
The vc bundle∗

Roland Hieber† Stephan Hennig‡

June 11, 2018

Abstract
This is a script based approach to version control for TEX docu-

ments. It works more reliably than keyword substitution based ap-
proaches, since it tracks all files in a working copy, not only .tex files.
The vc bundle works with LATEX and plain TEX. Currently, Bazaar,
Git, Mercurial and Subversion are supported.

Contents
1 Introduction 1

2 Usage 2
2.1 Installation 2
2.2 Preparing documents . 3
2.3 Compiling documents 4

A Notes on supported VCS 5

B Checking for local modifi-
cations 8

C Questions and answers 8

D Comparision with alter-
native VCS packages 14

E To do 14

1 Introduction
There is an inherent problem with LATEX and version control software as
soon as you’re dealing with files generated by an external tool, e.g., graphics.
Packages such as svn-multi can’t track neither binary files, nor source files
of graphics compiled by, e.g., MetaPost. For that reason, if you check-in a
new revision that only touches a graphic file, your VCS package would never
know a check-in has happened and tell you the old revision number (or date
or other meta data) in your documents.

∗This document describes the vc bundle v0.6
†rohieb+ctan@rohieb.name
‡stephanhennig@arcor.de

1

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

At least, the problem is only of temporary nature and as soon as you
check-in a file that is tracked by the VCS package, i.e., a .tex file, you’ll
get the correct revision number again. But traditional VCS packages, that
build on the keyword substitution feature provided by some VCS can’t track
revision information reliably, as they look at .tex files only.

To enable reliable tracking of revision information one has to look at all
files in a working copy. Since for non-source files the keyword substitution
feature doesn’t work, another approach has been taken here. This bundle
consists of some scripts that directly talk with the VCS backend to get the
desired information and write them to a file vc.tex. This file can then be
included into your document sources.

The vc bundle works with LATEX as well as plain TEX. Currently, Bazaar,
Git, Mercurial and Subversion are supported. Additional contributions are
welcome!

2 Usage
Doing version control with the vc bundle is very easy. While for other
LATEX VCS packages you need to activate keyword substitution and modify
all .tex source files, these steps aren’t necessary for the vc bundle. You
just have to copy two files to your project’s working copy and add one line
to your TEX preamble.

2.1 Installation

Ok, lets set-up the project repository. As a prerequisite, the scripts of the
vc bundle need GNU awk. Please install this first.1

The vc bundle consists of three files: a shell script, an AWK script, and
an automatically generated TEX file. For Unix and Windows the set of files
might be

Unix

vc
vc-bzr.awk
vc.tex

Windows

vc.bat
vc-bzr.awk
vc.tex

1For Windows you can find gawk in the GNUWin32 utilities. Alternative ports can be
found in Msys or Cygwin.

2

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

Note, depending on your VCS the AWK script might be any of vc-bzr.awk,
vc-git.awk, vc-hg.awk or vc-svn.awk. Additionally, while the AWK scripts
have the same names on Unix and Windows, the vc bundle provides them
with different line endings. So, watch out to take the right one for your VCS
and OS.

Installation is a one-step procedure (with two additional optional steps).

1. Copy the two script files
• vc (or vc.bat for Windows)
• vc-bzr.awk (or vc-git.awk or vc-hg.awk or vc-svn.awk)

into the top-level directory of your project’s working copy.

2. (Optionally) You can instruct your VCS software to ignore all three vc
related files. Please consult the manual of your VCS software about
this. Question 10 in Section C contains some brief instructions for
Bazaar, Git, Mercurial and Subversion, too.

3. (Optionally) Personally, the author is used to check-in both scripts into
each project repository to have them available when they are needed
and ignore file vc.tex only.

2.2 Preparing documents

What remains to be done is adding this line

\input{vc}

to your main LATEX or plain TEX document. That’s it.
Congratulations! You have now access to several macros containing VCS

information in your TEX document. The general macros available are shown
in table 1.

The most prominent information is probably the revision number, that
can be found in macro \VCRevision. For Bazaar and Subversion this is
a plain number, for Git it is a 7-hexdigit hash (the truncated 40-hexdigit
SHA1 commit hash), for Mercurial it is a 12-hexdigit hash (truncated from
40 symbols). Another macro that might be of interest is \VCRevisionMod.
This macro is discussed in detail in appendix B.

The remaining macros found in table 1 contain author, date (in different
formats) and time of the last commit and should be straightforward to use.

