnet_fit <- glmnet(x, yss, family = "cox", lambda = 0)

coxph_fit <- coxph(yss ~ x)

plot(coef(glmnet_fit), coef(coxph_fit))

abline(0, 1)

7

−1.5 −1.0 −0.5 0.0

−
1.

5
−

1.
0

−
0.

5
0.

0

coef(glmnet_fit)

co
ef

(c
ox

ph
_f

it)

Stratified Cox models

One extension of the Cox regression model is to allow for strata that divide the observations into disjoint
groups. Each group has its own baseline hazard function, but the groups share the same coefficient vector for
the covariates provided by the design matrix x.

glmnet can fit stratified Cox models with the elastic net penalty. With coxph one can specify strata in the
model formula. Since glmnet does not use a model formula, we achieve this by adding a strata attribute to
the Surv response object. We achieve this via the function stratifySurv:

strata <- rep(1:5, length.out = nobs)

y2 <- stratifySurv(y, strata)

str(y2[1:6])

'stratifySurv' num [1:6, 1:2] 0.605+ 0.605+ 0.605+ 0.605+ 0.605+ 0.816

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "time" "status"

- attr(*, "type")= chr "right"

- attr(*, "strata")= int [1:6] 1 2 3 4 5 1

stratifySurv returns an object of class stratifySurv. We can then pass this stratifySurv object as the
response to a glmnet call. glmnet will fit a stratified Cox model if it detects that the response has class
stratifySurv.

fit <- glmnet(x, y2, family = "cox")

This stratifySurv object can also be passed to cv.glmnet to fit stratified Cox models with cross-validation:

cv.fit <- cv.glmnet(x, y2, family = "cox", nfolds = 5)

plot(cv.fit)

8

−6 −5 −4 −3 −2

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

Log(λ)

P
ar

tia
l L

ik
el

ih
oo

d
D

ev
ia

nc
e

15 14 14 14 14 14 12 11 11 10 9 6 2 1

Note that simply giving the response a "strata" attribute is not enough! The response needs to be of class
stratifySurv in order for subsetting to work correctly. To protect against this, an error will be thrown if
the response has a "strata" attribute but is not of class stratifySurv. Add strata via the stratifySurv

function.

y3 <- y

attr(y3, "strata") <- strata

str(y3[1:6]) # note that the strata attribute is no longer there

'Surv' num [1:6, 1:2] 0.605+ 0.605+ 0.605+ 0.605+ 0.605+ 0.816

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "time" "status"

- attr(*, "type")= chr "right"

fit <- glmnet(x, y3, family = "cox")

Error in use.cox.path(x, y): For fitting stratified Cox models, y must be of class stratifySurv, see ?stratifySurv

Plotting survival curves

Fitting a regularized Cox model using glmnet with family = "cox" returns an object of class "coxnet".
Class "coxnet" objects have a survfit method which allows the user to visualize the survival curves from
the model. In addition to the "coxnet" object, the user must pass the x and y objects used to fit the model
(for computation of the baseline hazard), as well as the lambda value for which the survival curve is desired:

fit <- glmnet(x, y, family = "cox")

survival::survfit(fit, s = 0.05, x = x, y = y)

Call: survfit.coxnet(formula = fit, s = 0.05, x = x, y = y)

##

n events median

[1,] 100 33 1.6

9

We are unable to provide standard errors for these survival curves, so we do not present the confidence bounds
for them. To plot the survival curve, pass the result of the survfit call to plot:

plot(survival::survfit(fit, s = 0.05, x = x, y = y))

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

As noted in the documentation for survival::survfit.coxph, without new data, a curve is produced for a
single “pseudo” subject with covariate values equal to the means of the data set, and this resulting curve(s)
almost never make sense. We can get survival curves for individual observations by passing a newx argument:

survival::survfit(fit, s = 0.05, x = x, y = y, newx = x[1:3,])

Call: survfit.coxnet(formula = fit, s = 0.05, x = x, y = y, newx = x[1:3,

])

##

n events median

1 100 33 1.60

2 100 33 1.60

3 100 33 2.28

plot(survival::survfit(fit, s = 0.05, x = x, y = y, newx = x[1:3,]))

10

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

If the original model was fit with strata, then the strata option needs to be specified as well. If newx is
being passed for such a model, the strata for these new observations need to be passed via newstrata.

y2 <- stratifySurv(y, rep(1:2, length.out = nobs))

fit <- glmnet(x, y2, family = "cox")

survival::survfit(fit, s = 0.01, x = x, y = y2)

Call: survfit.coxnet(formula = fit, s = 0.01, x = x, y = y2)

##

n events median

strata=1 50 18 1.52

strata=2 50 15 2.28

survival curve plot for first two individuals in dataset

plot(survival::survfit(fit, s = 0.01, x = x, y = y2,

newx = x[1:2,], newstrata = strata[1:2]))

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

To be consistent with other methods in glmnet, if the s parameter is not specified, survival curves are

11

returned for the entire lambda sequence. The survival curves are returned as a list, one element for each
lambda value.

sf <- survival::survfit(fit, x = x, y = y2)

length(sf)

[1] 48

length(fit$lambda)

[1] 48

The survfit method is available for cv.glmnet objects as well. By default, the s value chosen is the
“lambda.1se” value stored in the CV object. The s value can also be set to the "lambda.min" value stored in
the CV object.

cv.fit <- cv.glmnet(x, y2, family = "cox", nfolds = 5)

survival::survfit(cv.fit, x = x, y = y2)

Call: survfit.cv.glmnet(formula = cv.fit, x = x, y = y2)

##

n events median

strata=1 50 18 1.52

strata=2 50 15 2.28

survival::survfit(cv.fit, s = "lambda.min", x = x, y = y2)

Call: survfit.cv.glmnet(formula = cv.fit, s = "lambda.min", x = x,

y = y2)

##

n events median

strata=1 50 18 1.52

strata=2 50 15 2.28

References

Simon, Noah, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2011. “Regularization Paths for
Cox’s Proportional Hazards Model via Coordinate Descent.” Journal of Statistical Software, Articles 39 (5):
1–13. https://doi.org/10.18637/jss.v039.i05.

Therneau, Terry M., and Patricia M. Grambsch. 2000. Modeling survival data: extending the Cox model.
Springer.

12

https://doi.org/10.18637/jss.v039.i05

	Introduction
	Basic usage for right-censored data
	Cross-validation
	Handling of ties

	Cox models for start-stop data
	Stratified Cox models
	Plotting survival curves
	References