The above mentioned macros are available for all supported systems and
in general should be sufficient. However, depending on the VCS software

3

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

macro meaning

\VCRevision current (maximum) working copy revision number
\VCAuthor author of the last check-in operation
\VCDateRAW date of last check-in in native format of the VCS software
\VCDateISO date of last check-in in ISO format YYYY-MM-DD
\VCDateTEX date of last check-in in TEX format YYYY/MM/DD
\VCTime time of last check-in
\VCRevisionMod as \VCRevision, but with an additional note if the

working copy contains modified files
\VCModifiedText contains the note shown in macro \VCRevisionMod if

there were modified files. This macro can be redefined by
the user.

\VCModified 0 if there are no modified files in the working copy
directory; 1 or 2 if there are modified files. In general you
don’t need this macro.

Table 1: General version control macros.

you are using, there might be additional meta data available.2 Those data
are stored in other macros that are discussed in appendix A.

2.3 Compiling documents

Before file vc.tex can be loaded in the document preamble, it needs to be
generated. Doing that is as easy as running the shell script vc – or vc.bat
for Windows – before (La)TEX. There are three ways to do this:

1. from a Makefile – this is the preferred method,

2. via \write18 – another automatic solution,

3. manually – not recommended (inconvenient and error-prone).

Here’s how the script can be called from within a LATEX run via the
\write18 feature. Add the two lines

Unix

\immediate\write18{sh ./vc}
\input{vc}

Windows

\immediate\write18{vc.bat}
\input{vc}

2Such as the complete 40-hexdigit SHA1 commit hash for Git or Mercurial.

4

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

to your document. If LATEX sees the first line, it immediately executes the
argument of \write18 on the command-line. That is, the script vc – or
vc.bat – is executed and file vc.tex is updated. On the second line LATEX
reads-in the newly generated file vc.tex.

To make this work the \write18 feature has to be enabled. By default,
it is disabled for security reasons. For MiKTEX \write18 can be enabled
by calling LATEX via

> latex -enable-write18 〈document〉

For other LATEX distributions, please consult the documentation.
The \write18 feature is not relevant if vc is called by a Makefile.

Happy TEXing!
Stephan Hennig

A Notes on supported VCS
To be completed. VCS specific macros are prefixed \BZR, \GIT, \HG or \SVN.
Tables 2 to 5 show the additional macros available, depending on your VCS.

The macros marked by an asterisk might contains sensitive information
such as the path to a repository, file names, etc. These macros are only
written to file vc.tex in full mode. By default, full mode is disabled. That
is, distributing file vc.tex along with your TEX source files should be fairly
save, by default.

To activate full mode script vc has to be called with command-line op-
tion -f. This option should only be used with care.

5

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

macro meaning

∗\BZRBranchNick branch nickname
\BZRRevisionId full revision id
\BZRDate date of the last revision
\BZRBuildDate current date
\BZRRevNo revision number

Table 2: Bazaar specific version control macros.

macro meaning

\GITHash 40-hexdigit SHA1 commit hash
\GITAbrHash abbreviated commit hash
\GITParentHashes parent hashes
\GITAbrParentHashes abbreviated parent hashes
\GITAuthorName author name
\GITAuthorEmail author e-mail
\GITAuthorDate author date
\GITCommitterName committer name
\GITCommitterEmail committer e-mail
\GITCommitterDate committer date

Table 3: Git specific version control macros.

macro meaning

\HGHash 40-hexdigit SHA1 commit hash
\HGAbrHash abbreviated commit hash
\HGBranch commit branch
\HGFirstParentHash first parent hash
\HGSecondParentHash second parent hash (All zeroes means one-parent

revision)
\HGAbrFirstParentHash abbreviated first parent hash
\HGAbrSecondParentHash abbreviated second parent hash
\HGAuthorName author name
\HGAuthorEmail author e-mail
\HGAuthorDate author date

Table 4: Mercurial specific version control macros.

6

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

macro meaning

∗\SVNPath path to an arbitrary file or directory, that is part
of the last commit

∗\SVNName \SVNPath’s name without path
∗\SVNUrl path of \SVNPath in the repository
∗\SVNNodeKind node kind of \SVNPath (file, directory, etc.)
∗\SVNRepositoryRoot repository root URL
\SVNRevision revision number of \SVNPath
\SVNLastChangedRev revision number of \SVNPath
\SVNLastChangedAuthor author of the last commit
\SVNLastChangedDate date of the last commit
\SVNRepositoryUuid repository UUID

Table 5: Subversion specific version control macros.

7

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

B Checking for local modifications
Some people prefer to be notified, if a document is compiled from a dirty
working copy, i.e., from a state not corresponding to a committed revision.
This feature has been implemented in the vc bundle, but is disabled by
default (see below).

Macro \VCRevisionMod is similar to \VCRevision, but it has an addi-
tional message appended to the revision number, if there are any modified
files in the working copy.

The actual message is defined in macro \VCModifiedText and can be
redefined by the user. The default definition is

\gdef\VCModifiedText{\textcolor{red}{with local modifications!}}

That is, package color has to be loaded in the document preamble if macro
\VCRevisionMod is used or macro \VCModifiedText has to be redefined
accordingly.

By default, searching for local modifications is disabled to prevent slow-
ing down execution of the scripts. To check a working copy for modified files
script vc has to be called with the switch –m. The \write18 example from
section 2.3 now reads:

Unix

\immediate\write18{sh ./vc -m}
\input{vc}

Windows

\immediate\write18{vc.bat -m}
\input{vc}

Note, since distributing documents not corresponding to a committed
revision is bad style, it is wise make sure by other means (a release pro-
cedure), that distributed documents never contain uncommitted changes.
Therefore, a note, say, next to the revision number, doesn’t really provide
any additional information. If you think you need such a note, something
might be wrong with your release procedure.

C Questions and answers
1. How often do I need to run the script vc? Every time before TEX

is run?

8

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

2. Why are VCS data not updated in my document?
3. How can I print VCS data at arbitrary places in my document?
4. I want to have VCS data in the document only in draft mode!
5. How can I change the date format?
6. How can I access software specific VCS information, e.g., Git’s

40-hexdigit commit hash?
7. Why are macros defined with \gdef instead of \newcommand in file

vc.tex?
8. Macro \VCRevisionMod only shows the revision number, even if

there are modified files in my working copy.
9. In macro \VCRevisionMod, how can I get rid of the horizontal skip

between revision number and the message?
10. How do I ignore files with my VCS?
11. Is it possible to get per-file revision data with the vc bundle? This

were quite handy when working with a multi-file document (say,
each file is a chapter). After changing one file, the information
could be used to check if an old print-out of another chapter is
current.

12. Can I put files of the vc bundle into a private, public or commercial
repository?

1. How often do I need to run the script vc? Every time before TEX is
run?
First, it is not recommended to run the script manually, but automatically,
either from a Makefile or directly from LATEX via \write18. For that
reason, it shouldn’t matter how often the script is called.

To answer the question: If you run the script vc manually, it is suffi-
cient to do that once after each check-in or update operation. The only
advantage of running the script before every TEX run is that it keeps macro
\VCRevisionMod up-to-date w.r.t. local modifications (when called with the
–m switch).

Therefore, a fourth way to run script vc were to put it into a VCS hook
that is called after check-in or update operations. There are no examples for
this solution, since it heavily depends on the underlying VCS. Additionally,
some VCS might not provide enough hooks to cover all operations that
modify a working copy.

9

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

2. Why are VCS data not updated in my document?
Make sure script vc is run between check-in operations and the TEX run.
In case the script is called from TEX via \write18 (see section 2.3), you’ve
probably just forgotten to enable that feature. Please, refer to the manual
of your TEX distribution to learn how to enable \write18.
3. How can I print VCS data at arbitrary places in my document?
This question is covered in the UK-TeX-FAQ. Depending on where you want
to put VCS information—header, footer, page background—you might be
interested in the following links:

• http://www.tex.ac.uk/cgi-bin/texfaq2html?label=fancyhdr

• http://www.tex.ac.uk/cgi-bin/texfaq2html?label=watermark

• http://www.tex.ac.uk/cgi-bin/texfaq2html?label=abspos

Here is some code to put the revision number together with check-in date
and time into the foot line with packages fancyhdr and scrpage2:

\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyfoot[LE,LO]{Rev: \VCRevision}
\fancyfoot[RE,RO]{Time: \VCDateISO \VCTime}

\usepackage{scrpage2}
\pagestyle{scrheadings}
\lefoot{Rev: \VCRevision}
\lofoot{Rev: \VCRevision}
\refoot{Time: \VCDateISO \VCTime}
\rofoot{Time: \VCDateISO \VCTime}

Another source of information might be the TEX catalogue:

• http://texcatalogue.sarovar.org/bytopic.html#revision

In this manual, the prelim2e.sty package has been used to present VCS
information. See file vc-manual.tex to learn how the foot line has been set
up in this document.
4. I want to have VCS data in the document only in draft mode!
Have a look at the ifdraft package from the oberdiek bundle.

10

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=fancyhdr
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=watermark
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=abspos
http://texcatalogue.sarovar.org/bytopic.html#revision

5. How can I change the date format?
Package isodate provides means to convert between various (localized) date
formats.

6. How can I access software specific VCS information, e.g., Git’s 40-
hexdigit commit hash?
The general VCS information provided in macros prefixed \VC are available
for all supported version control systems. However, there are additional
information available for some VCS that are not for others. These informa-
tion are stored in macros that have a VCS specific prefix (cf. appendix A
and file vc.tex). As an example, Git’s 40-hexdigit commit hash is provided
in a macro \GITHash. You can either use this macro directly or redefine
\VCRevision to show the long hash as follows:

\renewcommand*{\VCRevision}{\GITHash}

But keep in mind, that persons, unfamiliar with version control software
or Git in particular, might be irritated by cryptic information on every
document page.

7. Why are macros defined with \gdef instead of \newcommand in file
vc.tex?
This is plain TEX syntax and this works with LATEX, too. If you’re us-
ing LATEX you can of course use \renewcommand to redefine macros, e.g.,
\VCRevision as shown in the answer to the preceeding question.

8. Macro \VCRevisionMod only shows the revision number, even if there
are modified files in my working copy.
Call script vc with the –m switch, see appendix B.

9. In macro \VCRevisionMod, how can I get rid of the horizontal skip
between revision number and the message?
By default, the definition of macro \VCRevisionMod is

\gdef\VCRevisionMod{\VCRevision~\VCModifiedText}

To remove the horizontal space before macro \VCModifiedText just start
its definition with \unskip, e.g.,

\gdef\VCModifiedText{\unskip, modified}

11

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

10. How do I ignore files with my VCS?
If you don’t know how to configure your VCS, please read its documentation
carefully before doing any of the steps shown below!

Here are some short instructions for ignoring file vc.tex in Bazaar, Git,
Mercurial and Subversion:

Bazaar In the directory containing the script files issue the following com-
mands on the command line:

> bzr ignore vc.tex
> bzr commit .bzrignore

This creates a file .bzrignore that contains ignore patterns and puts
that file under version control.

Git In the directory containing the script files create a file .gitignore
containing the line

vc.tex

and put .gitignore under version control:

> git add .gitignore
> git commit .gitignore

Mercurial In the directory containing the script files create a file .hgignore
containing the line

vc.tex

and put .hgignore under version control:

12
The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

> hg add .hgignore
> hg commit .hgignore

Subversion In the directory containing the script files issue the following
commands on the command line:

> svn propedit svn:ignore .
> svn commit

The first command will open an editor. Add the line

vc.tex

save the file, close the editor and commit the changes.

11. Is it possible to get per-file revision data with the vc bundle? This
were quite handy when working with a multi-file document (say, each
file is a chapter). After changing one file, the information could be used
to check if an old print-out of another chapter is current.
This sounds like you’re interested in tracking changes instead of just revision
data. Note, that tracking changes and documenting revision data for later
reference are fundamentally different requirements. The vc bundle has only
been written with the latter use-case in mind. In fact, the scripts of the vc
bundle try hard to be ignorant of individual file revision data.

There are three possible solutions (that do without vc):

1. To check whether files have changed between revisions one can use:

> svn diff -r 〈r1〉:〈r2〉 〈file〉

Of course, this is an on-line only solution, while you can check printed
numbers off-line and anywhere. That’s not to say it’s better or worse,
but it requires a slightly different work-flow. (For example, to pass
anybody the new document version, therefore avoiding the question if
and where two print-outs differ.)

13

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

2. If you want to track changes instead of revision numbers, have a look
at this item in UK-TeX-FAQ:

• http://www.tex.ac.uk/cgi-bin/texfaq2html?label=changebars

3. Packages svninfo or svn-multi and vc can perfectly be used together
to get reliable total revision data as well as per-file revision data. Al-
though, this may sound like overkill it could fit some use-cases. For
alternative version control packages see

• http://www.tex.ac.uk/cgi-bin/texfaq2html?label=RCS
• http://texcatalogue.sarovar.org/bytopic.html#revision

12. Can I put files of the vc bundle into a private, public or commercial
repository?
This is perfectly possible. The vc bundle has been put into the Public
Domain to remove any usage restrictions.

D Comparision with alternative VCS packages
The vc bundle

• looks at all files in a working copy to get reliable revision information,

• doesn’t provide per-file revision data,

• doesn’t use keyword substitution,

• works with LATEX and plain TEX,

• supports Bazaar, Git, Mercurial and Subversion,

• needs an AWK interpreter.

• Running the scripts might become noticeable on projects with many
files.

E To do
• Base Git scripts on plumbing commands.

• Rewrite (and merge) scripts in Perl.

• Add support for other VCS software. Contributions are welcome!

14

The vc bundle, Roland Hieber – 2018-06-11 – commit 735657b

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=changebars
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=RCS
http://texcatalogue.sarovar.org/bytopic.html#revision

	Introduction
	Usage
	Installation
	Preparing documents
	Compiling documents

	Notes on supported VCS
	Checking for local modifications
	Questions and answers
	Comparision with alternative VCS packages
	To do

